Chemical and Petroleum Engineering

, Volume 51, Issue 5–6, pp 396–401 | Cite as

Hydrogen Permeability of Palladium Membranes Made of Alloy V-1 in Laboratory Investigations and Membrane Devices

Cryogenic Engineering, Production and Use of Industrial Gases, Vacuum Engineering

An analysis of literature data on determination of the hydrogen permeability of palladium alloy V-1 membranes is given. It is shown that attention should be focused on the reliability of the specific hydrogen-permeability coefficients when performing design calculations using mathematical models to predict and analyze the optimal environment of various types of membrane devices for producing highly pure hydrogen.


hydrogen permeability palladium alloy V-1 


  1. 1.
    V. A. Goltsov, I. V. Frantsenyuk, N. I. Timofeev, et al., “Industrial operating experience of membrane alloy V-1 in a diffusion device for producing highly pure hydrogen from coke gas,” Vopr. At. Nauki Tekhn. Ser. At.-Vodor. Energet. Tekhn., Iss. 1, 36–37 (1987).Google Scholar
  2. 2.
    V. A. Goltsov, “Hydrogen in metals,” Atomic Hydrogen Energy and Technology, Atomizdat, Moscow (1978), Iss. 1, pp. 193–230.Google Scholar
  3. 3.
    E. Fromm and E. Gebkhardt, Gases and Carbon in Metals, Metallurgy, Moscow (1980).Google Scholar
  4. 4.
    R. M. Barrer, Diffusion In and Through Solids [Russian translation], Izd. Inostr. Lit, Moscow (1948), pp. 169–230.Google Scholar
  5. 5.
    G. S. Burkhanov, N. B. Gorina, N. B. Kolchugina, and N. R. Roshan, “Alloys of palladium for hydrogen energy,” Ross. Khim. Zh., 50, No. 4, 36–40 (2006)Google Scholar
  6. 6.
    M. N. Sivkov, I. N. Sakhanskaya, D. I. Slovetskii, et al., “Results of applied research on hydrogen membrane technology,” Tsvet. Met., No. 1, 36–39 (2007).Google Scholar
  7. 7.
    A. B. Shigirov and V. A. Kirillov, “Modelling a membrane reactor for methane vapor reforming: From granular to structured catalyst,” Teor. Osn. Khim. Tekhnol., 46, No. 2, 131–143 (2012).Google Scholar
  8. 8.
    Yu. K. Baichtok, V. P. Semenov, M. Kh. Sosna, and Yu. M. Baranov, “Hydrogen-permeable membrane of palladium alloy V-1 for separating hydrogen from gas mixtures,” Vopr. At. Nauki Tekhn. Ser. At.-Vodor. Energet. Tekhn., Iss. 2 (15), 26–31 (1983).Google Scholar
  9. 9.
    V. A. Kirillov, D. V. Meshcheryakov, O. F. Brizitskii, and V. Ya. Terent’ev, “Design analysis of low-temperature fuel element energy devices and fuel processor with hydrogen separation membrane,” Teor. Osn. Khim. Tekhnol., 44, No. 3, 243–251 (2010).Google Scholar
  10. 10.
    A. B. Vandyshev, V. A. Kulikov, I. V. Kirnos, and S. N. Nikishin, “High-temperature membrane devices in hydrogen recycling systems,” Khim. Neftegaz. Mashinostr., No. 11, 20–12 (2006).Google Scholar
  11. 11.
    A. B. Vandyshev, V. A. Kulikov, and S. N. Nikishin, “Analysis of consumption characteristics of high-throughput membrane devices for producing highly pure hydrogen,” Khim. Neftegaz. Mashinostr., No. 2, 12–15 (2010).Google Scholar
  12. 12.
    A. B. Vandyshev, V. M. Makarov, L. L. Myrav’ev, et al., “Modelling high-temperature membrane devices for producing highly pure hydrogen,” Teor. Osn. Khim. Tekhnol., 30, No. 5, 554–556 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Engineering ScienceUral Branch of the Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations