Skip to main content

Advertisement

Log in

Causes, consequences, and therapy of tumors acidosis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

While cancer is commonly described as “a disease of the genes,” it is also associated with massive metabolic reprogramming that is now accepted as a disease “Hallmark.” This programming is complex and often involves metabolic cooperativity between cancer cells and their surrounding stroma. Indeed, there is emerging clinical evidence that interrupting a cancer’s metabolic program can improve patients’ outcomes. The most commonly observed and well-studied metabolic adaptation in cancers is the fermentation of glucose to lactic acid, even in the presence of oxygen, also known as “aerobic glycolysis” or the “Warburg Effect.” Much has been written about the mechanisms of the Warburg effect, and this remains a topic of great debate. However, herein, we will focus on an important sequela of this metabolic program: the acidification of the tumor microenvironment. Rather than being an epiphenomenon, it is now appreciated that this acidosis is a key player in cancer somatic evolution and progression to malignancy. Adaptation to acidosis induces and selects for malignant behaviors, such as increased invasion and metastasis, chemoresistance, and inhibition of immune surveillance. However, the metabolic reprogramming that occurs during adaptation to acidosis also introduces therapeutic vulnerabilities. Thus, tumor acidosis is a relevant therapeutic target, and we describe herein four approaches to accomplish this: (1) neutralizing acid directly with buffers, (2) targeting metabolic vulnerabilities revealed by acidosis, (3) developing acid-activatable drugs and nanomedicines, and (4) inhibiting metabolic processes responsible for generating acids in the first place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hinton, A., Sennoune, S. R., Bond, S., Fang, M., Reuveni, M., Sahagian, G. G., Jay, D., Martinez-Zaguilan, R., & Forgac, M. (2009). Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. The Journal of Biological Chemistry, 284, 16400–16408. https://doi.org/10.1074/jbc.M901201200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y., & Futai, M. (2000). Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. The Journal of Biological Chemistry, 275, 8760–8765.

    Article  CAS  PubMed  Google Scholar 

  3. Boedtkjer, E., Moreira, J. M. A., Mele, M., Vahl, P., Wielenga, V. T., Christiansen, P. M., Jensen, V. E. D., Pedersen, S. F., & Aalkjaer, C. (2013). Contribution of Na+,HCO3 -cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). International Journal of Cancer, 132, 1288–1299. https://doi.org/10.1002/ijc.27782.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, S., Mele, M., Vahl, P., Christiansen, P. M., Jensen, V. E. D., & Boedtkjer, E. (2015). Na+,HCO3 -cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflügers Archiv, 467, 367–377. https://doi.org/10.1007/s00424-014-1524-0.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S., Axelsen, T. V., Andersen, A. P., Vahl, P., Pedersen, S. F., & Boedtkjer, E. (2016). Disrupting Na+,HCO3 -cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene, 35, 2112–2122. https://doi.org/10.1038/onc.2015.273.

    Article  CAS  PubMed  Google Scholar 

  6. Ames, S., Pastorekova, S., & Becker, H. M. (2018). The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget, 9, 27940–27957. https://doi.org/10.18632/oncotarget.25371.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mahon, B. P., Bhatt, A., Socorro, L., Driscoll, J. M., Okoh, C., Lomelino, C. L., Mboge, M. Y., Kurian, J. J., Tu, C., Agbandje-McKenna, M., Frost, S. C., & McKenna, R. (2016). The structure of carbonic anhydrase IX is adapted for low-pH catalysis. Biochemistry, 55, 4642–4653. https://doi.org/10.1021/acs.biochem.6b00243.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S. H., McIntyre, D., Honess, D., Hulikova, A., Pacheco-Torres, J., Cerdán, S., Swietach, P., Harris, A. L., & Griffiths, J. R. (2018). Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. British Journal of Cancer, 119, 622–630. https://doi.org/10.1038/s41416-018-0216-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartosova, M., et al. (2002). Expression of carbonic anhydrase IX in breast is associated with malignant tissues and is related to overexpression of c-erbB2. The Journal of Pathology, 197, 314–321. https://doi.org/10.1002/path.1120.

    Article  CAS  PubMed  Google Scholar 

  10. Shiozaki, A., Hikami, S., Ichikawa, D., Kosuga, T., Shimizu, H., Kudou, M., Yamazato, Y., Kobayashi, T., Shoda, K., Arita, T., Konishi, H., Komatsu, S., Kubota, T., Fujiwara, H., Okamoto, K., Kishimoto, M., Konishi, E., Marunaka, Y., & Otsuji, E. (2018). Anion exchanger 2 suppresses cellular movement and has prognostic significance in esophageal squamous cell carcinoma. Oncotarget, 9, 25993–26006. https://doi.org/10.18632/oncotarget.25417.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anemone, A., Consolino, L., Arena, F., Capozza, M., & Longo, D. V. (2019). Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. https://doi.org/10.1007/s10555-019-09782-9.

  12. Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nature Reviews. Cancer, 18, 576–585. https://doi.org/10.1038/s41568-018-0030-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, L. X., Liu, K., Lin, G. W., & Zhai, R. Y. (2012). Solitary necrotic nodules of the liver: histology and diagnosis with CT and MRI. Hepatitis Monthly, 12, e6212. https://doi.org/10.5812/hepatmon.6212.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Heidenreich, A., Ravery, V., & European Society of Oncological, U. (2004). Preoperative imaging in renal cell cancer. World Journal of Urology, 22, 307–315. https://doi.org/10.1007/s00345-004-0411-2.

    Article  PubMed  Google Scholar 

  15. Mohlin, S., Wigerup, C., Jogi, A., & Pahlman, S. (2017). Hypoxia, pseudohypoxia and cellular differentiation. Experimental Cell Research, 356, 192–196. https://doi.org/10.1016/j.yexcr.2017.03.007.

    Article  CAS  PubMed  Google Scholar 

  16. Barathova, M., Takacova, M., Holotnakova, T., Gibadulinova, A., Ohradanova, A., Zatovicova, M., Hulikova, A., Kopacek, J., Parkkila, S., Supuran, C. T., Pastorekova, S., & Pastorek, J. (2008). Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype. British Journal of Cancer, 98, 129–136. https://doi.org/10.1038/sj.bjc.6604111.

    Article  CAS  PubMed  Google Scholar 

  17. Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4, 891–899. https://doi.org/10.1038/nrc1478.

    Article  CAS  PubMed  Google Scholar 

  18. Longo, D. L., Bartoli, A., Consolino, L., Bardini, P., Arena, F., Schwaiger, M., & Aime, S. (2016). In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Research, 76, 6463–6470. https://doi.org/10.1158/0008-5472.CAN-16-0825.

    Article  CAS  PubMed  Google Scholar 

  19. Helmlinger, G., Yuan, F., Dellian, M., & Jain, R. K. (1997). Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Medicine, 3, 177–182.

    Article  CAS  PubMed  Google Scholar 

  20. Hashim, A. I., Zhang, X., Wojtkowiak, J. W., Martinez, G. V., & Gillies, R. J. (2011). Imaging pH and metastasis. NMR in Biomedicine, 24, 582–591. https://doi.org/10.1002/nbm.1644.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swietach, P., Vaughan-Jones, R. D., Harris, A. L., & Hulikova, A. (2014). The chemistry, physiology and pathology of pH in cancer. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130099. https://doi.org/10.1098/rstb.2013.0099.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gatenby, R. A., & Gawlinski, E. T. (1996). A reaction-diffusion model of cancer invasion. Cancer Research, 56, 5745–5753.

    CAS  PubMed  Google Scholar 

  23. Stubbs, M., McSheehy, P. M., Griffiths, J. R., & Bashford, C. L. (2000). Causes and consequences of tumour acidity and implications for treatment. Molecular Medicine Today, 6, 15–19.

    Article  CAS  PubMed  Google Scholar 

  24. Halestrap, A. P., & Wilson, M. C. (2012). The monocarboxylate transporter family--role and regulation. IUBMB Life, 64, 109–119. https://doi.org/10.1002/iub.572.

    Article  CAS  PubMed  Google Scholar 

  25. Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K., & DeBerardinis, R. J. (2017). Lactate metabolism in human lung tumors. Cell, 171, 358–371 e359. https://doi.org/10.1016/j.cell.2017.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nelson, S. J., Kurhanewicz, J., Vigneron, D. B., Larson, P. E. Z., Harzstark, A. L., Ferrone, M., van Criekinge, M., Chang, J. W., Bok, R., Park, I., Reed, G., Carvajal, L., Small, E. J., Munster, P., Weinberg, V. K., Ardenkjaer-Larsen, J. H., Chen, A. P., Hurd, R. E., Odegardstuen, L. I., Robb, F. J., Tropp, J., & Murray, J. A. (2013). Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Science Translational Medicine, 5, 198ra108. https://doi.org/10.1126/scitranslmed.3006070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puppulin, L., Hosogi, S., Sun, H., Matsuo, K., Inui, T., Kumamoto, Y., Suzaki, T., Tanaka, H., & Marunaka, Y. (2018). Bioconjugation strategy for cell surface labelling with gold nanostructures designed for highly localized pH measurement. Nature Communications, 9, 5278. https://doi.org/10.1038/s41467-018-07726-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morita, T., Nagaki, T., Fukuda, I., & Okumura, K. (1992). Clastogenicity of low pH to various cultured mammalian cells. Mutation Research, 268, 297–305.

    Article  CAS  PubMed  Google Scholar 

  29. Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews. Cancer, 12, 487–493. https://doi.org/10.1038/nrc3298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corbet, C., Draoui, N., Polet, F., Pinto, A., Drozak, X., Riant, O., & Feron, O. (2014). The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Research, 74, 5507–5519. https://doi.org/10.1158/0008-5472.CAN-14-0705.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H. Y., Hormi-Carver, K., Zhang, X., Spechler, S. J., & Souza, R. F. (2009). In benign Barrett’s epithelial cells, acid exposure generates reactive oxygen species that cause DNA double-strand breaks. Cancer Research, 69, 9083–9089. https://doi.org/10.1158/0008-5472.CAN-09-2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Delikatny, E. J., Chawla, S., Leung, D. J., & Poptani, H. (2011). MR-visible lipids and the tumor microenvironment. NMR in Biomedicine, 24, 592–611. https://doi.org/10.1002/nbm.1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glunde, K., Guggino, S. E., Solaiyappan, M., Pathak, A. P., Ichikawa, Y., & Bhujwalla, Z. M. (2003). Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia, 5, 533–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Damaghi, M., Tafreshi, N. K., Lloyd, M. C., Sprung, R., Estrella, V., Wojtkowiak, J. W., Morse, D. L., Koomen, J. M., Bui, M. M., Gatenby, R. A., & Gillies, R. J. (2015). Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nature Communications, 6, 8752. https://doi.org/10.1038/ncomms9752.

    Article  CAS  PubMed  Google Scholar 

  35. Rothberg, J. M., Bailey, K. M., Wojtkowiak, J. W., Ben-Nun, Y., Bogyo, M., Weber, E., Moin, K., Blum, G., Mattingly, R. R., Gillies, R. J., & Sloane, B. F. (2013). Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia, 15, 1125–1137.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rozhin, J., Sameni, M., Ziegler, G., & Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54, 6517–6525.

    CAS  PubMed  Google Scholar 

  37. Wojtkowiak, J. W., Rothberg, J. M., Kumar, V., Schramm, K. J., Haller, E., Proemsey, J. B., Lloyd, M. C., Sloane, B. F., & Gillies, R. J. (2012). Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Research, 72, 3938–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walton, Z. E., Patel, C. H., Brooks, R. C., Yu, Y., Ibrahim-Hashim, A., Riddle, M., Porcu, A., Jiang, T., Ecker, B. L., Tameire, F., Koumenis, C., Weeraratna, A. T., Welsh, D. K., Gillies, R., Alwine, J. C., Zhang, L., Powell, J. D., & Dang, C. V. (2018). Acid suspends the circadian clock in hypoxia through inhibition of mTOR. Cell, 174, 72–87 e32. https://doi.org/10.1016/j.cell.2018.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Logozzi, M., Angelini, D. F., Iessi, E., Mizzoni, D., di Raimo, R., Federici, C., Lugini, L., Borsellino, G., Gentilucci, A., Pierella, F., Marzio, V., Sciarra, A., Battistini, L., & Fais, S. (2017). Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Letters, 403, 318–329. https://doi.org/10.1016/j.canlet.2017.06.036.

    Article  CAS  PubMed  Google Scholar 

  40. Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., de Milito, A., Coscia, C., Iessi, E., Logozzi, M., Molinari, A., Colone, M., Tatti, M., Sargiacomo, M., & Fais, S. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry, 284, 34211–34222. https://doi.org/10.1074/jbc.M109.041152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20, 1487–1495. https://doi.org/10.1038/sj.leu.2404296.

    Article  CAS  PubMed  Google Scholar 

  42. Ban, J. J., Lee, M., Im, W., & Kim, M. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communications, 461, 76–79. https://doi.org/10.1016/j.bbrc.2015.03.172.

    Article  CAS  PubMed  Google Scholar 

  43. Logozzi, M., Mizzoni, D., Angelini, D., di Raimo, R., Falchi, M., Battistini, L., & Fais, S. (2018). Microenvironmental pH and exosome levels interplay in human cancer cell lines of different histotypes. Cancers (Basel), 10. https://doi.org/10.3390/cancers10100370.

  44. Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., Mancini, M. T., Dell'Aquila, M. E., Casavola, V., Paradiso, A., & Reshkin, S. J. (2010). NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. The FASEB Journal, 24, 3903–3915. https://doi.org/10.1096/fj.09-149518.

    Article  CAS  PubMed  Google Scholar 

  45. Boedtkjer, E., Bentzon, J. F., Dam, V. S., & Aalkjaer, C. N.+. (2016). HCO3 -cotransporter NBCn1 increases pHi gradients, filopodia and migration of smooth muscle cells and promotes arterial remodeling. Cardiovascular Research, 111, 227–239. https://doi.org/10.1093/cvr/cvw079.

    Article  CAS  PubMed  Google Scholar 

  46. Lloyd, M. C., Alfarouk, K. O., Verduzco, D., Bui, M. M., Gillies, R. J., Ibrahim, M. E., Brown, J. S., & Gatenby, R. A. (2014). Vascular measurements correlate with estrogen receptor status. BMC Cancer, 14, 279. https://doi.org/10.1186/1471-2407-14-279.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S., & Gatenby, R. A. (2016). Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Research, 76, 3136–3144. https://doi.org/10.1158/0008-5472.CAN-15-2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., & Gillies, R. J. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer Research, 73, 1524–1535. https://doi.org/10.1158/0008-5472.CAN-12-2796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B., & Gillies, R. J. (2006). Acid-mediated tumor invasion: a multidisciplinary study. Cancer Research, 66, 5216–5223. https://doi.org/10.1158/0008-5472.CAN-05-4193.

    Article  CAS  PubMed  Google Scholar 

  50. Pilon-Thomas, S., Kodumudi, K. N., el-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M., Wojtkowiak, J. W., Mulé, J. J., Ibrahim-Hashim, A., & Gillies, R. J. (2016). Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Research, 76, 1381–1390. https://doi.org/10.1158/0008-5472.CAN-15-1743.

    Article  CAS  PubMed  Google Scholar 

  51. Lardner, A. (2001). The effects of extracellular pH on immune function. Journal of Leukocyte Biology, 69, 522–530.

    CAS  PubMed  Google Scholar 

  52. Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., de Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., Huber, V., Parmiani, G., Generoso, L., Santinami, M., Borghi, M., Fais, S., Bellone, M., & Rivoltini, L. (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Research, 72, 2746–2756. https://doi.org/10.1158/0008-5472.CAN-11-1272.

    Article  PubMed  Google Scholar 

  53. Grundstrom, S., Dohlsten, M., & Sundstedt, A. (2000). IL-2 unresponsiveness in anergic CD4+ T cells is due to defective signaling through the common gamma-chain of the IL-2 receptor. Journal of Immunology, 164, 1175–1184.

    Article  CAS  Google Scholar 

  54. Wells, A. D., Walsh, M. C., Sankaran, D., & Turka, L. A. (2000). T cell effector function and anergy avoidance are quantitatively linked to cell division. Journal of Immunology, 165, 2432–2443.

    Article  CAS  Google Scholar 

  55. Demotte, N., Stroobant, V., Courtoy, P. J., van der Smissen, P., Colau, D., Luescher, I. F., Hivroz, C., Nicaise, J., Squifflet, J. L., Mourad, M., Godelaine, D., Boon, T., & van der Bruggen, P. (2008). Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity, 28, 414–424. https://doi.org/10.1016/j.immuni.2008.01.011.

    Article  CAS  PubMed  Google Scholar 

  56. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315, 1650–1659. https://doi.org/10.1056/NEJM198612253152606.

    Article  CAS  PubMed  Google Scholar 

  57. Ashby, B. S. (1966). pH studies in human malignant tumours. Lancet, 2, 312–315.

    Article  CAS  PubMed  Google Scholar 

  58. Dong, L., Li, Z., Leffler, N. R., Asch, A. S., Chi, J. T., & Yang, L. V. (2013). Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis. PLoS One, 8, e61991. https://doi.org/10.1371/journal.pone.0061991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Silva, A. S., Yunes, J. A., Gillies, R. J., & Gatenby, R. A. (2009). The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Research, 69, 2677–2684. https://doi.org/10.1158/0008-5472.CAN-08-2394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ibrahim Hashim, A., Cornnell, H. H., Coelho Ribeiro, M. L., Abrahams, D., Cunningham, J., Lloyd, M., Martinez, G. V., Gatenby, R. A., & Gillies, R. J. (2011). Reduction of metastasis using a non-volatile buffer. Clinical & Experimental Metastasis, 28, 841–849. https://doi.org/10.1007/s10585-011-9415-7.

    Article  CAS  Google Scholar 

  61. Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F., Hashim, A. I., Morse, D. L., Raghunand, N., Gatenby, R. A., & Gillies, R. J. (2009). Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Research, 69, 2260–2268. https://doi.org/10.1158/0008-5472.CAN-07-5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ibrahim-Hashim, A., Cornnell, H. H., Abrahams, D., Lloyd, M., Bui, M., Gillies, R. J., & Gatenby, R. A. (2012). Systemic buffers inhibit carcinogenesis in TRAMP mice. The Journal of Urology, 188, 624–631. https://doi.org/10.1016/j.juro.2012.03.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ibrahim-Hashim, A., Robertson-Tessi, M., Enriquez-Navas, P. M., Damaghi, M., Balagurunathan, Y., Wojtkowiak, J. W., Russell, S., Yoonseok, K., Lloyd, M. C., Bui, M. M., Brown, J. S., Anderson, A. R. A., Gillies, R. J., & Gatenby, R. A. (2017). Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Research, 77, 2242–2254. https://doi.org/10.1158/0008-5472.CAN-16-2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pilot, C., Mahipal, A., & Gillies, R. J. (2018). Buffer therapy → buffer diet. Journal of Nutrition & Food Sciences, 8, 684–688.

    Article  Google Scholar 

  65. Tian, B., Wong, W. Y., Hegmann, E., Gaspar, K., Kumar, P., & Chao, H. (2015). Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer. Bioconjugate Chemistry, 26, 1144–1155. https://doi.org/10.1021/acs.bioconjchem.5b00237.

    Article  CAS  PubMed  Google Scholar 

  66. Ramlau, R., et al. (2017). Phase I/II dose escalation study of L-DOS47 as a monotherapy in non-squamous non-small cell lung cancer patients. Journal of Thoracic Oncology, 12, S1017–S1072.

    Article  Google Scholar 

  67. Bushinsky, D. A., Hostetter, T., Klaerner, G., Stasiv, Y., Lockey, C., McNulty, S., Lee, A., Parsell, D., Mathur, V., Li, E., Buysse, J., & Alpern, R. (2018). Randomized, controlled trial of TRC101 to increase serum bicarbonate in patients with CKD. Clinical Journal of the American Society of Nephrology, 13, 26–35. https://doi.org/10.2215/CJN.07300717.

    Article  CAS  PubMed  Google Scholar 

  68. Kazokaite, J., Aspatwar, A., Parkkila, S., & Matulis, D. (2017). An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ, 5, e4068. https://doi.org/10.7717/peerj.4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boyd, N. H., Walker K., Fried J., Hackney J. R., McDonald P. C., Benavides G. A., Spina R., Audia A., Scott S. E., Libby C. J., Tran A. N., Bevensee M. O., Griguer C., Nozell S., Gillespie G. Y., Nabors B., Bhat K. P., Bar E. E., Darley-Usmar V., Xu B., Gordon E., Cooper S. J., Dedhar S., Hjelmeland A. B.. (2017) Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo. JCI Insight 2, doi:https://doi.org/10.1172/jci.insight.92928.

  70. Harguindey, S., et al. (2013). Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs - an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. Journal of Translational Medicine, 11, 282. https://doi.org/10.1186/1479-5876-11-282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Polanski, R., Hodgkinson, C. L., Fusi, A., Nonaka, D., Priest, L., Kelly, P., Trapani, F., Bishop, P. W., White, A., Critchlow, S. E., Smith, P. D., Blackhall, F., Dive, C., & Morrow, C. J. (2014). Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clinical Cancer Research, 20, 926–937. https://doi.org/10.1158/1078-0432.CCR-13-2270.

    Article  CAS  PubMed  Google Scholar 

  72. Beloueche-Babari, M., Wantuch, S., Casals Galobart, T., Koniordou, M., Parkes, H. G., Arunan, V., Chung, Y. L., Eykyn, T. R., Smith, P. D., & Leach, M. O. (2017). MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Research, 77, 5913–5924. https://doi.org/10.1158/0008-5472.CAN-16-2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noble, R. A., Bell, N., Blair, H., Sikka, A., Thomas, H., Phillips, N., Nakjang, S., Miwa, S., Crossland, R., Rand, V., Televantou, D., Long, A., Keun, H. C., Bacon, C. M., Bomken, S., Critchlow, S. E., & Wedge, S. R. (2017). Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica, 102, 1247–1257. https://doi.org/10.3324/haematol.2016.163030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Draoui, N., Schicke, O., Seront, E., Bouzin, C., Sonveaux, P., Riant, O., & Feron, O. (2014). Antitumor activity of 7-aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux. Molecular Cancer Therapeutics, 13, 1410–1418. https://doi.org/10.1158/1535-7163.MCT-13-0653.

    Article  CAS  PubMed  Google Scholar 

  75. Doherty, J. R., Yang, C., Scott, K. E. N., Cameron, M. D., Fallahi, M., Li, W., Hall, M. A., Amelio, A. L., Mishra, J. K., Li, F., Tortosa, M., Genau, H. M., Rounbehler, R. J., Lu, Y., Dang, C. V., Kumar, K. G., Butler, A. A., Bannister, T. D., Hooper, A. T., Unsal-Kacmaz, K., Roush, W. R., & Cleveland, J. L. (2014). Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Research, 74, 908–920. https://doi.org/10.1158/0008-5472.CAN-13-2034.

    Article  CAS  PubMed  Google Scholar 

  76. Marchiq, I., & Pouyssegur, J. (2016). Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. J Mol Med (Berl), 94, 155–171. https://doi.org/10.1007/s00109-015-1307-x.

    Article  CAS  Google Scholar 

  77. Benjamin, D., Robay, D., Hindupur, S. K., Pohlmann, J., Colombi, M., el-Shemerly, M. Y., Maira, S. M., Moroni, C., Lane, H. A., & Hall, M. N. (2018). Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Reports, 25, 3047–3058 e3044. https://doi.org/10.1016/j.celrep.2018.11.043.

    Article  CAS  PubMed  Google Scholar 

  78. Mele, L., Paino, F., Papaccio, F., Regad, T., Boocock, D., Stiuso, P., Lombardi, A., Liccardo, D., Aquino, G., Barbieri, A., Arra, C., Coveney, C., la Noce, M., Papaccio, G., Caraglia, M., Tirino, V., & Desiderio, V. (2018). A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo. Cell Death & Disease, 9, 572. https://doi.org/10.1038/s41419-018-0635-5.

    Article  CAS  Google Scholar 

  79. Cremon, C., Stanghellini, V., Barbaro, M. R., Cogliandro, R. F., Bellacosa, L., Santos, J., Vicario, M., Pigrau, M., Alonso Cotoner, C., Lobo, B., Azpiroz, F., Bruley des Varannes, S., Neunlist, M., DeFilippis, D., Iuvone, T., Petrosino, S., di Marzo, V., & Barbara, G. (2017). Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 45, 909–922. https://doi.org/10.1111/apt.13958.

    Article  CAS  Google Scholar 

  80. Indraccolo, U., Indraccolo, S. R., & Mignini, F. (2017). Micronized palmitoylethanolamide/trans-polydatin treatment of endometriosis-related pain: a meta-analysis. Annali dell’Istituto Superiore di Sanità, 53, 125–134. https://doi.org/10.4415/ANN_17_02_08.

    Article  CAS  PubMed  Google Scholar 

  81. Hitosugi, T., Zhou, L., Elf, S., Fan, J., Kang, H. B., Seo, J. H., Shan, C., Dai, Q., Zhang, L., Xie, J., Gu, T. L., Jin, P., Alečković, M., LeRoy, G., Kang, Y., Sudderth, J. A., DeBerardinis, R. J., Luan, C. H., Chen, G. Z., Muller, S., Shin, D. M., Owonikoko, T. K., Lonial, S., Arellano, M. L., Khoury, H. J., Khuri, F. R., Lee, B. H., Ye, K., Boggon, T. J., Kang, S., He, C., & Chen, J. (2012). Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell, 22, 585–600. https://doi.org/10.1016/j.ccr.2012.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liberti, M. V., Dai, Z., Wardell, S. E., Baccile, J. A., Liu, X., Gao, X., Baldi, R., Mehrmohamadi, M., Johnson, M. O., Madhukar, N. S., Shestov, A. A., Chio, I. I. C., Elemento, O., Rathmell, J. C., Schroeder, F. C., McDonnell, D. P., & Locasale, J. W. (2017). A predictive model for selective targeting of the Warburg effect through GAPDH inhibition with a natural product. Cell Metabolism, 26, 648–659 e648. https://doi.org/10.1016/j.cmet.2017.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Harriman, G., Greenwood, J., Bhat, S., Huang, X., Wang, R., Paul, D., Tong, L., Saha, A. K., Westlin, W. F., Kapeller, R., & Harwood, H. J., Jr. (2016). Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proceedings of the National Academy of Sciences of the United States of America, 113, E1796–E1805. https://doi.org/10.1073/pnas.1520686113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, C. W., Addy, C., Kusunoki, J., Anderson, N. N., Deja, S., Fu, X., Burgess, S. C., Li, C., Ruddy, M., Chakravarthy, M., Previs, S., Milstein, S., Fitzgerald, K., Kelley, D. E., & Horton, J. D. (2017). Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metabolism, 26, 576. https://doi.org/10.1016/j.cmet.2017.08.011.

    Article  CAS  PubMed  Google Scholar 

  85. Kall, S. L., Delikatny, E. J., & Lavie, A. (2018). Identification of a unique inhibitor-binding site on choline kinase alpha. Biochemistry, 57, 1316–1325. https://doi.org/10.1021/acs.biochem.7b01257.

    Article  CAS  PubMed  Google Scholar 

  86. Lacal, J. C., & Campos, J. M. (2015). Preclinical characterization of RSM-932A, a novel anticancer drug targeting the human choline kinase alpha, an enzyme involved in increased lipid metabolism of cancer cells. Molecular Cancer Therapeutics, 14, 31–39. https://doi.org/10.1158/1535-7163.MCT-14-0531.

    Article  CAS  PubMed  Google Scholar 

  87. Kumar, M., Arlauckas, S. P., Saksena, S., Verma, G., Ittyerah, R., Pickup, S., Popov, A. V., Delikatny, E. J., & Poptani, H. (2015). Magnetic resonance spectroscopy for detection of choline kinase inhibition in the treatment of brain tumors. Molecular Cancer Therapeutics, 14, 899–908. https://doi.org/10.1158/1535-7163.MCT-14-0775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mazarico, J. M., Sanchez-Arevalo Lobo, V. J., Favicchio, R., Greenhalf, W., Costello, E., Carrillo-de Santa Pau, E., Marques, M., Lacal, J. C., Aboagye, E., & Real, F. X. (2016). Choline kinase alpha (CHKalpha) as a therapeutic target in pancreatic ductal adenocarcinoma: expression, predictive value, and sensitivity to inhibitors. Molecular Cancer Therapeutics, 15, 323–333. https://doi.org/10.1158/1535-7163.MCT-15-0214.

    Article  CAS  PubMed  Google Scholar 

  89. Zaytseva, Y. Y., Rychahou, P. G., le, A. T., Scott, T. L., Flight, R. M., Kim, J. T., Harris, J., Liu, J., Wang, C., Morris, A. J., Sivakumaran, T. A., Fan, T., Moseley, H., Gao, T., Lee, E. Y., Weiss, H. L., Heuer, T. S., Kemble, G., & Evers, M. (2018). Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget, 9, 24787–24800. https://doi.org/10.18632/oncotarget.25361.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang, B. Y., Zhang, J., Wang, J. L., Sun, S., Wang, Z. H., Wang, L. P., Zhang, Q. L., Lv, F. F., Cao, E. Y., Shao, Z. M., Fais, S., & Hu, X. C. (2015). Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. Journal of Experimental & Clinical Cancer Research, 34, 85. https://doi.org/10.1186/s13046-015-0194-x.

    Article  CAS  Google Scholar 

  91. Spugnini, E. P., Buglioni, S., Carocci, F., Francesco, M., Vincenzi, B., Fanciulli, M., & Fais, S. (2014). High dose lansoprazole combined with metronomic chemotherapy: a phase I/II study in companion animals with spontaneously occurring tumors. Journal of Translational Medicine, 12, 225. https://doi.org/10.1186/s12967-014-0225-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walsh, M., Fais, S., Spugnini, E. P., Harguindey, S., Abu Izneid, T., Scacco, L., Williams, P., Allegrucci, C., Rauch, C., & Omran, Z. (2015). Proton pump inhibitors for the treatment of cancer in companion animals. Journal of Experimental & Clinical Cancer Research, 34, 93. https://doi.org/10.1186/s13046-015-0204-z.

    Article  CAS  Google Scholar 

  93. Upreti, M., Jyoti, A., & Sethi, P. (2013). Tumor microenvironment and nanotherapeutics. Transl Cancer Res, 2, 309–319. https://doi.org/10.3978/j.issn.2218-676X.2013.08.11.

    Article  CAS  PubMed  Google Scholar 

  94. Barkey, N. M., Preihs, C., Cornnell, H. H., Martinez, G., Carie, A., Vagner, J., Xu, L., Lloyd, M. C., Lynch, V. M., Hruby, V. J., Sessler, J. L., Sill, K. N., Gillies, R. J., & Morse, D. L. (2013). Development and in vivo quantitative magnetic resonance imaging of polymer micelles targeted to the melanocortin 1 receptor. Journal of Medicinal Chemistry, 56, 6330–6338. https://doi.org/10.1021/jm4005576.

    Article  CAS  PubMed  Google Scholar 

  95. Cheng, R., Meng, F., Deng, C., Klok, H. A., & Zhong, Z. (2013). Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 34, 3647–3657. https://doi.org/10.1016/j.biomaterials.2013.01.084.

    Article  CAS  PubMed  Google Scholar 

  96. Zhu, L., & Torchilin, V. P. (2013). Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb), 5, 96–107. https://doi.org/10.1039/c2ib20135f.

    Article  CAS  Google Scholar 

  97. Castaneda, L., et al. (2013). Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation. Chem Commun (Camb), 49, 8187–8189. https://doi.org/10.1039/c3cc45220d.

    Article  CAS  Google Scholar 

  98. Lambert, J. M., & Morris, C. Q. (2017). Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Advances in Therapy, 34, 1015–1035. https://doi.org/10.1007/s12325-017-0519-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rinaldi, F., Hanieh, P. N., del Favero, E., Rondelli, V., Brocca, P., Pereira, M. C., Andreev, O. A., Reshetnyak, Y. K., Marianecci, C., & Carafa, M. (2018). Decoration of nanovesicles with pH (low) insertion peptide (pHLIP) for targeted delivery. Nanoscale Research Letters, 13, 391. https://doi.org/10.1186/s11671-018-2807-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tang, H., Zhao, W., Yu, J., Li, Y., & Zhao, C. (2018). Recent development of pH-responsive polymers for cancer nanomedicine. Molecules, 24. https://doi.org/10.3390/molecules24010004.

  101. Wyatt, L. C., Lewis, J. S., Andreev, O. A., Reshetnyak, Y. K., & Engelman, D. M. (2018). Applications of pHLIP technology for cancer imaging and therapy: (trends in biotechnology 35, 653-664, 2017). Trends in Biotechnology, 36, 1300. https://doi.org/10.1016/j.tibtech.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  102. Wyatt, L. C., Moshnikova, A., Crawford, T., Engelman, D. M., Andreev, O. A., & Reshetnyak, Y. K. (2018). Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proceedings of the National Academy of Sciences of the United States of America, 115, E2811–E2818. https://doi.org/10.1073/pnas.1715350115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Burns, K. E., Robinson, M. K., & Thevenin, D. (2015). Inhibition of cancer cell proliferation and breast tumor targeting of pHLIP-monomethyl auristatin E conjugates. Molecular Pharmaceutics, 12, 1250–1258. https://doi.org/10.1021/mp500779k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Antosh, M. P., Wijesinghe, D. D., Shrestha, S., Lanou, R., Huang, Y. H., Hasselbacher, T., Fox, D., Neretti, N., Sun, S., Katenka, N., Cooper, L. N., Andreev, O. A., & Reshetnyak, Y. K. (2015). Enhancement of radiation effect on cancer cells by gold-pHLIP. Proceedings of the National Academy of Sciences of the United States of America, 112, 5372–5376. https://doi.org/10.1073/pnas.1501628112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yu, M., Guo, F., Wang, J., Tan, F., & Li, N. (2015). Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Applied Materials & Interfaces, 7, 17592–17597. https://doi.org/10.1021/acsami.5b05763.

    Article  CAS  Google Scholar 

  106. Yu, M., Guo, F., Wang, J., Tan, F., & Li, N. (2016). A pH-driven and photoresponsive nanocarrier: remotely-controlled by near-infrared light for stepwise antitumor treatment. Biomaterials, 79, 25–35. https://doi.org/10.1016/j.biomaterials.2015.11.049.

    Article  CAS  PubMed  Google Scholar 

  107. Persi, E., Duran-Frigola, M., Damaghi, M., Roush, W. R., Aloy, P., Cleveland, J. L., Gillies, R. J., & Ruppin, E. (2018). Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature Communications, 9, 2997. https://doi.org/10.1038/s41467-018-05261-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rahier, N. J., Molinier, N., Long, C., Deshmukh, S. K., Kate, A. S., Ranadive, P., Verekar, S. A., Jiotode, M., Lavhale, R. R., Tokdar, P., Balakrishnan, A., Meignan, S., Robichon, C., Gomes, B., Aussagues, Y., Samson, A., Sautel, F., & Bailly, C. (2015). Anticancer activity of koningic acid and semisynthetic derivatives. Bioorganic & Medicinal Chemistry, 23, 3712–3721. https://doi.org/10.1016/j.bmc.2015.04.004.

    Article  CAS  Google Scholar 

  109. Kumagai, S., Narasaki, R., & Hasumi, K. (2008). Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Biochemical and Biophysical Research Communications, 365, 362–368. https://doi.org/10.1016/j.bbrc.2007.10.199.

    Article  CAS  PubMed  Google Scholar 

  110. Peng, X., Gong, F., Chen, Y., Jiang, Y., Liu, J., Yu, M., Zhang, S., Wang, M., Xiao, G., & Liao, H. (2014). Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-alpha-mediated signaling. Cell Death & Disease, 5, e1367. https://doi.org/10.1038/cddis.2014.297.

    Article  CAS  Google Scholar 

  111. Du, Q. H., Peng, C., & Zhang, H. (2013). Polydatin: a review of pharmacology and pharmacokinetics. Pharmaceutical Biology, 51, 1347–1354. https://doi.org/10.3109/13880209.2013.792849.

    Article  CAS  PubMed  Google Scholar 

  112. Jones, N. P., & Schulze, A. (2012). Targeting cancer metabolism--aiming at a tumour’s sweet-spot. Drug Discovery Today, 17, 232–241. https://doi.org/10.1016/j.drudis.2011.12.017.

    Article  CAS  PubMed  Google Scholar 

  113. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews. Cancer, 17, 20–37. https://doi.org/10.1038/nrc.2016.108.

    Article  CAS  PubMed  Google Scholar 

  114. Uthaman, S., Huh, K. M., & Park, I. K. (2018). Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res, 22, 22. https://doi.org/10.1186/s40824-018-0132-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun, X., du, R., Zhang, L., Zhang, G., Zheng, X., Qian, J., Tian, X., Zhou, J., He, J., Wang, Y., Wu, Y., Zhong, K., Cai, D., Zou, D., & Wu, Z. (2017). A pH-responsive yolk-like nanoplatform for tumor targeted dual-mode magnetic resonance imaging and chemotherapy. ACS Nano, 11, 7049–7059. https://doi.org/10.1021/acsnano.7b02675.

    Article  CAS  PubMed  Google Scholar 

  116. Tsuchikama, K., & An, Z. (2018). Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein & Cell, 9, 33–46. https://doi.org/10.1007/s13238-016-0323-0.

    Article  CAS  Google Scholar 

  117. Jain, N., Smith, S. W., Ghone, S., & Tomczuk, B. (2015). Current ADC linker chemistry. Pharmaceutical Research, 32, 3526–3540. https://doi.org/10.1007/s11095-015-1657-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lambert, J. M., & Berkenblit, A. (2018). Antibody-drug conjugates for cancer treatment. Annual Review of Medicine, 69, 191–207. https://doi.org/10.1146/annurev-med-061516-121357.

    Article  CAS  PubMed  Google Scholar 

  119. Reshetnyak, Y. K., Andreev, O. A., Segala, M., Markin, V. S., & Engelman, D. M. (2008). Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proceedings of the National Academy of Sciences of the United States of America, 105, 15340–15345. https://doi.org/10.1073/pnas.0804746105.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wyatt, L. C., Lewis, J. S., Andreev, O. A., Reshetnyak, Y. K., & Engelman, D. M. (2017). Applications of pHLIP technology for cancer imaging and therapy. Trends in Biotechnology, 35, 653–664. https://doi.org/10.1016/j.tibtech.2017.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Izumi, H., Torigoe, T., Ishiguchi, H., Uramoto, H., Yoshida, Y., Tanabe, M., Ise, T., Murakami, T., Yoshida, T., Nomoto, M., & Kohno, K. (2003). Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treatment Reviews, 29, 541–549.

    Article  CAS  PubMed  Google Scholar 

  122. Taylor, S., Spugnini, E. P., Assaraf, Y. G., Azzarito, T., Rauch, C., & Fais, S. (2015). Microenvironment acidity as a major determinant of tumor chemoresistance: proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resistance Updates, 23, 69–78. https://doi.org/10.1016/j.drup.2015.08.004.

    Article  PubMed  Google Scholar 

  123. De Milito, A., et al. (2010). pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. International Journal of Cancer, 127, 207–219. https://doi.org/10.1002/ijc.25009.

    Article  CAS  PubMed  Google Scholar 

  124. De Milito, A., Marino, M. L., & Fais, S. (2012). A rationale for the use of proton pump inhibitors as antineoplastic agents. Current Pharmaceutical Design, 18, 1395–1406.

    Article  PubMed  Google Scholar 

  125. Ferrari, S., Perut, F., Fagioli, F., Brach del Prever, A., Meazza, C., Parafioriti, A., Picci, P., Gambarotti, M., Avnet, S., Baldini, N., & Fais, S. (2013). Proton pump inhibitor chemosensitization in human osteosarcoma: from the bench to the patients’ bed. Journal of Translational Medicine, 11, 268. https://doi.org/10.1186/1479-5876-11-268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Spugnini, E. P., Baldi, A., Buglioni, S., Carocci, F., Milesi de Bazzichini, G., Betti, G., Pantaleo, I., Menicagli, F., Citro, G., & Fais, S. (2011). Lansoprazole as a rescue agent in chemoresistant tumors: a phase I/II study in companion animals with spontaneously occurring tumors. Journal of Translational Medicine, 9, 221. https://doi.org/10.1186/1479-5876-9-221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ranieri, G., Gadaleta, C. D., Patruno, R., Zizzo, N., Daidone, M. G., Hansson, M. G., Paradiso, A., & Ribatti, D. (2013). A model of study for human cancer: spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Critical Reviews in Oncology/Hematology, 88, 187–197. https://doi.org/10.1016/j.critrevonc.2013.03.005.

    Article  CAS  PubMed  Google Scholar 

  128. Dobson, J. M. (2013). Breed-predispositions to cancer in pedigree dogs. ISRN Vet Sci, 2013, 941275. https://doi.org/10.1155/2013/941275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Johnson, P. J. (1998). Dermatologic tumors (excluding sarcoids). The Veterinary Clinics of North America. Equine Practice, 14, 625–658, viii.

    Article  CAS  PubMed  Google Scholar 

  130. Merlo, D. F., Rossi, L., Pellegrino, C., Ceppi, M., Cardellino, U., Capurro, C., Ratto, A., Sambucco, P. L., Sestito, V., Tanara, G., & Bocchini, V. (2008). Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. Journal of Veterinary Internal Medicine, 22, 976–984. https://doi.org/10.1111/j.1939-1676.2008.0133.x.

    Article  CAS  PubMed  Google Scholar 

  131. Kosugi, Y., Yamamoto, S., Sano, N., Furuta, A., Igari, T., Fujioka, Y., & Amano, N. (2015). Evaluation of acid tolerance of drugs using rats and dogs controlled for gastric acid secretion. Journal of Pharmaceutical Sciences, 104, 2887–2893. https://doi.org/10.1002/jps.24401.

    Article  CAS  PubMed  Google Scholar 

  132. Chen, C. H., Lee, C. Z., Lin, Y. C., Kao, L. T., & Lin, H. C. (2018). Negative association of proton pump inhibitors with subsequent development of breast cancer: a nationwide population-based study. Journal of Clinical Pharmacology, 59, 350–355. https://doi.org/10.1002/jcph.1329.

    Article  CAS  PubMed  Google Scholar 

  133. Papagerakis, S., Bellile, E., Peterson, L. A., Pliakas, M., Balaskas, K., Selman, S., Hanauer, D., Taylor, J. M. G., Duffy, S., & Wolf, G. (2014). Proton pump inhibitors and histamine 2 blockers are associated with improved overall survival in patients with head and neck squamous carcinoma. Cancer Prevention Research (Philadelphia, Pa.), 7, 1258–1269. https://doi.org/10.1158/1940-6207.CAPR-14-0002.

    Article  CAS  Google Scholar 

  134. Falcone, R., Roberto, M., D’Antonio, C., Romiti, A., Milano, A., Onesti, C. E., Marchetti, P., & Fais, S. (2016). High-doses of proton pump inhibitors in refractory gastro-intestinal cancer: a case series and the state of art. Digestive and Liver Disease, 48, 1503–1505. https://doi.org/10.1016/j.dld.2016.08.126.

    Article  CAS  PubMed  Google Scholar 

  135. Casey, J. R., Grinstein, S., & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nature Reviews. Molecular Cell Biology, 11, 50–61. https://doi.org/10.1038/nrm2820.

    Article  CAS  PubMed  Google Scholar 

  136. Martinez-Zaguilan, R., Lynch, R. M., Martinez, G. M., & Gillies, R. J. (1993). Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. The American Journal of Physiology, 265, C1015–C1029. https://doi.org/10.1152/ajpcell.1993.265.4.C1015.

    Article  CAS  PubMed  Google Scholar 

  137. Sennoune, S. R., Bakunts, K., Martínez, G. M., Chua-Tuan, J. L., Kebir, Y., Attaya, M. N., & Martínez-Zaguilán, R. (2004). Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. American Journal of Physiology. Cell Physiology, 286, C1443–C1452. https://doi.org/10.1152/ajpcell.00407.2003.

    Article  CAS  PubMed  Google Scholar 

  138. Cardone, R. A., Casavola, V., & Reshkin, S. J. (2005). The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Reviews. Cancer, 5, 786–795. https://doi.org/10.1038/nrc1713.

    Article  CAS  PubMed  Google Scholar 

  139. Stock, C., & Pedersen, S. F. (2017). Roles of pH and the Na(+)/H(+) exchanger NHE1 in cancer: from cell biology and animal models to an emerging translational perspective? Seminars in Cancer Biology, 43, 5–16. https://doi.org/10.1016/j.semcancer.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  140. Mullard, A. (2016). Cancer metabolism pipeline breaks new ground. Nature Reviews. Drug Discovery, 15, 735–737. https://doi.org/10.1038/nrd.2016.223.

    Article  CAS  PubMed  Google Scholar 

  141. Neri, D., & Supuran, C. T. (2011). Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews. Drug Discovery, 10, 767–777. https://doi.org/10.1038/nrd3554.

    Article  CAS  PubMed  Google Scholar 

  142. Pouyssegur, J., Franchi, A., & Pages, G. (2001). pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Found Symp, 240, 186–196; discussion 196–188.

    CAS  PubMed  Google Scholar 

  143. Chiche, J., Fur, Y. L., Vilmen, C., Frassineti, F., Daniel, L., Halestrap, A. P., Cozzone, P. J., Pouysségur, J., & Lutz, N. W. (2012). In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. International Journal of Cancer, 130, 1511–1520. https://doi.org/10.1002/ijc.26125.

    Article  CAS  PubMed  Google Scholar 

  144. Reshkin, S. J., et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. The FASEB Journal, 14, 2185–2197. https://doi.org/10.1096/fj.00-0029com.

    Article  CAS  PubMed  Google Scholar 

  145. Provost, J. J., & Wallert, M. A. (2013). Inside out: targeting NHE1 as an intracellular and extracellular regulator of cancer progression. Chemical Biology & Drug Design, 81, 85–101. https://doi.org/10.1111/cbdd.12035.

    Article  CAS  Google Scholar 

  146. Commisso, C., Davidson, S. M., Soydaner-Azeloglu, R. G., Parker, S. J., Kamphorst, J. J., Hackett, S., Grabocka, E., Nofal, M., Drebin, J. A., Thompson, C. B., Rabinowitz, J. D., Metallo, C. M., Vander Heiden, M. G., & Bar-Sagi, D. (2013). Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature, 497, 633–637. https://doi.org/10.1038/nature12138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hosogi, S., Miyazaki, H., Nakajima, K. I., Ashihara, E., Niisato, N., Kusuzaki, K., & Marunaka, Y. (2012). An inhibitor of Na(+)/H(+) exchanger (NHE), ethyl-isopropyl amiloride (EIPA), diminishes proliferation of MKN28 human gastric cancer cells by decreasing the cytosolic Cl(−) concentration via DIDS-sensitive pathways. Cellular Physiology and Biochemistry, 30, 1241–1253. https://doi.org/10.1159/000343315.

    Article  CAS  PubMed  Google Scholar 

  148. Kellen, J. A., Mirakian, A., & Kolin, A. (1988). Antimetastatic effect of amiloride in an animal tumour model. Anticancer Research, 8, 1373–1376.

    CAS  PubMed  Google Scholar 

  149. Matthews, H., Ranson, M., & Kelso, M. J. (2011). Anti-tumour/metastasis effects of the potassium-sparing diuretic amiloride: an orally active anti-cancer drug waiting for its call-of-duty? International Journal of Cancer, 129, 2051–2061. https://doi.org/10.1002/ijc.26156.

    Article  CAS  PubMed  Google Scholar 

  150. Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W., & Broer, S. (2000). The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. The Biochemical Journal, 350(Pt 1), 219–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Amith, S. R., Wilkinson, J. M., & Fliegel, L. (2016). KR-33028, a potent inhibitor of the Na(+)/H(+) exchanger NHE1, suppresses metastatic potential of triple-negative breast cancer cells. Biochemical Pharmacology, 118, 31–39. https://doi.org/10.1016/j.bcp.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  152. Di Sario, A., et al. (2007). Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells. Digestive and Liver Disease, 39, 60–69. https://doi.org/10.1016/j.dld.2006.07.013.

