Skip to main content

Advertisement

Log in

Intracellular pH dynamics and charge-changing somatic mutations in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

An unresolved question critical for understanding cancer is how recurring somatic mutations are retained and how selective pressures drive retention. Increased intracellular pH (pHi) is common to most cancers and is an early event in cancer development. Recent work shows that recurrent somatic mutations can confer an adaptive gain in pH sensing to mutant proteins, enhancing tumorigenic phenotypes specifically at the increased pHi of cancer. Newly identified amino acid mutation signatures in cancer suggest charge-changing mutations define and shape the mutational landscape of cancer. Taken together, these results support a new perspective on the functional significance of somatic mutations in cancer. In this review, we explore existing data and new directions for better understanding how changes in dynamic pH sensing by somatic mutation might be conferring a fitness advantage to the high pH of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 11, 671–677.

    Article  CAS  PubMed  Google Scholar 

  2. White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130, 663–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pedersen, S. F., & Stock, C. (2013). Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Research, 73, 1658–1661.

    Article  CAS  PubMed  Google Scholar 

  4. Parks, S. K., Chiche, J., & Pouyssegur, J. (2013). Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 13, 611–623.

    Article  CAS  PubMed  Google Scholar 

  5. Reshkin, S. J., et al. (2000). Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. The FASEB Journal, 14, 2185–2197.

    Article  CAS  PubMed  Google Scholar 

  6. Grillo-Hill, B. K., Choi, C., Jimenez-Vidal, M., & Barber, D. L. (2015). Increased H(+) efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. Elife, 4.

  7. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.

    Article  CAS  PubMed  Google Scholar 

  8. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481, 306–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12, 487–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ward, S. G., & Mrsny, R. (2009). New insights into mechanisms of gastrointestinal inflammation and cancer. Current Opinion in Pharmacology, 9, 677–679.

    Article  CAS  PubMed  Google Scholar 

  11. Ramachandran, S., Ient, J., Gottgens, E. L., Krieg, A. J., & Hammond, E. M. (2015). Epigenetic therapy for solid tumors: highlighting the impact of tumor hypoxia. Genes Basel, 6, 935–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brahimi-Horn, M. C., Bellot, G., & Pouyssegur, J. (2011). Hypoxia and energetic tumour metabolism. Current Opinion in Genetics & Development, 21, 67–72.

    Article  CAS  Google Scholar 

  13. Pickup, M. W., Mouw, J. K., & Weaver, V. M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15, 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su, A. I., et al. (2001). Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research, 61, 7388–7393.

    CAS  PubMed  Google Scholar 

  15. Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., Shen, D., Boca, S. M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P. A., Kaminker, J. S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J. K. V., Sukumar, S., Polyak, K., Park, B. H., Pethiyagoda, C. L., Pant, P. V. K., Ballinger, D. G., Sparks, A. B., Hartigan, J., Smith, D. R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S. D., Parmigiani, G., Kinzler, K. W., Velculescu, V. E., & Vogelstein, B. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  16. Alexandrov, L. B., et al. (2013). Signatures of mutational processes in human cancer. Nature, 500, 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watanabe, N., Okochi, E., Mochizuki, M., Sugimura, T., & Ushijima, T. (2001). The presence of single nucleotide instability in human breast cancer cell lines. Cancer Research, 61, 7739–7742.

    CAS  PubMed  Google Scholar 

  18. Bignell, G. R., Greenman, C. D., Davies, H., Butler, A. P., Edkins, S., Andrews, J. M., Buck, G., Chen, L., Beare, D., Latimer, C., Widaa, S., Hinton, J., Fahey, C., Fu, B., Swamy, S., Dalgliesh, G. L., Teh, B. T., Deloukas, P., Yang, F., Campbell, P. J., Futreal, P. A., & Stratton, M. R. (2010). Signatures of mutation and selection in the cancer genome. Nature, 463, 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szpiech, Z. A., Strauli, N. B., White, K. A., Ruiz, D. G., Jacobson, M. P., Barber, D. L., & Hernandez, R. D. (2017). Prominent features of the amino acid mutation landscape in cancer. PLoS One, 12, e0183273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anoosha, P., Sakthivel, R., & Michael Gromiha, M. (2016). Exploring preferred amino acid mutations in cancer genes: applications to identify potential drug targets. Biochimica et Biophysica Acta, 1862, 155–165.

    Article  CAS  PubMed  Google Scholar 

  21. Tan, H., Bao, J., & Zhou, X. (2015). Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity. Scientific Reports, 5, 12566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber, C. C., & Whelan, S. (2019). Physicochemical amino acid properties better describe substitution rates in large populations. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msz003.

  23. Pollock, D. D., Thiltgen, G., & Goldstein, R. A. (2012). Amino acid coevolution induces an evolutionary stokes shift. Proceedings of the National Academy of Sciences, 109, E1352–E1359.

    Article  Google Scholar 

  24. White, K. A., Ruiz, D. G., Szpiech, Z. A., Strauli, N. B., Hernandez, R. D., Jacobson, M. P., & Barber, D. L. (2017). Cancer-associated arginine-to-histidine mutations confer a gain in pH sensing to mutant proteins. Science Signaling, 10, eaam9931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frantz, C., Barreiro, G., Dominguez, L., Chen, X., Eddy, R., Condeelis, J., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. The Journal of Cell Biology, 183, 865–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Srivastava, J., Barreiro, G., Groscurth, S., Gingras, A. R., Goult, B. T., Critchley, D. R., Kelly, M. J. S., Jacobson, M. P., & Barber, D. L. (2008). Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proceedings of the National Academy of Sciences of the United States of America, 105, 14436–14441.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11, 217–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole, C. G., Ward, S., Dawson, E., Ponting, L., Stefancsik, R., Harsha, B., Kok, C. Y., Jia, M., Jubb, H., Sondka, Z., Thompson, S., de, T., & Campbell, P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Research, 45, D777–D783.

    Article  CAS  PubMed  Google Scholar 

  29. Joerger, A. C., & Fersht, A. R. (2010). The tumor suppressor p53: from structures to drug discovery. Cold Spring Harbor Perspectives in Biology, 2, a000919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113, 685–700.

    Article  CAS  PubMed  Google Scholar 

  31. Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas, 41, 541–546.

    Article  CAS  PubMed  Google Scholar 

  32. Papageorgis, P., Cheng, K., Ozturk, S., Gong, Y., Lambert, A. W., Abdolmaleky, H. M., Zhou, J. R., & Thiagalingam, S. (2011). Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Research, 71, 998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schiro, M. M., Stauber, S. E., Peterson, T. L., Krueger, C., Darnell, S. J., Satyshur, K. A., Drinkwater, N. R., Newton, M. A., & Hoffmann, F. M. (2011). Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. PLoS One, 6, e25021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Linder, P., & Jankowsky, E. (2011). From unwinding to clamping—the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516.

    Article  CAS  PubMed  Google Scholar 

  35. Northcott, P. A., Jones, D. T. W., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., Pomeroy, S. L., Korshunov, A., Lichter, P., Taylor, M. D., & Pfister, S. M. (2012). Medulloblastomics: the end of the beginning. Nature Reviews. Cancer, 12, 818–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Floor, S. N., Condon, K. J., Sharma, D., Jankowsky, E., & Doudna, J. A. (2016). Autoinhibitory Interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. The Journal of Biological Chemistry, 291, 2412–2421.

    Article  CAS  PubMed  Google Scholar 

  37. Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., & Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell, 125, 287–300.

    Article  CAS  PubMed  Google Scholar 

  38. Valentin-Vega, Y. A., Wang, Y. D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Scientific Reports, 6.

  39. Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & Development, 23, 537–548.

    Article  CAS  Google Scholar 

  40. Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews Cancer, 8, 83–93.

    Article  CAS  PubMed  Google Scholar 

  41. Akhoondi, S., Sun, D., von der Lehr, N., Apostolidou, S., Klotz, K., Maljukova, A., Cepeda, D., Fiegl, H., Dofou, D., Marth, C., Mueller-Holzner, E., Corcoran, M., Dagnell, M., Nejad, S. Z., Nayer, B. N., Zali, M. R., Hansson, J., Egyhazi, S., Petersson, F., Sangfelt, P., Nordgren, H., Grander, D., Reed, S. I., Widschwendter, M., Sangfelt, O., & Spruck, C. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research, 67, 9006–9012.

    Article  CAS  PubMed  Google Scholar 

  42. White, K. A., Grillo-Hill, B. K., Esquivel, M., Peralta, J., Bui, V. N., Chire, I., & Barber, D. L. (2018). β-Catenin is a pH sensor with decreased stability at higher intracellular pH. The Journal of Cell Biology, 217, 3965–3976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Isom, D. G., Castaneda, C. A., Cannon, B. R., & Garcia-Moreno, B. (2011). Large shifts in pKa values of lysine residues buried inside a protein. Proceedings of the National Academy of Sciences of the United States of America, 108, 5260–5265.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Castaneda, C. A., et al. (2009). Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease. Proteins, 77, 570–588.

    Article  CAS  PubMed  Google Scholar 

  45. Fang, Y., Liu, Z., Chen, Z., Xu, X., Xiao, M., Yu, Y., Zhang, Y., Zhang, X., du, Y., Jiang, C., Zhao, Y., Wang, Y., Fan, B., Terheyden-Keighley, D., Liu, Y., Shi, L., Hui, Y., Zhang, X., Zhang, B., Feng, H., Ma, L., Zhang, Q., Jin, G., Yang, Y., Xiang, B., Liu, L., & Zhang, X. (2017). Smad5 acts as an intracellular pH messenger and maintains bioenergetic homeostasis. Cell Research, 27, 1083–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vercoulen, Y., Kondo, Y., Iwig, J. S., Janssen, A. B., White, K. A., Amini, M., Barber, D. L., Kuriyan, J., & Roose, J. P. (2017). A histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. Elife, 6, e29002.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Isakoff, S. J., Engelman, J. A., Irie, H. Y., Luo, J., Brachmann, S. M., Pearline, R. V., Cantley, L. C., & Brugge, J. S. (2005). Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Research, 65, 10992–11000.

    Article  CAS  PubMed  Google Scholar 

  48. Miller, M. S., et al. (2014). Structural basis of nSH2 regulation and lipid binding in PI3Kalpha. Oncotarget, 5, 5198–5208.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huang, C. H., Mandelker, D., Gabelli, S. B., & Amzel, L. M. (2008). Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle, 7, 1151–1156.

    Article  CAS  PubMed  Google Scholar 

  50. Mandelker, D., Gabelli, S. B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C. H., Kinzler, K. W., Vogelstein, B., & Amzel, L. M. (2009). A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proceedings of the National Academy of Sciences of the United States of America, 106, 16996–17001.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Miled, N., Yan, Y., Hon, W. C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson, H. J., Backer, J. M., & Williams, R. L. (2007). Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science, 317, 239–242.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao, L., & Vogt, P. K. (2010). Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle, 9, 596–600.

    Article  CAS  PubMed  Google Scholar 

  53. Hatsell, S. J., Idone, V., Wolken, D. M. A., Huang, L., Kim, H. J., Wang, L., Wen, X., Nannuru, K. C., Jimenez, J., Xie, L., Das, N., Makhoul, G., Chernomorsky, R., D’Ambrosio, D., Corpina, R. A., Schoenherr, C. J., Feeley, K., Yu, P. B., Yancopoulos, G. D., Murphy, A. J., & Economides, A. N. (2015). ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Science Translational Medicine, 7, 303ra137–303ra137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haupt, J., Stanley, A., McLeod, C. M., Cosgrove, B. D., Culbert, A. L., Wang, L., Mourkioti, F., Mauck, R. L., & Shore, E. M. (2018). ACVR1R206H FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell (MBoC), 30, 17–29. https://doi.org/10.1091/mbc.E18-05-0311.

    Article  Google Scholar 

  55. Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., Morrison, A., Lewis, P., Bouffet, E., Bartels, U., Zuccaro, J., Agnihotri, S., Ryall, S., Barszczyk, M., Chornenkyy, Y., Bourgey, M., Bourque, G., Montpetit, A., Cordero, F., Castelo-Branco, P., Mangerel, J., Tabori, U., Ho, K. C., Huang, A., Taylor, K. R., Mackay, A., Bendel, A. E., Nazarian, J., Fangusaro, J. R., Karajannis, M. A., Zagzag, D., Foreman, N. K., Donson, A., Hegert, J. V., Smith, A., Chan, J., Lafay-Cousin, L., Dunn, S., Hukin, J., Dunham, C., Scheinemann, K., Michaud, J., Zelcer, S., Ramsay, D., Cain, J., Brennan, C., Souweidane, M. M., Jones, C., Allis, C. D., Brudno, M., Becher, O., & Hawkins, C. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46, 451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Papadopoulos, T., Schemm, R., Grubmüller, H., & Brose, N. (2015). Lipid binding defects and perturbed synaptogenic activity of a collybistin R290H mutant that causes epilepsy and intellectual disability. The Journal of Biological Chemistry, 290, 8256–8270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by a National Institute of Health grant CA197855 (D.L.B.) and startup funds from the University of Notre Dame (K.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane L. Barber.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, K.A., Kisor, K. & Barber, D.L. Intracellular pH dynamics and charge-changing somatic mutations in cancer. Cancer Metastasis Rev 38, 17–24 (2019). https://doi.org/10.1007/s10555-019-09791-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09791-8

Keywords

Navigation