Skip to main content

Advertisement

Log in

Molecular and functional imaging insights into the role of hypoxia in cancer aggression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Hypoxia in cancers has evoked significant interest since 1955 when Thomlinson and Gray postulated the presence of hypoxia in human lung cancers, based on the observation of necrosis occurring at the diffusion limit of oxygen from the nearest blood vessel, and identified the implication of these observations for radiation therapy. Coupled with discoveries in 1953 by Gray and others that anoxic cells were resistant to radiation damage, these observations have led to an entire field of research focused on exploiting oxygenation and hypoxia to improve the outcome of radiation therapy. Almost 65 years later, tumor heterogeneity of nearly every parameter measured including tumor oxygenation, and the dynamic landscape of cancers and their microenvironments are clearly evident, providing a strong rationale for cancer personalized medicine. Since hypoxia is a major cause of extracellular acidosis in tumors, here, we have focused on the applications of imaging to understand the effects of hypoxia in tumors and to target hypoxia in theranostic strategies. Molecular and functional imaging have critically important roles to play in personalized medicine through the detection of hypoxia, both spatially and temporally, and by providing new understanding of the role of hypoxia in cancer aggressiveness. With the discovery of the hypoxia-inducible factor (HIF), the intervening years have also seen significant progress in understanding the transcriptional regulation of hypoxia-induced genes. These advances have provided the ability to silence HIF and understand the associated molecular and functional consequences to expand our understanding of hypoxia and its role in cancer aggressiveness. Most recently, the development of hypoxia-based theranostic strategies that combine detection and therapy are further establishing imaging-based treatment strategies for precision medicine of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dunwoodie, S. L. (2009). The role of hypoxia in development of the mammalian embryo. Developmental Cell, 17(6), 755–773. https://doi.org/10.1016/j.devcel.2009.11.008.

    Article  CAS  PubMed  Google Scholar 

  2. Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. The Journal of Clinical Investigation, 115(3), 500–508. https://doi.org/10.1172/JCI24408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nathan, S. D., Barbera, J. A., Gaine, S. P., Harari, S., Martinez, F. J., Olschewski, H., Olsson, K. M., Peacock, A. J., Pepke-Zaba, J., Provencher, S., Weissmann, N., & Seeger, W. (2018). Pulmonary hypertension in chronic lung disease and hypoxia. The European Respiratory Journal, 53, 1801914. https://doi.org/10.1183/13993003.01914-2018.

    Article  CAS  Google Scholar 

  4. Hong, W. X., Hu, M. S., Esquivel, M., Liang, G. Y., Rennert, R. C., McArdle, A., Paik, K. J., Duscher, D., Gurtner, G. C., Lorenz, H. P., & Longaker, M. T. (2014). The role of hypoxia-inducible factor in wound healing. Advances Wound Care (New Rochelle), 3(5), 390–399. https://doi.org/10.1089/wound.2013.0520.

    Article  Google Scholar 

  5. Maxwell, P. H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., Hankinson, O., Pugh, C. W., & Ratcliffe, P. J. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 94(15), 8104–8109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horsman, M. R., Mortensen, L. S., Petersen, J. B., Busk, M., & Overgaard, J. (2012). Imaging hypoxia to improve radiotherapy outcome. Nature Reviews. Clinical Oncology, 9(12), 674–687. https://doi.org/10.1038/nrclinonc.2012.171.

    Article  CAS  PubMed  Google Scholar 

  7. Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. [review]. Nature Reviews. Cancer, 18(9), 576–585. https://doi.org/10.1038/s41568-018-0030-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Unwith, S., Zhao, H., Hennah, L., & Ma, D. (2015). The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 136(11), 2491–2503. https://doi.org/10.1002/ijc.28889.

    Article  CAS  PubMed  Google Scholar 

  9. Vaupel, P., Kelleher, D. K., & Thews, O. (1998). Modulation of tumor oxygenation. International Journal of Radiation Oncology, Biology, Physics, 42(4), 843–848.

    Article  CAS  PubMed  Google Scholar 

  10. Danhier, F., Danhier, P., Magotteaux, N., De Preter, G., Ucakar, B., Karroum, O., et al. (2012). Electron paramagnetic resonance highlights that the oxygen effect contributes to the radiosensitizing effect of paclitaxel. PLoS One, 7(7), e40772. https://doi.org/10.1371/journal.pone.0040772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toma-Dasu, I., & Dasu, A. (2013). Modelling tumour oxygenation, reoxygenation and implications on treatment outcome. Computational and Mathematical Methods in Medicine, 2013, 141087–141089. https://doi.org/10.1155/2013/141087.

    Article  PubMed  PubMed Central  Google Scholar 

  12. White, D. A., Zhang, Z., Li, L., Gerberich, J., Stojadinovic, S., Peschke, P., & Mason, R. P. (2016). Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response. Cancer Letters, 380(1), 69–77. https://doi.org/10.1016/j.canlet.2016.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Semenza, G. L., & Wang, G. L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology, 12(12), 5447–5454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaelin, W. G., Jr., & Ratcliffe, P. J. (2008). Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Molecular Cell, 30(4), 393–402. https://doi.org/10.1016/j.molcel.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  16. Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1), 43–54.

    Article  CAS  PubMed  Google Scholar 

  17. Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., & Giallongo, A. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(51), 32529–32537.

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, T., Wiesener, M., Bernhardt, W., Eckardt, K. U., & Warnecke, C. (2009). The human HIF (hypoxia-inducible factor)-3 alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochemical Journal, 424, 143–151. https://doi.org/10.1042/Bj20090120.

    Article  CAS  PubMed  Google Scholar 

  19. Koh, M. Y., & Powis, G. (2012). Passing the baton: The HIF switch. Trends in Biochemical Sciences, 37(9), 364–372. https://doi.org/10.1016/j.tibs.2012.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakazawa, M. S., Keith, B., & Simon, M. C. (2016). Oxygen availability and metabolic adaptations. Nature Reviews. Cancer, 16(10), 663–673. https://doi.org/10.1038/nrc.2016.84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., & Keshet, E. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394(6692), 485–490. https://doi.org/10.1038/28867.

    Article  CAS  PubMed  Google Scholar 

  22. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732. https://doi.org/10.1038/nrc1187.

    Article  CAS  PubMed  Google Scholar 

  23. Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., Simons, J. W., & Semenza, G. L. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Research, 60(6), 1541–1545.

    CAS  PubMed  Google Scholar 

  24. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., & Kaelin, W. G. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292(5516), 464–468. https://doi.org/10.1126/science.1059817.

    Article  CAS  PubMed  Google Scholar 

  25. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., & Ratcliffe, P. J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733), 271–275. https://doi.org/10.1038/20459.

    Article  CAS  PubMed  Google Scholar 

  26. Hudson, C. C., Liu, M., Chiang, G. G., Otterness, D. M., Loomis, D. C., Kaper, F., Giaccia, A. J., & Abraham, R. T. (2002). Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Molecular and Cellular Biology, 22(20), 7004–7014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watson, J. A., Watson, C. J., McCann, A., & Baugh, J. (2010). Epigenetics, the epicenter of the hypoxic response. Epigenetics, 5(4), 293–296.

    Article  CAS  PubMed  Google Scholar 

  28. Iommarini, L., Porcelli, A. M., Gasparre, G., & Kurelac, I. (2017). Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Frontiers in Oncology, 7, 286. https://doi.org/10.3389/fonc.2017.00286.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634. https://doi.org/10.1038/onc.2009.441.

    Article  CAS  PubMed  Google Scholar 

  30. Gilkes, D. M., Semenza, G. L., & Wirtz, D. (2014). Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nature Reviews. Cancer, 14(6), 430–439. https://doi.org/10.1038/nrc3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goggins, E., Kakkad, S., Mironchik, Y., Jacob, D., Wildes, F., Krishnamachary, B., & Bhujwalla, Z. M. (2018). Hypoxia inducible factors modify collagen I fibers in MDA-MB-231 triple negative breast cancer xenografts. Neoplasia, 20(2), 131–139. https://doi.org/10.1016/j.neo.2017.11.010.

    Article  CAS  PubMed  Google Scholar 

  32. Kakkad, S. M., Solaiyappan, M., O’Rourke, B., Stasinopoulos, I., Ackerstaff, E., Raman, V., et al. (2010). Hypoxic tumor microenvironments reduce collagen I fiber density. Neoplasia, 12(8), 608–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Penet, M. F., Chen, Z., & Bhujwalla, Z. M. (2011). MRI of metastasis-permissive microenvironments. Future Oncology, 7(11), 1269–1284. https://doi.org/10.2217/fon.11.114.

    Article  PubMed  Google Scholar 

  34. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., & Scott, O. C. A. (1953). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. British Journal of Radiology, 26(312), 638–648. https://doi.org/10.1259/0007-1285-26-312-638.

    Article  CAS  PubMed  Google Scholar 

  35. Corbet, C., & Feron, O. (2017). Tumour acidosis: From the passenger to the driver’s seat. Nature Reviews. Cancer, 17(10), 577–593. https://doi.org/10.1038/nrc.2017.77.

    Article  CAS  PubMed  Google Scholar 

  36. Thews, O., & Riemann, A. (2019). Tumor pH and metastasis: A malignant process beyond hypoxia. Cancer Metastasis Reviews. https://doi.org/10.1007/s10555-018-09777-y.

  37. Damgaci, S., Ibrahim-Hashim, A., Enriquez-Navas, P. M., Pilon-Thomas, S., Guvenis, A., & Gillies, R. J. (2018). Hypoxia and acidosis: Immune suppressors and therapeutic targets. Immunology, 154(3), 354–362. https://doi.org/10.1111/imm.12917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaupel, P., Hockel, M., & Mayer, A. (2007). Detection and characterization of tumor hypoxia using pO(2) histography. Antioxidants & Redox Signaling, 9(8), 1221–1235. https://doi.org/10.1089/ars.2007.1628.

    Article  CAS  Google Scholar 

  39. Stone, H. B., Brown, J. M., Phillips, T. L., & Sutherland, R. M. (1993). Oxygen in human tumors - correlations between methods of measurement and response to therapy - summary of a workshop held November 19-20, 1992, at the National-Cancer-Institute, Bethesda, Maryland. Radiation Research, 136(3), 422–434. https://doi.org/10.2307/3578556.

    Article  CAS  PubMed  Google Scholar 

  40. Challapalli, A., Carroll, L., & Aboagye, E. O. (2017). Molecular mechanisms of hypoxia in cancer. Clinical and Translational Imaging, 5(3), 225–253. https://doi.org/10.1007/s40336-017-0231-1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Colliez, F., Gallez, B., & Jordan, B. F. (2017). Assessing tumor oxygenation for predicting outcome in radiation oncology: A review of studies correlating tumor hypoxic status and outcome in the preclinical and clinical settings. Frontiers in Oncology, 7, 10. https://doi.org/10.3389/Fonc.2017.00010.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhou, H. L., Arias-Ramos, N., Lopez-Larrubia, P., Mason, R. P., Cerdan, S., & Pacheco-Torres, J. (2018). Oxygenation imaging by nuclear magnetic resonance methods. Preclinical Mri: Methods and Protocols, 1718, 297–313. https://doi.org/10.1007/978-1-4939-7531-0_18.

    Article  CAS  Google Scholar 

  43. Krohn, K. A., Link, J. M., & Mason, R. P. (2008). Molecular imaging of hypoxia. Journal of Nuclear Medicine, 49(Suppl 2), 129S–148S. https://doi.org/10.2967/jnumed.107.045914.

    Article  CAS  PubMed  Google Scholar 

  44. Chapman, J. D. (1979). Current concepts in cancer - hypoxic sensitizers - implications for radiation-therapy. New England Journal of Medicine, 301(26), 1429–1432. https://doi.org/10.1056/Nejm197912273012606.

    Article  CAS  PubMed  Google Scholar 

  45. Chapman, J. D., Franko, A. J., & Sharplin, J. (1981). A marker for hypoxic cells in tumors with potential clinical applicability. British Journal of Cancer, 43(4), 546–550. https://doi.org/10.1038/Bjc.1981.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chapman, J. D. (1984). The detection and measurement of hypoxic cells in solid tumors. Cancer, 54(11), 2441–2449. https://doi.org/10.1002/1097-0142(19841201)54:11<2441::Aid-Cncr2820541122>3.0.Co;2-S.

    Article  CAS  PubMed  Google Scholar 

  47. Blasberg, R., Horowitz, M., Strong, J., Molnar, P., Patlak, C., Owens, E., & Fenstermacher, J. (1985). Regional measurements of [C-14] misonidazole distribution and blood-flow in subcutaneous Rt-9 experimental-tumors. Cancer Research, 45(4), 1692–1701.