    Article  CAS  PubMed  Google Scholar 

  153. Lv, C., Yang, X., Yu, B., Ma, Q., Liu, B., & Liu, Y. (2012). Blocking the Na+/H+ exchanger 1 with cariporide (HOE642) reduces the hypoxia-induced invasion of human tongue squamous cell carcinoma. International Journal of Oral and Maxillofacial Surgery, 41, 1206–1210. https://doi.org/10.1016/j.ijom.2012.03.001.

    Article  CAS  PubMed  Google Scholar 

  154. Counillon, L., Bouret, Y., Marchiq, I., & Pouyssegur, J. (2016). Na(+)/H(+) antiporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism. Biochimica et Biophysica Acta, 1863, 2465–2480. https://doi.org/10.1016/j.bbamcr.2016.02.018.

    Article  CAS  PubMed  Google Scholar 

  155. Miranda-Goncalves, V., et al. (2013). Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-Oncology, 15, 172–188. https://doi.org/10.1093/neuonc/nos298.

    Article  CAS  PubMed  Google Scholar 

  156. Pinheiro, C., Longatto-Filho, A., Azevedo-Silva, J., Casal, M., Schmitt, F. C., & Baltazar, F. (2012). Role of monocarboxylate transporters in human cancers: state of the art. Journal of Bioenergetics and Biomembranes, 44, 127–139. https://doi.org/10.1007/s10863-012-9428-1.

    Article  CAS  PubMed  Google Scholar 

  157. Manning Fox, J. E., Meredith, D., & Halestrap, A. P. (2000). Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. The Journal of Physiology, 529(Pt 2), 285–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. The Journal of Biological Chemistry, 281, 9030–9037. https://doi.org/10.1074/jbc.M511397200.

    Article  CAS  PubMed  Google Scholar 

  159. Mathupala, S. P., Parajuli, P., & Sloan, A. E. (2004). Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery, 55, 1410–1419; discussion 1419.

    Article  PubMed  Google Scholar 

  160. Fang, J., Quinones, Q. J., Holman, T. L., Morowitz, M. J., Wang, Q., Zhao, H., Sivo, F., Maris, J. M., & Wahl, M. L. (2006). The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Molecular Pharmacology, 70, 2108–2115. https://doi.org/10.1124/mol.106.026245.

    Article  CAS  PubMed  Google Scholar 

  161. Halestrap, A. P. (2012). The monocarboxylate transporter family--structure and functional characterization. IUBMB Life, 64, 1–9. https://doi.org/10.1002/iub.573.

    Article  CAS  PubMed  Google Scholar 

  162. Le Floch, R., et al. (2011). CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proceedings of the National Academy of Sciences of the United States of America, 108, 16663–16668. https://doi.org/10.1073/pnas.1106123108.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Baenke, F., Dubuis, S., Brault, C., Weigelt, B., Dankworth, B., Griffiths, B., Jiang, M., Mackay, A., Saunders, B., Spencer-Dene, B., Ros, S., Stamp, G., Reis-Filho, J. S., Howell, M., Zamboni, N., & Schulze, A. (2015). Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival. The Journal of Pathology, 237, 152–165. https://doi.org/10.1002/path.4562.

    Article  CAS  PubMed  Google Scholar 

  164. Marchiq, I., Le Floch, R., Roux, D., Simon, M. P., & Pouyssegur, J. (2015). Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. Cancer Research, 75, 171–180. https://doi.org/10.1158/0008-5472.CAN-14-2260.

    Article  CAS  PubMed  Google Scholar 

  165. Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F., & Lisanti, M. P. (2017). Cancer metabolism: a therapeutic perspective. Nature Reviews. Clinical Oncology, 14, 11–31. https://doi.org/10.1038/nrclinonc.2016.60.

    Article  CAS  PubMed  Google Scholar 

  166. Supuran, C. T., & Winum, J. Y. (2015). Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Medicinal Chemistry, 7, 1407–1414. https://doi.org/10.4155/fmc.15.71.

    Article  CAS  PubMed  Google Scholar 

  167. McDonald, P. C., Winum, J. Y., Supuran, C. T., & Dedhar, S. (2012). Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget, 3, 84–97. https://doi.org/10.18632/oncotarget.422.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Pastorek, J., et al. (1994). Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene, 9, 2877–2888.

    CAS  PubMed  Google Scholar 

  169. Supuran, C. T., Scozzafava, A., & Casini, A. (2003). Carbonic anhydrase inhibitors. Medicinal Research Reviews, 23, 146–189. https://doi.org/10.1002/med.10025.

    Article  CAS  PubMed  Google Scholar 

  170. Ilies, M. A., Vullo, D., Pastorek, J., Scozzafava, A., Ilies, M., Caproiu, M. T., Pastorekova, S., & Supuran, C. T. (2003). Carbonic anhydrase inhibitors. Inhibition of tumor-associated isozyme IX by halogenosulfanilamide and halogenophenylaminobenzolamide derivatives. Journal of Medicinal Chemistry, 46, 2187–2196. https://doi.org/10.1021/jm021123s.

    Article  CAS  PubMed  Google Scholar 

  171. Supuran, C. T. (2018). Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opinion on Investigational Drugs, 27, 963–970. https://doi.org/10.1080/13543784.2018.1548608.

    Article  CAS  PubMed  Google Scholar 

  172. Supuran, C. T. (2017). Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites, 7. https://doi.org/10.3390/metabo7030048.

  173. Andreucci, E., Peppicelli, S., Carta, F., Brisotto, G., Biscontin, E., Ruzzolini, J., Bianchini, F., Biagioni, A., Supuran, C. T., & Calorini, L. (2017). Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis. J Mol Med (Berl), 95, 1341–1353. https://doi.org/10.1007/s00109-017-1590-9.

    Article  CAS  Google Scholar 

  174. Lou, Y., McDonald, P. C., Oloumi, A., Chia, S., Ostlund, C., Ahmadi, A., Kyle, A., auf dem Keller, U., Leung, S., Huntsman, D., Clarke, B., Sutherland, B. W., Waterhouse, D., Bally, M., Roskelley, C., Overall, C. M., Minchinton, A., Pacchiano, F., Carta, F., Scozzafava, A., Touisni, N., Winum, J. Y., Supuran, C. T., & Dedhar, S. (2011). Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Research, 71, 3364–3376. https://doi.org/10.1158/0008-5472.CAN-10-4261.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Anticancer Fund (RJG), US PHS NIH grants R01 CA077575 (RJG), U54 CA193489 (RJG), and the Florida Health grant 8BC04 (SRP/RJG); the Italian Ministry of Health (SF); and Grants-in-Aid from Japan Society of the Promotion of Science, JSPS KAKENHI grant numbers JP15K15034 and 18H03182 (YM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Fais or Robert J. Gillies.

Ethics declarations

Conflict of interest

Dr. Gillies reports a COI with Helix Biopharma, with whom he is a consultant and investor.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, S.R., Damaghi, M., Marunaka, Y. et al. Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Rev 38, 205–222 (2019). https://doi.org/10.1007/s10555-019-09792-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09792-7

Keywords

Navigation