Chemical and Petroleum Engineering

, Volume 50, Issue 11–12, pp 799–805 | Cite as

A Numerical and Experimental Investigation of the Characteristics of an On-Off Valve with Permanent Magnet

  • V. Yu. Volkov
  • A. P. Skibin
  • O. N. Zhuravlev
  • M. T. Nukhaev
  • Yu. V. Kyurdzhiev
  • I. E. Maksimov
Compressors, Pumps, and Pipeline Fittings

Results of numerical and experimental studies of the characteristics of a direct-acting on-off valve with spherical cut-off element and permanent magnet are presented. A mathematical model of the flow of a compressible working medium (air) in the flow-through segment of the valve is presented and numerical modeling with the use of the STAR-CCM+ CFD package is implemented. Results of the simulation are confirmed by experimental data. A technique of designing pneumatic systems that utilize valves with permanent magnet as the limiter of the maximal flow of the working medium is proposed.


on-off valve with permanent magnet delivery pressure drop numerical modeling experiment 


  1. 1.
    O. N. Zhuravlev and A. V. Shishov, Patent 124759 U1 RF, IPC F16K21/04 05 21, “Valve with fixed position of gate used in extraction of liquid mineral resources,” Claim 2012120634/06 (2012).Google Scholar
  2. 2.
    L. G. Loytsyanskii, Mechanics of Liquids and Gases, Mir, Moscow (1973).Google Scholar
  3. 3.
    B. E. Launder, Prediction of Turbulent Flows. S1, Cambridge Univ. Press (2005), pp. 74–82.Google Scholar
  4. 4.
    F. Lien, W. Chen, and M. Leschziner, “Low-Reynolds number eddy-viscosity modeling based on non-linear stress-strain/vorticity relations,” in: Proc. 3rd Symp. Engineering Turbulence Modelling and Measurements, Greece (1996), p. 21.Google Scholar
  5. 5.
    F. R. Meanter, “Zonal two equation k-w turbulence models for aerodynamic flows,” in: Proc. 24th Fluid Dynamics Conf., July 6–9, 1993, Orlando, Florida (1993).Google Scholar
  6. 6.
    B. J. Daly and F. H. Harlow, “Transport equations in turbulence,” Phys. Fluids, 13, No. 11, 2634–2649 (1970).CrossRefGoogle Scholar
  7. 7.
    STAR-CCM+ Version 8.02, User Guide (2013).Google Scholar
  8. 8.
    M. P. Vukalovich and I. I. Novikov, Thermodynamics, Mashinostroenie, Moscow (1972).Google Scholar
  9. 9.
    I. E. Idelchik, Handbook on Hydraulic Resistances, Mashinostroenie, Moscow (1975).Google Scholar
  10. 10.
    P. Bradshaw, D. H. Ferriss, and N. P. Atwel, “Calculation of boundary layer development using the turbulent energy equation,” Fluid. Mech., 28, 593–616 (1967).CrossRefGoogle Scholar
  11. 11.
    I. A. Belov and S. A. Isaev, Modeling Turbulent Flows, Balt. Gos. Tekhn. Univ., St. Petersburg (2001), p. 108.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. Yu. Volkov
    • 1
  • A. P. Skibin
    • 1
  • O. N. Zhuravlev
    • 2
  • M. T. Nukhaev
    • 2
  • Yu. V. Kyurdzhiev
    • 3
  • I. E. Maksimov
    • 4
  1. 1.Gidropress Experimental Design Bureau (OKB Gidropress)PodolskRussia
  2. 2.VORMKhOLS CompanyMoscowRussia
  3. 3.Bauman Moscow State Technical UniversityMoscowRussia
  4. 4.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations