Skip to main content

Advertisement

Log in

Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM–cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Young, J. S., Llumsden, C. E., & Stalker, A. L. (1950). The significance of the “tissue pressure” of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. The Journal of Pathology and Bacteriology, 62(3), 313–333. https://doi.org/10.1002/path.1700620303.

    Article  CAS  PubMed  Google Scholar 

  2. Northcott, J. M., Dean, I. S., Mouw, J. K., & Weaver, V. M. (2018). Feeling stress: the mechanics of cancer progression and aggression. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2018.00017.

  3. Kai, F. B., Laklai, H., & Weaver, V. M. (2016). Force matters: biomechanical regulation of cell invasion and migration in disease. Trends in Cell Biology, 26(7), 486–497. https://doi.org/10.1016/j.tcb.2016.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254. https://doi.org/10.1016/j.ccr.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  5. Lin, X., Shi, Y., Cao, Y., & Liu, W. (2016). Recent progress in stem cell differentiation directed by material and mechanical cues. Biomedical materials (Bristol, England), 11(1), 14109. https://doi.org/10.1088/1748-6041/11/1/014109.

    Article  CAS  Google Scholar 

  6. Paszek, M. J., DuFort, C. C., Rossier, O., Bainer, R., Mouw, J. K., Godula, K., et al. (2014). The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature, 511(7509), 319–325. https://doi.org/10.1038/nature13535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anastasiou, O., Hadjisavva, R., & Skourides, P. A. (2020). Mitotic cell responses to substrate topological cues are independent of the molecular nature of adhesion. Science Signaling, 13(620), eaax9940. https://doi.org/10.1126/scisignal.aax9940.

    Article  CAS  PubMed  Google Scholar 

  8. Joyce, M. H., Lu, C., James, E. R., Hegab, R., Allen, S. C., Suggs, L. J., & Brock, A. (2018). Phenotypic basis for matrix stiffness-dependent chemoresistance of breast cancer cells to doxorubicin. Frontiers in Oncology, 8, 337. https://doi.org/10.3389/fonc.2018.00337.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sewell-Loftin, M. K., Bayer, S. V. H., Crist, E., Hughes, T., Joison, S. M., Longmore, G. D., & George, S. C. (2017). Cancer-associated fibroblasts support vascular growth through mechanical force. Scientific Reports, 7(1), 12574. https://doi.org/10.1038/s41598-017-13006-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reid, S. E., Kay, E. J., Neilson, L. J., Henze, A.-T., Serneels, J., McGhee, E. J., et al. (2017). Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. The EMBO Journal, 36(16), 2373–2389. https://doi.org/10.15252/embj.201694912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M., & Keely, P. J. (2008). Contact guidance mediated three-dimensional cell migration is regulated by rho/ROCK-dependent matrix reorganization. Biophysical Journal, 95(11), 5374–5384. https://doi.org/10.1529/biophysj.108.133116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, J., Tan, Y., Zhang, H., Zhang, Y., Xu, P., Chen, J., et al. (2012). Soft fibrin gels promote selection and growth of tumorigenic cells. Nature Materials, 11(8), 734–741. https://doi.org/10.1038/nmat3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bordeleau, F., Mason, B. N., Lollis, E. M., Mazzola, M., Zanotelli, M. R., Somasegar, S., et al. (2017). Matrix stiffening promotes a tumor vasculature phenotype. Proceedings of the National Academy of Sciences of the United States of America, 114(3), 492–497. https://doi.org/10.1073/pnas.1613855114.

    Article  CAS  PubMed  Google Scholar 

  14. Lampi, M. C., & Reinhart-king, C. A. (2018). Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Science Translational Medicine, 0475(January), 1–15.

    Google Scholar 

  15. Nevala-Plagemann, C., Hidalgo, M., & Garrido-Laguna, I. (2020). From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nature Reviews. Clinical Oncology, 17(2), 108–123. https://doi.org/10.1038/s41571-019-0281-6.

    Article  PubMed  Google Scholar 

  16. Mouw, J. K., Ou, G., & Weaver, V. M. (2014). Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews. Molecular Cell Biology, 15(12), 771–785. https://doi.org/10.1038/nrm3902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malik, R., Lelkes, P. I., & Cukierman, E. (2015). Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends in Biotechnology, 33(4), 230–236. https://doi.org/10.1016/j.tibtech.2015.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gopal, S., Veracini, L., Grall, D., Butori, C., Schaub, S., Audebert, S., et al. (2017). Fibronectin-guided migration of carcinoma collectives. Nature Communications, 8(1), 14105. https://doi.org/10.1038/ncomms14105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leppänen, J., Lindholm, V., Isohookana, J., Haapasaari, K.-M., Karihtala, P., Lehenkari, P. P., et al. (2019). Tenascin C, fibronectin, and tumor-stroma ratio in pancreatic ductal adenocarcinoma. Pancreas, 48(1) Retrieved from https://journals.lww.com/pancreasjournal/Fulltext/2019/01000/Tenascin_C,_Fibronectin,_and_Tumor_Stroma_Ratio_in.5.aspx.

  20. Wartiovaara, J., Leivo, I., Virtanen, I., Vaheri, A., & Graham, C. F. (1978). Appearance of fibronectin during differentiation of mouse teratocarcinoma in vitro. Nature, 272(5651), 355–356. https://doi.org/10.1038/272355a0.

    Article  CAS  PubMed  Google Scholar 

  21. Chambers, A. F., Behrend, E. I., Wilson, S. M., & Denhardt, D. T. (1992). Induction of expression of osteopontin (OPN; secreted phosphoprotein) in metastatic, ras-transformed NIH 3T3 cells. Anticancer Research, 12(1), 43–47.

    CAS  PubMed  Google Scholar 

  22. Hebert, J. D., Myers, S. A., Naba, A., Abbruzzese, G., Lamar, J. M., Carr, S. A., & Hynes, R. O. (2020). Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-19-2961.

  23. Naba, A., Clauser, K. R., Ding, H., Whittaker, C. A., Carr, S. A., & Hynes, R. O. (2016). The extracellular matrix: tools and insights for the “omics” era. Matrix Biology: Journal of the International Society for Matrix Biology, 49, 10–24. https://doi.org/10.1016/j.matbio.2015.06.003.

    Article  CAS  Google Scholar 

  24. Oudin, M. J., Jonas, O., Kosciuk, T., Broye, L. C., Guido, B. C., Wyckoff, J., et al. (2016). Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discovery, 6(5), 516–531. https://doi.org/10.1158/2159-8290.CD-15-1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian, C., Clauser, K. R., Ohlund, D., Rickelt, S., Huang, Y., Gupta, M., et al. (2019). Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 116(39), 19609–19618. https://doi.org/10.1073/pnas.1908626116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian, C., Ohlund, D., Rickelt, S., Lidstrom, T., Huang, Y., Hao, L., et al. (2020). Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-19-2578.

  27. Gocheva, V., Naba, A., Bhutkar, A., Guardia, T., Miller, K. M., Li, C. M.-C., et al. (2017). Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proceedings of the National Academy of Sciences of the United States of America, 114(28), E5625–E5634. https://doi.org/10.1073/pnas.1707054114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaur, A., Ecker, B. L., Douglass, S. M., Kugel 3rd, C. H., Webster, M. R., Almeida, F. V., et al. (2019). Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discovery, 9(1), 64–81. https://doi.org/10.1158/2159-8290.CD-18-0193.

    Article  CAS  PubMed  Google Scholar 

  29. Sun, Z., Schwenzer, A., Rupp, T., Murdamoothoo, D., Vegliante, R., Lefebvre, O., et al. (2018). Tenascin-C promotes tumor cell migration and metastasis through integrin α9β1-mediated YAP inhibition. Cancer Research, 78(4), 950–961. https://doi.org/10.1158/0008-5472.CAN-17-1597.

    Article  CAS  PubMed  Google Scholar 

  30. Cai, J., Lu, W., Du, S., Guo, Z., Wang, H., Wei, W., & Shen, X. (2018). Tenascin-C modulates cell cycle progression to enhance tumour cell proliferation through AKT/FOXO1 signalling in pancreatic cancer. Journal of Cancer, 9(23), 4449–4462. https://doi.org/10.7150/jca.25926.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Castello, L. M., Raineri, D., Salmi, L., Clemente, N., Vaschetto, R., Quaglia, M., et al. (2017). Osteopontin at the crossroads of inflammation and tumor progression. Mediators of Inflammation, 2017, 4049098. https://doi.org/10.1155/2017/4049098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Obberghen-Schilling, E., Tucker, R. P., Saupe, F., Gasser, I., Cseh, B., & Orend, G. (2011). Fibronectin and tenascin-C: accomplices in vascular morphogenesis during development and tumor growth. The International Journal of Developmental Biology, 55(4–5), 511–525. https://doi.org/10.1387/ijdb.103243eo.

    Article  CAS  PubMed  Google Scholar 

  33. Chang, J., & Chaudhuri, O. (2019). Beyond proteases: basement membrane mechanics and cancer invasion. The Journal of Cell Biology, 218(8), 2456–2469. https://doi.org/10.1083/jcb.201903066.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wen, Q., & Janmey, P. A. (2013). Effects of non-linearity on cell-ECM interactions. Experimental Cell Research, 319(16), 2481–2489. https://doi.org/10.1016/j.yexcr.2013.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Conklin, M. W., Eickhoff, J. C., Riching, K. M., Pehlke, C. A., Eliceiri, K. W., Provenzano, P. P., et al. (2011). Aligned collagen is a prognostic signature for survival in human breast carcinoma. The American Journal of Pathology, 178(3), 1221–1232. https://doi.org/10.1016/j.ajpath.2010.11.076.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bredfeldt, J. S., Liu, Y., Pehlke, C. A., Conklin, M. W., Szulczewski, J. M., Inman, D. R., et al. (2014). Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. Journal of Biomedical Optics, 19(1), 16007. https://doi.org/10.1117/1.JBO.19.1.016007.

    Article  PubMed  Google Scholar 

  37. Mosher, D. F. (1993). Assembly of fibronectin into extracellular matrix. Current Opinion in Structural Biology, 3(2), 214–222. https://doi.org/10.1016/S0959-440X(05)80155-1.

    Article  CAS  Google Scholar 

  38. Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews. Molecular cell biology, 15(12), 786–801. https://doi.org/10.1038/nrm3904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, K., Wu, F., Seo, B. R., Fischbach, C., Chen, W., Hsu, L., & Gourdon, D. (2017). Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biology, 60–61, 86–95. https://doi.org/10.1016/j.matbio.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  40. Erdogan, B., Ao, M., White, L. M., Means, A. L., Brewer, B. M., Yang, L., et al. (2017). Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. Journal of Cell Biology, 216(11), 3799–3816. https://doi.org/10.1083/jcb.201704053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox, T. R., Bird, D., Baker, A.-M., Barker, H. E., Ho, M. W.-Y., Lang, G., & Erler, J. T. (2013). LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Research, 73(6), 1721–1732. https://doi.org/10.1158/0008-5472.CAN-12-2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harburger, D. S., & Calderwood, D. A. (2009). Integrin signalling at a glance. Journal of Cell Science, 122(Pt 2), 159–163. https://doi.org/10.1242/jcs.018093.

    Article  CAS  PubMed  Google Scholar 

  43. Attieh, Y., Clark, A. G., Grass, C., Richon, S., Pocard, M., Mariani, P., et al. (2017). Cancer-associated fibroblasts lead tumor invasion through integrin-beta3-dependent fibronectin assembly. The Journal of Cell Biology, 216(11), 3509–3520. https://doi.org/10.1083/jcb.201702033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farrugia, A. J., & Calvo, F. (2017). Cdc42 regulates Cdc42EP3 function in cancer-associated fibroblasts. Small GTPases, 8(1), 49–57. https://doi.org/10.1080/21541248.2016.1194952.

    Article  CAS  PubMed  Google Scholar 

  45. Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D. G., Egeblad, M., Evans, R. M., et al. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews. Cancer, 20(3), 174–186. https://doi.org/10.1038/s41568-019-0238-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abercrombie, M., & Heaysman, J. E. M. (1953). Observations on the social behaviour of cells in tissue culture: I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Experimental Cell Research, 5(1), 111–131. https://doi.org/10.1016/0014-4827(53)90098-6.

    Article  CAS  PubMed  Google Scholar 

  47. Theveneau, E., Steventon, B., Scarpa, E., Garcia, S., Trepat, X., Streit, A., & Mayor, R. (2013). Chase-and-run between adjacent cell populations promotes directional collective migration. Nature Cell Biology, 15(7), 763–772. https://doi.org/10.1038/ncb2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elsdale, T. R. (1968). Parallel orientation of fibroblasts in vitro. Experimental Cell Research, 51(2), 439–450. https://doi.org/10.1016/0014-4827(68)90134-1.

    Article  CAS  PubMed  Google Scholar 

  49. Davis, J. R., Luchici, A., Mosis, F., Thackery, J., Salazar, J. A., Mao, Y., et al. (2015). Inter-cellular forces orchestrate contact inhibition of locomotion. Cell, 161(2), 361–373. https://doi.org/10.1016/j.cell.2015.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, D., Wershof, E., Boeing, S., Labernadie, A., Jenkins, R. P., George, S., et al. (2020). Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nature Materials, 19(2), 227–238. https://doi.org/10.1038/s41563-019-0504-3.

    Article  CAS  PubMed  Google Scholar 

  51. Bissell, M. J., Hall, H. G., & Parry, G. (1982). How does the extracellular matrix direct gene expression? Journal of Theoretical Biology, 99(1), 31–68. https://doi.org/10.1016/0022-5193(82)90388-5.

    Article  CAS  PubMed  Google Scholar 

  52. Nijhout, H. F., Best, J. A., & Reed, M. C. (2019). Systems biology of robustness and homeostatic mechanisms. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 11(3), e1440. https://doi.org/10.1002/wsbm.1440.

    Article  PubMed  Google Scholar 

  53. Xu, R., Boudreau, A., & Bissell, M. J. (2009). Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer and Metastasis Reviews, 28(1), 167–176. https://doi.org/10.1007/s10555-008-9178-z.

    Article  PubMed  Google Scholar 

  54. Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 22(1), 287–309. https://doi.org/10.1146/annurev.cellbio.22.010305.104315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. LeBleu, V. S., & Neilson, E. G. (2020). Origin and functional heterogeneity of fibroblasts. FASEB Journal, (January), 1–18. https://doi.org/10.1096/fj.201903188R.

  56. Öhlund, D., Elyada, E., & Tuveson, D. (2014). Fibroblast heterogeneity in the cancer wound. Journal of Experimental Medicine, 211(8), 1503–1523. https://doi.org/10.1084/jem.20140692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Micallef, L., Vedrenne, N., Billet, F., Coulomb, B., Darby, I. A., & Desmoulière, A. (2012). The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis & Tissue Repair, 5(Suppl 1), S5–S5. https://doi.org/10.1186/1755-1536-5-S1-S5.

    Article  Google Scholar 

  58. Cox, T. R., & Erler, J. T. (2011). Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 4(2), 165–178. https://doi.org/10.1242/dmm.004077.

    Article  CAS  Google Scholar 

  59. Kuzet, S. E., & Gaggioli, C. (2016). Fibroblast activation in cancer: when seed fertilizes soil. Cell and Tissue Research, 365(3), 607–619. https://doi.org/10.1007/s00441-016-2467-x.

    Article  CAS  PubMed  Google Scholar 

  60. Rettig, W. J., Garin-Chesa, P., Healey, J. H., Su, S. L., Ozer, H. L., Schwab, M., et al. (1993). Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Research, 53(14), 3327–3335.

    CAS  PubMed  Google Scholar 

  61. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews. Molecular Cell Biology, 3(5), 349–363. https://doi.org/10.1038/nrm809.

    Article  CAS  PubMed  Google Scholar 

  62. Hu, M., Yao, J., Cai, L., Bachman, K. E., van den Brûle, F., Velculescu, V., & Polyak, K. (2005). Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genetics, 37(8), 899–905. https://doi.org/10.1038/ng1596.

    Article  CAS  PubMed  Google Scholar 

  63. Vizoso, M., Puig, M., Carmona, F. J., Maqueda, M., Velasquez, A., Gomez, A., et al. (2015). Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts. Carcinogenesis, 36(12), 1453–1463. https://doi.org/10.1093/carcin/bgv146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Webber, J. P., Spary, L. K., Sanders, A. J., Chowdhury, R., Jiang, W. G., Steadman, R., et al. (2015). Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene, 34(3), 290–302. https://doi.org/10.1038/onc.2013.560.

    Article  CAS  PubMed  Google Scholar 

  65. Amatangelo, M. D., Bassi, D. E., Klein-Szanto, A. J. P., & Cukierman, E. (2005). Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. The American Journal of Pathology, 167(2), 475–488. https://doi.org/10.1016/S0002-9440(10)62991-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R. P., Chaudhry, S. I., et al. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology, 15(6), 637–646. https://doi.org/10.1038/ncb2756.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & Development, 21(21), 2747–2761. https://doi.org/10.1101/gad.1602907.

    Article  CAS  Google Scholar 

  68. Yu, F.-X., Zhao, B., & Guan, K.-L. (2015). Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4), 811–828. https://doi.org/10.1016/j.cell.2015.10.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Piccolo, S., Dupont, S., & Cordenonsi, M. (2014). The biology of YAP/TAZ: Hippo signaling and beyond. Physiological Reviews, 94(4), 1287–1312. https://doi.org/10.1152/physrev.00005.2014.

    Article  CAS  PubMed  Google Scholar 

  70. Sorrentino, G., Ruggeri, N., Specchia, V., Cordenonsi, M., Mano, M., Dupont, S., et al. (2014). Metabolic control of YAP and TAZ by the mevalonate pathway. Nature Cell Biology, 16(4), 357–366. https://doi.org/10.1038/ncb2936.

    Article  CAS  PubMed  Google Scholar 

  71. Koo, J. H., & Guan, K.-L. (2018). Interplay between YAP/TAZ and metabolism. Cell Metabolism, 28(2), 196–206. https://doi.org/10.1016/j.cmet.2018.07.010.

    Article  CAS  PubMed  Google Scholar 

  72. Romani, P., Brian, I., Santinon, G., Pocaterra, A., Audano, M., Pedretti, S., et al. (2019). Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nature Cell Biology, 21(3), 338–347. https://doi.org/10.1038/s41556-018-0270-5.

    Article  CAS  PubMed  Google Scholar 

  73. Zhong, W., Tian, K., Zheng, X., Li, L., Zhang, W., Wang, S., & Qin, J. (2013). Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by yes-associated protein. Stem Cells and Development, 22(14), 2083–2093. https://doi.org/10.1089/scd.2012.0685.

    Article  CAS  PubMed  Google Scholar 

  74. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474(7350), 179–183. https://doi.org/10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  75. Codelia, V. A., Sun, G., & Irvine, K. D. (2014). Regulation of YAP by mechanical strain through Jnk and hippo signaling. Current Biology, 24(17), 2012–2017. https://doi.org/10.1016/j.cub.2014.07.034.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes & Development, 22(14), 1962–1971. https://doi.org/10.1101/gad.1664408.

    Article  CAS  Google Scholar 

  77. Ferrari, N., Ranftl, R., Chicherova, I., Slaven, N. D., Moeendarbary, E., Farrugia, A. J., et al. (2019). Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nature Communications, 10(1), 130. https://doi.org/10.1038/s41467-018-07987-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Warburg, O. (1925). The metabolism of carcinoma cells 1. The Journal of Cancer Research. https://doi.org/10.1158/jcr.1925.148.

  79. Warburg, O., Wind, F., & Negelein, E. (1926). Über den Stoffwechsel von Tumoren im Körper. Klinische Wochenschrift. https://doi.org/10.1007/BF01726240.

  80. Waddington, C. H. (1935). Cancer and the theory of organisers. Nature. https://doi.org/10.1038/135606a0.

  81. Nowell, P. C., & Hungerford, D. A. (1960). Chromosome studies on normal and leukemic human leukocytes. Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/25.1.85.

  82. Duesberg, P. H., & Vogt, P. K. (1970). Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.67.4.1673.

  83. Bister, K. (2015). Discovery of oncogenes: the advent of molecular cancer research. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1521145112.

  84. Scolnick, E. M., Rands, E., Williams, D., & Parks, W. P. (1973). Studies on the nucleic acid sequences of Kirsten sarcoma virus: a model for formation of a mammalian RNA-containing sarcoma virus. Journal of Virology. https://doi.org/10.1128/jvi.12.3.458-463.1973.

  85. Scolnick, E. M., & Parks, W. P. (1974). Harvey sarcoma virus: a second murine type C sarcoma virus with rat genetic information. Journal of Virology. https://doi.org/10.1128/jvi.13.6.1211-1219.1974.

  86. Stehelin, D., Varmus, H. E., Bishop, J. M., & Vogt, P. K. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. https://doi.org/10.1038/260170a0.

  87. Duesberg, P. H., & Vogt, P. K. (1979). Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: evidence for a second class of transforming genes. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.76.4.1633.

  88. Hu, S. S. F., Lai, M. M. C., & Vogt, P. K. (1979). Genome of avian myelocytomatosis virus MC29: analysis by heteroduplex mapping. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.76.3.1265.

  89. Dolberg, D. S., & Bissell, M. J. (1984). Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature. https://doi.org/10.1038/309552a0.

  90. Varmus, H., & Weinberg, R. A. (1994). Genes and the biology of cancer. The Quarterly Review of Biology. https://doi.org/10.1086/418732.

  91. Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., et al. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25(6), 735–747. https://doi.org/10.1016/j.ccr.2014.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brunner, S. F., Roberts, N. D., Wylie, L. A., Moore, L., Aitken, S. J., Davies, S. E., et al. (2019). Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature, 574(7779), 538–542. https://doi.org/10.1038/s41586-019-1670-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martincorena, I., Roshan, A., Gerstung, M., Ellis, P., Van Loo, P., McLaren, S., et al. (2015). Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science (New York, N.Y.), 348(6237), 880–886. https://doi.org/10.1126/science.aaa6806.

    Article  CAS  Google Scholar 

  94. Weaver, V. M., Lelièvre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C. R., Giancotti, F., et al. (2002). β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell. https://doi.org/10.1016/S1535-6108(02)00125-3.

  95. Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky, C., & Bissell, M. J. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. Journal of Cell Biology. https://doi.org/10.1083/jcb.137.1.231.

  96. Yu, H., Mouw, J. K., & Weaver, V. M. (2011). Forcing form and function: biomechanical regulation of tumor evolution. Trends in Cell Biology, 21(1), 47–56. https://doi.org/10.1016/j.tcb.2010.08.015.

    Article  PubMed  Google Scholar 

  97. Northey, J. J., Przybyla, L., & Weaver, V. M. (2017). Tissue force programs cell fate and tumor aggression. Cancer Discovery. https://doi.org/10.1158/2159-8290.CD-16-0733.

  98. Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L., & Chen, C. S. (2012). Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Molecular Biology of the Cell, 23(5), 781–791. https://doi.org/10.1091/mbc.E11-06-0537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Butcher, D. T., Alliston, T., & Weaver, V. M. (2009). A tense situation: forcing tumour progression. Nature Reviews. Cancer, 9(2), 108–122. https://doi.org/10.1038/nrc2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Azevedo, A. S., Follain, G., Patthabhiraman, S., Harlepp, S., & Goetz, J. G. (2015). Metastasis of circulating tumor cells: favorable soil or suitable biomechanics, or both? Cell Adhesion & Migration, 9(5), 345–356. https://doi.org/10.1080/19336918.2015.1059563.

    Article  CAS  Google Scholar 

  101. Huang, Q., Hu, X., He, W., Zhao, Y., Hao, S., Wu, Q., et al. (2018). Fluid shear stress and tumor metastasis. American Journal of Cancer Research, 8(5), 763–777 Retrieved from https://pubmed.ncbi.nlm.nih.gov/29888101.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Uhler, C., & Shivashankar, G. V. (2017). Regulation of genome organization and gene expression by nuclear mechanotransduction. Nature Reviews. Molecular Cell Biology, 18(12), 717–727. https://doi.org/10.1038/nrm.2017.101.

    Article  CAS  PubMed  Google Scholar 

  103. Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., et al. (2009). The hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Developmental Cell. https://doi.org/10.1016/j.devcel.2009.02.003.

  104. Rosado-Olivieri, E. A., Anderson, K., Kenty, J. H., & Melton, D. A. (2019). YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nature Communications. https://doi.org/10.1038/s41467-019-09404-6.

  105. Judson, R. N., Tremblay, A. M., Knopp, P., White, R. B., Urcia, R., De Bari, C., et al. (2012). The hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. Journal of Cell Science. https://doi.org/10.1242/jcs.109546.

  106. Huang, Z., Hu, J., Pan, J., Wang, Y., Hu, G., Zhou, J., et al. (2016). YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development (Cambridge). https://doi.org/10.1242/dev.130658.

  107. Lorthongpanich, C., Thumanu, K., Tangkiettrakul, K., Jiamvoraphong, N., Laowtammathron, C., Damkham, N., et al. (2019). YAP as a key regulator of adipo-osteogenic differentiation in human MSCs. Stem Cell Research and Therapy. https://doi.org/10.1186/s13287-019-1494-4.

  108. Sanderson, S. M., & Locasale, J. W. (2018). Revisiting the Warburg effect: some tumors hold their breath. Cell Metabolism, 28(5), 669–670. https://doi.org/10.1016/j.cmet.2018.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Altman, B. J., Stine, Z. E., & Dang, C. V. (2016). From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews. Cancer, 16(10), 619–634. https://doi.org/10.1038/nrc.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu, P.-H., Aroush, D. R.-B., Asnacios, A., Chen, W.-C., Dokukin, M. E., Doss, B. L., et al. (2018). A comparison of methods to assess cell mechanical properties. Nature Methods, 15(7), 491–498. https://doi.org/10.1038/s41592-018-0015-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, G. Y., & Sabatini, D. M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews. Molecular Cell Biology. https://doi.org/10.1038/s41580-019-0199-y.

  112. Park, J. S., Burckhardt, C. J., Lazcano, R., Solis, L. M., Isogai, T., Li, L., et al. (2020). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 578(7796), 621–626. https://doi.org/10.1038/s41586-020-1998-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, Q.-P., Luo, Q., Deng, B., Ju, Y., & Song, G.-B. (2020). Stiffer matrix accelerates migration of hepatocellular carcinoma cells through enhanced aerobic glycolysis via the MAPK-YAP signaling. Cancers, 12(2). https://doi.org/10.3390/cancers12020490.

  114. Panciera, T., Azzolin, L., Cordenonsi, M., & Piccolo, S. (2017). Mechanobiology of YAP and TAZ in physiology and disease. Nature Reviews Molecular Cell Biology, 18(12), 758–770. https://doi.org/10.1038/nrm.2017.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yin, X., Choudhury, M., Kang, J.-H., Schaefbauer, K. J., Jung, M.-Y., Andrianifahanana, M., et al. (2019). Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-beta. Science Signaling, 12(612). https://doi.org/10.1126/scisignal.aax4067.

  116. Simons, K., & Sampaio, J. L. (2011). Membrane organization and lipid rafts. Cold Spring Harbor Perspectives in Biology, 3(10), a004697. https://doi.org/10.1101/cshperspect.a004697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yamada, E. (1955). The fine structure of the gall bladder epithelium of the mouse. The Journal of Biophysical and Biochemical Cytology, 1(5), 445–458. https://doi.org/10.1083/jcb.1.5.445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Parton, R. G., & Del Pozo, M. A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/nrm3512.

  119. Parton, R. G., Del Pozo, M. A., Vassilopoulos, S., Nabi, I. R., Le Lay, S., Lundmark, R., et al. (2020). Caveolae: the FAQs. Traffic (Copenhagen, Denmark), 21(1), 181–185. https://doi.org/10.1111/tra.12689.

    Article  CAS  Google Scholar 

  120. Thomas, C. M., & Smart, E. J. (2008). Caveolae structure and function. Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/j.1582-4934.2008.00295.x.

  121. Parton, R. G. (1996). Caveolae and caveolins. Current Opinion in Cell Biology. https://doi.org/10.1016/S0955-0674(96)80033-0.

  122. Tillu, V. A., Rae, J., Gao, Y., Ariotti, N., Floetenmeyer, M., Kovtun, O., et al. (2019). Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. bioRxiv, 831149. https://doi.org/10.1101/831149.

  123. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., & Anderson, R. G. W. (1992). Caveolin, a protein component of caveolae membrane coats. Cell. https://doi.org/10.1016/0092-8674(92)90143-Z.

  124. Rudick, M., & Anderson, R. G. W. (2002). Multiple functions of caveolin-1. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.R200020200.

  125. Liu, L., Brown, D., McKee, M., LeBrasseur, N. K., Yang, D., Albrecht, K. H., et al. (2008). Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metabolism. https://doi.org/10.1016/j.cmet.2008.07.008.

  126. Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., et al. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124. https://doi.org/10.1016/j.cell.2007.11.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Golani, G., Ariotti, N., Parton, R. G., & Kozlov, M. M. (2019). Membrane curvature and tension control the formation and collapse of caveolar superstructures. Developmental Cell, 48(4), 523–538.e4. https://doi.org/10.1016/j.devcel.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  128. Ariotti, N., Rae, J., Leneva, N., Ferguson, C., Loo, D., Okano, S., et al. (2015). Molecular characterization of caveolin-induced membrane curvature. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M115.644336.

  129. Tian, J., Hou, Y., Lu, Q., Wiseman, D. A., Vasconcelos Fonsesca, F., Elms, S., et al. (2010). A novel role for caveolin-1 in regulating endothelial nitric oxide synthase activation in response to H2O2 and shear stress. Free Radical Biology & Medicine, 49(2), 159–170. https://doi.org/10.1016/j.freeradbiomed.2010.03.023.

    Article  CAS  Google Scholar 

  130. Mastick, C. C., Brady, M. J., & Saltiel, A. R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. Journal of Cell Biology, 129(6), 1523–1531. https://doi.org/10.1083/jcb.129.6.1523.

    Article  CAS  PubMed  Google Scholar 

  131. del Pozo, M. A., Balasubramanian, N., Alderson, N. B., Kiosses, W. B., Grande-García, A., Anderson, R. G. W., & Schwartz, M. A. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology. https://doi.org/10.1038/ncb1293.

  132. Joshi, B., Bastiani, M., Strugnell, S. S., Boscher, C., Parton, R. G., & Nabi, I. R. (2012). Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. Journal of Cell Biology, 199(3), 425–435. https://doi.org/10.1083/jcb.201207089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Goetz, J. G., Minguet, S., Navarro-Lérida, I., Lazcano, J. J., Samaniego, R., Calvo, E., et al. (2011). Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell. https://doi.org/10.1016/j.cell.2011.05.040.

  134. Grande-Garcia, A., Echarri, A., de Rooij, J., Alderson, N. B., Waterman-Storer, C. M., Valdivielso, J. M., & del Pozo, M. A. (2007). Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. The Journal of Cell Biology, 177(4), 683–694. https://doi.org/10.1083/jcb.200701006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Joshi, B., Strugnell, S. S., Goetz, J. G., Kojic, L. D., Cox, M. E., Griffith, O. L., et al. (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Research, 68(20), 8210–8220. https://doi.org/10.1158/0008-5472.CAN-08-0343.

    Article  CAS  PubMed  Google Scholar 

  136. Woodman, S. E., Schlegel, A., Cohen, A. W., & Lisanti, M. P. (2002). Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR) within caveolin-1. Biochemistry. https://doi.org/10.1021/bi0120751.

  137. Dietzen, D. J., Hastings, W. R., & Lublin, D. M. (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.270.12.6838.

  138. Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A., & Kurzchalia, T. V. (1995). VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.6.7.911.

  139. Muriel, O., Sánchez-Álvarez, M., Strippoli, R., & Del Pozo, M. A. (2018). Role of the endocytosis of caveolae in intracellular signaling and metabolism. Progress in Molecular and Subcellular Biology, 57. https://doi.org/10.1007/978-3-319-96704-2_8.

  140. Okamoto, T., Schlegel, A., Scherer, P. E., & Lisanti, M. P. (1998). Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.273.10.5419.

  141. Schlegel, A., & Lisanti, M. P. (2001). Caveolae and their coat proteins, the caveolins: from electron microscopic novelty to biological launching pad. Journal of Cellular Physiology, 186(3), 329–337. https://doi.org/10.1002/1097-4652(2001)9999:9999<000::AID-JCP1045>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  142. Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., & Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.92.22.10339.

  143. Schlegel, A., Schwab, R. B., Scherer, P. E., & Lisanti, M. P. (1999). A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.274.32.22660.

  144. Li, S., Song, K. S., & Lisanti, M. P. (1996). Expression and characterization of recombinant caveolin: purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.271.1.568.

  145. Krishna, A., & Sengupta, D. (2019). Interplay between membrane curvature and cholesterol: role of palmitoylated caveolin-1. Biophysical Journal. https://doi.org/10.1016/j.bpj.2018.11.3127.

  146. Chang, W. J., Rothberg, K. G., Kamen, B. A., & Anderson, R. G. W. (1992). Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. Journal of Cell Biology. https://doi.org/10.1083/jcb.118.1.63.

  147. Luo, X., Cheng, C., Tan, Z., Li, N., Tang, M., Yang, L., & Cao, Y. (2017). Emerging roles of lipid metabolism in cancer metastasis. Molecular Cancer. https://doi.org/10.1186/s12943-017-0646-3.

  148. Hayer, A., Stoeber, M., Bissig, C., & Helenius, A. (2010). Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic (Copenhagen, Denmark), 11(3), 361–382. https://doi.org/10.1111/j.1600-0854.2009.01023.x.

    Article  CAS  Google Scholar 

  149. Khater, I. M., Liu, Q., Chou, K. C., Hamarneh, G., & Nabi, I. R. (2019). Super-resolution modularity analysis shows polyhedral caveolin-1 oligomers combine to form scaffolds and caveolae. Scientific Reports. https://doi.org/10.1038/s41598-019-46174-z.

  150. Ludwig, A., Howard, G., Mendoza-Topaz, C., Deerinck, T., Mackey, M., Sandin, S., et al. (2013). Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biology, 11(8). https://doi.org/10.1371/journal.pbio.1001640.

  151. Ludwig, A., Nichols, B. J., & Sandin, S. (2016). Architecture of the caveolar coat complex. Journal of Cell Science, 129(16), 3077–3083. https://doi.org/10.1242/jcs.191262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stoeber, M., Schellenberger, P., Siebert, C. A., Leyrat, C., Grünewald, K., & Helenius, A. (2016). Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1616838113.

  153. Bruno, C., Sotgia, F., Gazzerro, E., Minetti, C., & Lisanti, M. P. (1993). Caveolinopathies. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. Stephens, & A. Amemiya (Eds.). Seattle.

  154. Echarri, A., Pavón, D. M., Sánchez, S., García-García, M., Calvo, E., Huerta-López, C., et al. (2019). An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13782-2.

  155. Echarri, A., & Del Pozo, M. A. (2015). Caveolae—mechanosensitive membrane invaginations linked to actin filaments. Journal of Cell Science, 128(15), 2747–2758. https://doi.org/10.1242/jcs.153940.

    Article  CAS  PubMed  Google Scholar 

  156. Sinha, B., Köster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., et al. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413. https://doi.org/10.1016/j.cell.2010.12.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tachikawa, M., Morone, N., Senju, Y., Sugiura, T., Hanawa-Suetsugu, K., Mochizuki, A., & Suetsugu, S. (2017). Measurement of caveolin-1 densities in the cell membrane for quantification of caveolar deformation after exposure to hypotonic membrane tension. Scientific Reports, 7(1), 7794. https://doi.org/10.1038/s41598-017-08259-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dewulf, M., Köster, D. V., Sinha, B., Viaris de Lesegno, C., Chambon, V., Bigot, A., et al. (2019). Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09405-5.

  159. Lo, H. P., Nixon, S. J., Hall, T. E., Cowling, B. S., Ferguson, C., Morgan, G. P., et al. (2015). The caveolin-Cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. Journal of Cell Biology, 210(5), 833–849. https://doi.org/10.1083/jcb.201501046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lim, Y. W., Lo, H. P., Ferguson, C., Martel, N., Giacomotto, J., Gomez, G. A., et al. (2017). Caveolae protect notochord cells against catastrophic mechanical failure during development. Current Biology, 27(13), 1968–1981.e7. https://doi.org/10.1016/j.cub.2017.05.067.

    Article  CAS  PubMed  Google Scholar 

  161. Kovtun, O., Tillu, V. A., Jung, W., Leneva, N., Ariotti, N., Chaudhary, N., et al. (2014). Structural insights into the organization of the cavin membrane coat complex. Developmental Cell, 31(4), 405–419. https://doi.org/10.1016/j.devcel.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  162. Egorov, Y. V., Lang, D., Tyan, L., Turner, D., Lim, E., Piro, Z. D., et al. (2019). Caveolae-mediated activation of mechanosensitive chloride channels in pulmonary veins triggers atrial arrhythmogenesis. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.119.012748.

  163. Kozera, L., White, E., & Calaghan, S. (2009). Caveolae act as membrane reserves which limit mechanosensitive ICl, swell channel activation during swelling in the rat ventricular myocyte. PLoS One, 4(12). https://doi.org/10.1371/journal.pone.0008312.

  164. Ariotti, N., Fernandez-Rojo, M. A., Zhou, Y., Hill, M. M., Rodkey, T. L., Inder, K. L., et al. (2014). Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of Cell Biology, 204(5), 777–792. https://doi.org/10.1083/jcb.201307055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rubin, J., Schwartz, Z., Boyan, B. D., Fan, X., Case, N., Sen, B., et al. (2007). Caveolin-1 knockout mice have increased bone size and stiffness. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 22(9), 1408–1418. https://doi.org/10.1359/jbmr.070601.

    Article  Google Scholar 

  166. Radel, C., Carlile-Klusacek, M., & Rizzo, V. (2007). Participation of caveolae in beta1 integrin-mediated mechanotransduction. Biochemical and Biophysical Research Communications, 358(2), 626–631. https://doi.org/10.1016/j.bbrc.2007.04.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shi, F., & Sottile, J. (2008). Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. Journal of Cell Science, 121(Pt 14), 2360–2371. https://doi.org/10.1242/jcs.014977.

    Article  CAS  PubMed  Google Scholar 

  168. Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2007.03.001.

  169. Sottile, J., & Chandler, J. (2005). Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.E04-08-0672.

  170. Boscher, C., & Nabi, I. R. (2013). Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Molecular Biology of the Cell, 24(13), 2134–2145. https://doi.org/10.1091/mbc.E13-02-0095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kozyulina, P. Y., Loskutov, Y. V., Kozyreva, V. K., Rajulapati, A., Ice, R. J., Jones, B. C., & Pugacheva, E. N. (2015). Prometastatic NEDD9 regulates individual cell migration via caveolin-1-dependent trafficking of integrins. Molecular Cancer Research. https://doi.org/10.1158/1541-7786.MCR-14-0353.

  172. Bottcher, R. T., & Fassler, R. (2014). Membrane tension drives ligand-independent integrin signaling. The EMBO Journal, 33(21), 2439–2441. https://doi.org/10.15252/embj.201489886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ferraris, G. M. S., Schulte, C., Buttiglione, V., De Lorenzi, V., Piontini, A., Galluzzi, M., et al. (2014). The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. The EMBO Journal. https://doi.org/10.15252/embj.201387611.

  174. Burridge, K., & Wittchen, E. S. (2013). The tension mounts: stress fibers as force-generating mechanotransducers. Journal of Cell Biology. https://doi.org/10.1083/jcb.201210090.

  175. Hayakawa, K., Tatsumi, H., & Sokabe, M. (2011). Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. Journal of Cell Biology. https://doi.org/10.1083/jcb.201102039.

  176. Nevins, A. K., & Thurmond, D. C. (2006). Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. The Journal of Biological Chemistry, 281(28), 18961–18972. https://doi.org/10.1074/jbc.M603604200.

    Article  CAS  PubMed  Google Scholar 

  177. Echarri, A., Muriel, O., Pavón, D. M., Azegrouz, H., Escolar, F., Terrón, M. C., et al. (2012). Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. Journal of Cell Science, 125(Pt 13), 3097–3113. https://doi.org/10.1242/jcs.090134.

    Article  CAS  PubMed  Google Scholar 

  178. Muriel, O., Echarri, A., Hellriegel, C., Pavón, D. M., Beccari, L., & del Pozo, M. A. (2011). Phosphorylated filamin A regulates actin-linked caveolae dynamics. Journal of Cell Science. https://doi.org/10.1242/jcs.080804.

  179. Mundy, D. I., Machleidt, T., Ying, Y. S., Anderson, R. G. W., & Bloom, G. S. (2002). Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. Journal of Cell Science. https://doi.org/10.1242/jcs.00117.

  180. Peng, F., Wu, D., Ingram, A. J., Zhang, B., Gao, B., & Krepinsky, J. C. (2007). RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. Journal of the American Society of Nephrology: JASN, 18(1), 189–198. https://doi.org/10.1681/ASN.2006050498.

    Article  CAS  PubMed  Google Scholar 

  181. Rangel, L., Bernabe-Rubio, M., Fernandez-Barrera, J., Casares-Arias, J., Millan, J., Alonso, M. A., & Correas, I. (2019). Caveolin-1alpha regulates primary cilium length by controlling RhoA GTPase activity. Scientific Reports, 9(1), 1116. https://doi.org/10.1038/s41598-018-38020-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ogata, T., Ueyama, T., Isodono, K., Tagawa, M., Takehara, N., Kawashima, T., et al. (2008). MURC, a muscle-restricted coiled-coil protein that modulates the rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.02186-07.

  183. Kawamura, S., Miyamoto, S., & Brown, J. H. (2003). Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. The Journal of Biological Chemistry, 278(33), 31111–31117. https://doi.org/10.1074/jbc.M300725200.

    Article  CAS  PubMed  Google Scholar 

  184. Galbiati, F., Volonte, D., Liu, J., Capozza, F., Frank, P. G., Zhu, L., et al. (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G0/G1 arrest via a p53/p21WAF1/Cip1-dependent mechanism. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.12.8.2229.

  185. Engelman, J. A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., et al. (1998). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo: a role for the caveolin-scaffolding domain. FEBS Letters. https://doi.org/10.1016/S0014-5793(98)00470-0.

  186. Sunaga, N., Miyajima, K., Suzuki, M., Sato, M., White, M. A., Ramirez, R. D., et al. (2004). Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-03-3941.

  187. Williams, T. M., & Lisanti, M. P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. American Journal of Physiology - Cell Physiology. https://doi.org/10.1152/ajpcell.00458.2004.

  188. Goetz, J. G., Lajoie, P., Wiseman, S. M., & Nabi, I. R. (2008). Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer and Metastasis Reviews. https://doi.org/10.1007/s10555-008-9160-9.

  189. Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2015). Caveolae and signalling in cancer. Nature Reviews Cancer. https://doi.org/10.1038/nrc3915.

  190. Hung, K. F., Lin, S. C., Liu, C. J., Chang, C. S., Chang, K. W., & Kao, S. Y. (2003). The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. Journal of Oral Pathology and Medicine. https://doi.org/10.1034/j.1600-0714.2003.00185.x.

  191. Pellinen, T., Blom, S., Sánchez, S., Välimäki, K., Mpindi, J.-P., Azegrouz, H., et al. (2018). ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20161-2.

  192. Cerezo, A., Guadamillas, M. C., Goetz, J. G., Sanchez-Perales, S., Klein, E., Assoian, R. K., & del Pozo, M. A. (2009). The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Molecular and Cellular Biology, 29(18), 5046–5059. https://doi.org/10.1128/mcb.00315-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lamaze, C., & Torrino, S. (2015). Caveolae and cancer: a new mechanical perspective. Biomedical Journal. https://doi.org/10.4103/2319-4170.164229.

  194. Bosch, M., Marí, M., Gross, S. P., Fernández-Checa, J. C., & Pol, A. (2011). Mitochondrial cholesterol: a connection between caveolin, metabolism, and disease. Traffic, 12(11), 1483–1489. https://doi.org/10.1111/j.1600-0854.2011.01259.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Alejandro Fernández-Rojo, M., Restall, C., Ferguson, C., Martel, N., Martin, S., Bosch, M., et al. (2012). Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology. https://doi.org/10.1002/hep.24810.

  196. Palacios-Ortega, S., Varela-Guruceaga, M., Milagro, F. I., Martínez, J. A., & De Miguel, C. (2014). Expression of caveolin 1 is enhanced by DNA demethylation during adipocyte differentiation. Status of insulin signaling. PLoS ONE. https://doi.org/10.1371/journal.pone.0095100.

  197. Guan, X., Wang, N., Cui, F., Liu, Y., Liu, P., Zhao, J., et al. (2016). Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2015.4743.

  198. Fernandez, M. A., Albor, C., Ingelmo-Torres, M., Nixon, S. J., Ferguson, C., Kurzchalia, T., et al. (2006). Caveolin-1 is essential for liver regeneration. Science, 313(5793), 1628–1632. https://doi.org/10.1126/science.1130773.

    Article  CAS  PubMed  Google Scholar 

  199. Baker, N., & Tuan, R. S. (2013). The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Research and Therapy. https://doi.org/10.1186/scrt276.

  200. Navab, R., Strumpf, D., To, C, Pasko, E., Kim, K. S., Park, C. J., et al. (2016). Integrin alpha11beta1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene, 35(15), 1899–1908. https://doi.org/10.1038/onc.2015.254.

    Article  CAS  PubMed  Google Scholar 

  201. Alonso-Nocelo, M., Raimondo, T. M., Vining, K. H., Lopez-Lopez, R., de la Fuente, M., & Mooney, D. J. (2018). Matrix stiffness and tumor-associated macrophages modulate epithelial to mesenchymal transition of human adenocarcinoma cells. Biofabrication, 10(3), 35004. https://doi.org/10.1088/1758-5090/aaafbc.

    Article  CAS  Google Scholar 

  202. Ciucci, S., Ge, Y., Durán, C., Palladini, A., Jiménez-Jiménez, V., Martínez-Sánchez, L. M., et al. (2017). Enlightening discriminative network functional modules behind principal component analysis separation in differential-omic science studies. Scientific Reports. https://doi.org/10.1038/srep43946.

  203. Hall, B. K., & Gillis, J. A. (2013). Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. Journal of Anatomy. https://doi.org/10.1111/j.1469-7580.2012.01495.x.

  204. Wang, S., Kan, Q., Sun, Y., Han, R., Zhang, G., Peng, T., & Jia, Y. (2013). Caveolin-1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating notch signaling. International Journal of Developmental Neuroscience. https://doi.org/10.1016/j.ijdevneu.2012.09.004.

  205. Li, Y., Luo, J., Lau, W. M., Zheng, G., Fu, S., Wang, T. T., et al. (2011). Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway. PLoS One. https://doi.org/10.1371/journal.pone.0022901.

  206. Hart, P. C., Ratti, B. A., Mao, M., Ansenberger-Fricano, K., Shajahan-Haq, A. N., Tyner, A. L., et al. (2016). Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis. Oncotarget. https://doi.org/10.18632/ONCOTARGET.5687.

  207. Nwosu, Z. C., Ebert, M. P., Dooley, S., & Meyer, C. (2016). Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Molecular Cancer. https://doi.org/10.1186/s12943-016-0558-7.

  208. Poser, S. W., Otto, O., Arps-Forker, C., Ge, Y., Herbig, M., Andree, C., et al. (2019). Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery. FASEB Journal. https://doi.org/10.1096/fj.201802603RR.

  209. Witkiewicz, A. K., Dasgupta, A., Sammons, S., Er, O., Potoczek, M. B., Guiles, F., et al. (2010). Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biology & Therapy, 10(2), 135–143. https://doi.org/10.4161/cbt.10.2.11983.

    Article  Google Scholar 

  210. Sloan, E. K., Ciocca, D. R., Pouliot, N., Natoli, A., Restall, C., Henderson, M. A., et al. (2009). Stromal cell expression of caveolin-1 predicts outcome in breast cancer. The American Journal of Pathology, 174(6), 2035–2043. https://doi.org/10.2353/ajpath.2009.080924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Onion, D., Isherwood, M., Shridhar, N., Xenophontos, M., Craze, M. L., Day, L. J., et al. (2018). Multicomponent analysis of the tumour microenvironment reveals low CD8 T cell number, low stromal caveolin-1 and high tenascin-C and their combination as significant prognostic markers in non-small cell lung cancer. Oncotarget, 9(2), 1760–1771. https://doi.org/10.18632/oncotarget.18880.

    Article  PubMed  Google Scholar 

  212. Gerstenberger, W., Wrage, M., Kettunen, E., Pantel, K., Anttila, S., Steurer, S., & Wikman, H. (2018). Stromal caveolin-1 and caveolin-2 expression in primary tumors and lymph node metastases. Analytical Cellular Pathology (Amsterdam), 2018, 8651790. https://doi.org/10.1155/2018/8651790.

    Article  CAS  Google Scholar 

  213. Kamposioras, K., Tsimplouli, C., Verbeke, C., Anthoney, A., Daoukopoulou, A., Papandreou, C. N., et al. (2019). Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model. International Journal of Oncology, 54(2), 537–549. https://doi.org/10.3892/ijo.2018.4640.

    Article  CAS  PubMed  Google Scholar 

  214. Qian, X.-L., Pan, Y.-H., Huang, Q.-Y., Shi, Y.-B., Huang, Q.-Y., Hu, Z.-Z., & Xiong, L.-X. (2019). Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Oncotargets and Therapy, 12, 1539–1552. https://doi.org/10.2147/OTT.S191317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Eliyatkin, N., Aktas, S., Diniz, G., Ozgur, H. H., Ekin, Z. Y., & Kupelioglu, A. (2018). Expression of stromal caveolin-1 may be a predictor for aggressive behaviour of breast cancer. Pathology Oncology Research, 24(1), 59–65. https://doi.org/10.1007/s12253-017-0212-8.

    Article  CAS  PubMed  Google Scholar 

  216. Neofytou, K., Pikoulis, E., Petrou, A., Agrogiannis, G., Petrides, C., Papakonstandinou, I., et al. (2017). Weak stromal caveolin-1 expression in colorectal liver metastases predicts poor prognosis after hepatectomy for liver-only colorectal metastases. Scientific Reports, 7(1), 2058. https://doi.org/10.1038/s41598-017-02251-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Mohammed, D. A., & Helal, D. S. (2017). Prognostic significance of epithelial/stromal caveolin-1 expression in prostatic hyperplasia, high grade prostatic intraepithelial hyperplasia and prostatic carcinoma and its correlation with microvessel density. Journal of the Egyptian National Cancer Institute, 29(1), 25–31. https://doi.org/10.1016/j.jnci.2017.01.002.

    Article  PubMed  Google Scholar 

  218. Razani, B., Zhang, X. L., Bitzer, M., von Gersdorff, G., Böttinger, E. P., & Lisanti, M. P. (2001). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. The Journal of Biological Chemistry, 276(9), 6727–6738. https://doi.org/10.1074/jbc.M008340200.

    Article  CAS  PubMed  Google Scholar 

  219. Couet, J., Sargiacomo, M., & Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. The Journal of Biological Chemistry, 272(48), 30429–30438. https://doi.org/10.1074/jbc.272.48.30429.

    Article  CAS  PubMed  Google Scholar 

  220. Yamamoto, M., Toya, Y., Schwencke, C., Lisanti, M. P., Myers, M. G. J., & Ishikawa, Y. (1998). Caveolin is an activator of insulin receptor signaling. The Journal of Biological Chemistry, 273(41), 26962–26968. https://doi.org/10.1074/jbc.273.41.26962.

    Article  CAS  PubMed  Google Scholar 

  221. Schwartz, E. A., Reaven, E., Topper, J. N., & Tsao, P. S. (2005). Transforming growth factor-beta receptors localize to caveolae and regulate endothelial nitric oxide synthase in normal human endothelial cells. The Biochemical Journal, 390(Pt 1), 199–206. https://doi.org/10.1042/BJ20041182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Santibanez, J. F., Blanco, F. J., Garrido-Martin, E. M., Sanz-Rodriguez, F., del Pozo, M. A., & Bernabeu, C. (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovascular Research, 77(4), 791–799. https://doi.org/10.1093/cvr/cvm097.

    Article  CAS  PubMed  Google Scholar 

  223. Strippoli, R., Loureiro, J., Moreno, V., Benedicto, I., Lozano, M. L. P., Barreiro, O., et al. (2015). Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Molecular Medicine, 7(3), 357. https://doi.org/10.15252/emmm.201570010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Del Galdo, F., Lisanti, M. P., & Jimenez, S. A. (2008). Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis. Current Opinion in Rheumatology, 20(6), 713–719. https://doi.org/10.1097/bor.0b013e3283103d27.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Albacete-Albacete, L., Navarro-Lerida, I., Lopez, J. A., Martin-Padura, I., Astudillo, A. M., Van-Der-Heyden, M., … del Pozo, M. A. (2018). ECM deposition is driven by caveolin1-dependent regulation of exosomal biogenesis and cargo sorting. bioRxiv.

  226. He, K., Yan, X., Li, N., Dang, S., Xu, L., Zhao, B., et al. (2015). Internalization of the TGF-beta type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Research, 25(6), 738–752. https://doi.org/10.1038/cr.2015.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421. https://doi.org/10.1038/ncb975.

  228. World Cancer Report 2014. (2015). International Agency for Research on Cancer (IACR). Editors: Bernard W. Stewart and Christopher P. Wild. https://publications.iarc.fr/_publications/media/download/5839/bc44643f904185d5c8eddb933480b5bc18b21dba.pdf.

  229. Chen, C.-L., Yang, P.-H., Kao, Y.-C., Chen, P.-Y., Chung, C.-L., & Wang, S.-W. (2017). Pentabromophenol suppresses TGF-beta signaling by accelerating degradation of type II TGF-beta receptors via caveolae-mediated endocytosis. Scientific Reports, 7, 43206. https://doi.org/10.1038/srep43206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ilha, M., da Silveira Moraes, K., Rohden, F., Martins, L. A. M., Borojevic, R., Lenz, G., et al. (2019). Exogenous expression of caveolin-1 is sufficient for hepatic stellate cell activation. Journal of Cellular Biochemistry, 120(11), 19031–19043. https://doi.org/10.1002/jcb.29226.

    Article  CAS  PubMed  Google Scholar 

  231. Wang, X. M., Zhang, Y., Kim, H. P., Zhou, Z., Feghali-Bostwick, C. A., Liu, F., et al. (2006). Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. The Journal of Experimental Medicine, 203(13), 2895–2906. https://doi.org/10.1084/jem.20061536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Jung, W., Sierecki, E., Bastiani, M., O’Carroll, A., Alexandrov, K., Rae, J., et al. (2018). Cell-free formation and interactome analysis of caveolae. The Journal of Cell Biology, 217(6), 2141–2165. https://doi.org/10.1083/jcb.201707004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hunter, I., & Nixon, G. F. (2006). Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kapp. The Journal of Biological Chemistry, 281(45), 34705–34715. https://doi.org/10.1074/jbc.M605738200.

    Article  CAS  PubMed  Google Scholar 

  234. Liubomirski, Y., Lerrer, S., Meshel, T., Rubinstein-Achiasaf, L., Morein, D., Wiemann, S., et al. (2019). Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Frontiers in Immunology, 10, 757. https://doi.org/10.3389/fimmu.2019.00757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lin, Y., Ryan, J., Lewis, J., Wani, M. A., Lingrel, J. B., & Liu, Z.-G. (2003). TRAF2 exerts its antiapoptotic effect by regulating the expression of Kruppel-like factor LKLF. Molecular and Cellular Biology, 23(16), 5849–5856. https://doi.org/10.1128/mcb.23.16.5849-5856.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kulshrestha, R., Singh, H., Pandey, A., Mehta, A., Bhardwaj, S., & Jaggi, A. S. (2019). Caveolin-1 as a critical component in the pathogenesis of lung fibrosis of different etiology: evidences and mechanisms. Experimental and Molecular Pathology, 111, 104315. https://doi.org/10.1016/j.yexmp.2019.104315.

    Article  CAS  PubMed  Google Scholar 

  237. Fernandez-Rojo, M. A., & Ramm, G. A. (2016). Caveolin-1 function in liver physiology and disease. Trends in Molecular Medicine, 22(10), 889–904. https://doi.org/10.1016/j.molmed.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  238. Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539), 2449–2452. https://doi.org/10.1126/science.1062688.

    Article  CAS  PubMed  Google Scholar 

  239. Kurzchalia, T. V., Dupree, P., & Monier, S. (1994). VIP21-caveolin, a protein of the trans-Golgi network and caveolae. FEBS Letters. https://doi.org/10.1016/0014-5793(94)00466-8.

  240. Del Galdo, F., Sotgia, F., de Almeida, C. J., Jasmin, J.-F., Musick, M., Lisanti, M. P., & Jimenez, S. A. (2008). Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis and Rheumatism, 58(9), 2854–2865. https://doi.org/10.1002/art.23791.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Korennykh, A., & Walter, P. (2012). Structural basis of the unfolded protein response. Annual Review of Cell and Developmental Biology. https://doi.org/10.1146/annurev-cellbio-101011-155826.

  242. Runz, H., Miura, K., Weiss, M., & Pepperkok, R. (2006). Sterols regulate ER-export dynamics of secretory cargo protein ts-O45-G. The EMBO Journal, 25(13), 2953–2965. https://doi.org/10.1038/sj.emboj.7601205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Shimoda, M., Principe, S., Jackson, H. W., Luga, V., Fang, H., Molyneux, S. D., et al. (2014). Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nature Cell Biology, 16(9), 889–901. https://doi.org/10.1038/ncb3021.

    Article  CAS  PubMed  Google Scholar 

  244. Al-Yafeai, Z., Yurdagul, A. J., Peretik, J. M., Alfaidi, M., Murphy, P. A., & Orr, A. W. (2018). Endothelial FN (fibronectin) deposition by alpha5beta1 Integrins drives atherogenic inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(11), 2601–2614. https://doi.org/10.1161/ATVBAHA.118.311705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Unlu, G., Levic, D. S., Melville, D. B., & Knapik, E. W. (2014). Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases. The International Journal of Biochemistry & Cell Biology, 47, 57–67. https://doi.org/10.1016/j.biocel.2013.11.005.

    Article  CAS  Google Scholar 

  246. Annabi, B., Lachambre, M., Bousquet-Gagnon, N., Page, M., Gingras, D., & Beliveau, R. (2001). Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. The Biochemical Journal, 353(Pt 3), 547–553. https://doi.org/10.1042/0264-6021:3530547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Williams, T. M., Medina, F., Badano, I., Hazan, R. B., Hutchinson, J., Muller, W. J., et al. (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. The Journal of Biological Chemistry, 279(49), 51630–51646. https://doi.org/10.1074/jbc.M409214200.

    Article  CAS  PubMed  Google Scholar 

  248. Labrecque, L., Nyalendo, C., Langlois, S., Durocher, Y., Roghi, C., Murphy, G., et al. (2004). Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. Journal of Biological Chemistry, 279(50), 52132–52140. https://doi.org/10.1074/jbc.M409617200.

    Article  CAS  PubMed  Google Scholar 

  249. Takayanagi, T., Crawford, K. J., Kobayashi, T., Obama, T., Tsuji, T., Elliott, K. J., et al. (2014). Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase. Clinical science (London, England: 1979), 126(11), 785–794. https://doi.org/10.1042/CS20130660.

    Article  CAS  Google Scholar 

  250. Bonuccelli, G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., et al. (2010). The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle (Georgetown, Tex.), 9(10), 1960–1971. https://doi.org/10.4161/cc.9.10.11601.

    Article  CAS  Google Scholar 

  251. Rausch, V., & Hansen, C. G. (2020). The hippo pathway, YAP/TAZ, and the plasma membrane. Trends in Cell Biology, 30(1), 32–48. https://doi.org/10.1016/j.tcb.2019.10.005.

    Article  CAS  PubMed  Google Scholar 

  252. Rausch, V., Bostrom, J. R., Park, J., Bravo, I. R., Feng, Y., Hay, D. C., et al. (2019). The hippo pathway regulates caveolae expression and mediates flow response via caveolae. Current Biology: CB, 29(2), 242–255.e6. https://doi.org/10.1016/j.cub.2018.11.066.

    Article  CAS  PubMed  Google Scholar 

  253. Moreno-Vicente, R., Pavón, D. M., Martín-Padura, I., Català-Montoro, M., Díez-Sánchez, A., Quílez-Álvarez, A., et al. (2018). Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP. Cell Reports, 25(6). https://doi.org/10.1016/j.celrep.2018.10.024.

  254. Tourkina, E., Richard, M., Gööz, P., Bonner, M., Pannu, J., Harley, R., et al. (2008). Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. American Journal of Physiology-Lung Cellular and Molecular Physiology, 294(5), L843–L861. https://doi.org/10.1152/ajplung.00295.2007.

    Article  CAS  PubMed  Google Scholar 

  255. Chen, I. X., Chauhan, V. P., Posada, J., Ng, M. R., Wu, M. W., Adstamongkonkul, P., et al. (2019). Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4558–4566. https://doi.org/10.1073/pnas.1815515116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C.-C., Simpson, T. R., et al. (2015). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. United States. https://doi.org/10.1016/j.ccell.2015.11.002.

Download references

Acknowledgments

We are grateful to the members of our laboratory and colleagues for useful discussions.

Funding

Research in our laboratory has been supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO; SAF2011-25047, SAF2014-51876-R, SAF2017-83130-R, IGP-SO grant MINSEV1512-07-2016, CSD2009-0016 and BFU2016-81912-REDC), and the Worldwide Cancer Research Foundation (no. 15-0404) to M.A.d.P. M.A.d.P is also a member of the Tec4Bio consortium (ref. P2018/NMT­4443; “Actividades de I+D entre Grupos de Investigación en Tecnologías,” Comunidad Autónoma de Madrid/FEDER, Spain) and is co-recipient of grants from Fundació La Marató de TV3 (674/C/2013 and 201936). M.A.d.P’s group received funding from the European Union Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement no. 641639 (BIOPOL ETN), of which V.J-J. was ESR trainee. M.S-A. was recipient of a CNIC IPP fellowship (COFUND programme 2014). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovación y Universidades (MCNU), and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel del Pozo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lolo, F.N., Jiménez-Jiménez, V., Sánchez-Álvarez, M. et al. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 39, 485–503 (2020). https://doi.org/10.1007/s10555-020-09900-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09900-y

Keywords

Navigation