Chemical and Petroleum Engineering

, Volume 48, Issue 1–2, pp 97–102 | Cite as

Mathematical modeling of a wire-coil insert for heat-exchange enhancement in a tube passing a transitional flow

  • V. V. Volodin
  • I. N. Laskin
  • V. V. Golub
  • G. V. Kasharailo
  • V. L. Golovachev

This study is devoted to numerical investigation of a spring insert used to intensify heat exchange in a tube for various Reynolds numbers. Results of flow visualization are presented. Computed results are compared with experimental data. Conclusions concerning the range of application of regimes for the vortex generator in question are drawn.


Heat Exchange Prandtl Number Rayleigh Number Mixed Convection Vortex Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. S. Kutateladze, Fundamentals of Heat-Exchange Theory [in Russian], Atomizdat, Moscow (1979).Google Scholar
  2. 2.
    Handbook on Heat Exchangers, in 2 Vols. [in Russian], Energoatomizdat, Moscow (1987).Google Scholar
  3. 3.
    A. Dewan, P. Mahanta, R. K. Sumithra, and K. P. Suresh, Proc. Inst. of Mechanical Engineers, Part A: Journal of Power and Energy, Institution of Mechanical Engineers, London (2011), pp. 1–20.Google Scholar
  4. 4.
    D. R. Oliver and Y. Shoji, “Heat transfer enhancement in round tubes using different tube inserts: non-Newtonian fluids,” J. Chem. Engin. Res. Design, 70, 558–564 (1992).Google Scholar
  5. 5.
    A. Garcia, T. G. Vicente, and A. Viedma, “Experimental study of heat-transfer enhancement with wire-coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers,” Int. J. Heat Mass Trans., 48, 4640–4651 (2005).CrossRefGoogle Scholar
  6. 6.
    A. N. Kolmogorov, “Turbulent-motion equations for incompressible liquids,” Izv. Akad. Nauk SSSR. Ser. Fiz., 6, No. 1–2, 56–58 (1942).Google Scholar
  7. 7.
    L. Prandtl, “Über ein neues Formelsystem für die ausgebildete Turbulenz,” Nach. Akad. Wiss, Math. Phys., Gottingen (1945).Google Scholar
  8. 8.
    D. K. Walters and D. Sokljat, “A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flows,” J. Fluids Engin., 130, 14 (2008).Google Scholar
  9. 9.
    A. E. Bergies, A. R. Blumenkrantz, and J. Taborek, “Performance evaluation criteria for enhanced heat transfer surfaces,” J. Heat Trans., 2, 239–243 (1974).Google Scholar
  10. 10.
    E. K. Kalinin, G. A. Dreitser, et al., Effective Heat Exchange Surfaces [in Russian], Energoatomizdat, Moscow (1998).Google Scholar
  11. 11.
    B. S. Petukhov and A. F. Polyakov, Heat Transfer in Turbulent Mixed Convection, 1st edition, Hemisphere, New York (1988).Google Scholar
  12. 12.
    V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and and channel flow,” Int. Chem. Engin., 16, 359–368 (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • V. V. Volodin
    • 1
  • I. N. Laskin
    • 1
  • V. V. Golub
    • 1
  • G. V. Kasharailo
    • 1
  • V. L. Golovachev
    • 2
  1. 1.MoscowRussia
  2. 2.MoscowRussia

Personalised recommendations