    CAS  PubMed  Google Scholar 

  48. Rasey, J. S., Grunbaum, Z., Magee, S., Nelson, N. J., Olive, P. L., Durand, R. E., et al. (1987). Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiation Research, 111(2), 292–304. https://doi.org/10.2307/3576986.

    Article  CAS  PubMed  Google Scholar 

  49. Bonnitcha, P., Grieve, S., & Figtree, G. (2018). Clinical imaging of hypoxia: Current status and future directions. Free Radical Biology and Medicine, 126, 296–312. https://doi.org/10.1016/j.freeradbiomed.2018.08.019.

    Article  CAS  PubMed  Google Scholar 

  50. Marcu, L. G., Moghaddasi, L., & Bezak, E. (2018). Imaging of tumor characteristics and molecular pathways with PET: Developments over the last decade toward personalized cancer therapy. International Journal of Radiation Oncology Biology Physics, 102(4), 1165–1182. https://doi.org/10.1016/j.ijrobp.2018.04.055.

    Article  CAS  PubMed  Google Scholar 

  51. Graves, E. E., Hicks, R. J., Binns, D., Bressel, M., Le, Q. T., Peters, L., et al. (2016). Quantitative and qualitative analysis of [(18)F]FDG and [(18)F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome. European Journal of Nuclear Medicine and Molecular Imaging, 43(4), 617–625. https://doi.org/10.1007/s00259-015-3247-7.

    Article  CAS  PubMed  Google Scholar 

  52. Minn, I., Koo, S. M., Lee, H. S., Brummet, M., Rowe, S. P., Gorin, M. A., et al. (2016). [64Cu]XYIMSR-06: A dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma. Oncotarget, 7(35), 56471–56479. https://doi.org/10.18632/oncotarget.10602.

    Article  PubMed  PubMed Central  Google Scholar 

  53. O’Connor, J. P. B., Robinson, S. P., & Waterton, J. C. (2019). Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. The British Journal of Radiology, 20180642. https://doi.org/10.1259/bjr.20180642.

  54. Taylor, N. J., Baddeley, H., Goodchild, K. A., Powell, M. E., Thoumine, M., Culver, L. A., et al. (2001). BOLD MRI of human tumor oxygenation during carbogen breathing. [Research Support, Non-U.S. Gov’t]. Journal of Magnetic Resonance Imaging, 14(2), 156–163.

    Article  CAS  PubMed  Google Scholar 

  55. Hoskin, P. J., Carnell, D. M., Taylor, N. J., Smith, R. E., Stirling, J. J., Daley, F. M., Saunders, M. I., Bentzen, S. M., Collins, D. J., d’Arcy, J. A., & Padhani, A. P. (2007). Hypoxia in prostate cancer: Correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations. [Research Support, Non-U.S. Gov’t]. International Journal of Radiation Oncology, Biology, Physics, 68(4), 1065–1071. https://doi.org/10.1016/j.ijrobp.2007.01.018.

    Article  CAS  PubMed  Google Scholar 

  56. Hallac, R. R., Ding, Y., Yuan, Q., McColl, R. W., Lea, J., Sims, R. D., Weatherall, P. T., & Mason, R. P. (2012). Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T. NMR in Biomedicine, 25(12), 1321–1330. https://doi.org/10.1002/nbm.2804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, L., Weatherall, P. T., McColl, R. W., Tripathy, D., & Mason, R. P. (2013). Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: A pilot study. Journal of Magnetic Resonance Imaging, 37(5), 1083–1092. https://doi.org/10.1002/jmri.23891.

    Article  PubMed  Google Scholar 

  58. Rijpkema, M., Kaanders, J. H., Joosten, F. B., van der Kogel, A. J., & Heerschap, A. (2002). Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging. International Journal of Radiation Oncology, Biology, Physics, 53(5), 1185–1191.

    Article  PubMed  Google Scholar 

  59. Jiang, L., McColl, R., Weatherall, P., Tripathy, D., & Mason, R. P. (2005). Blood oxygenation level dependent (BOLD) contrast MRI for early evaluation of breast cancer chemotherapy. Breast Cancer Research and Treatment, 94, S257–S258.

    Google Scholar 

  60. Zhao, D. W., Pacheco-Torres, J., Hallac, R. R., White, D., Peschke, P., Cerdan, S., et al. (2015). Dynamic oxygen challenge evaluated by NMR T-1 and T-2* - insights into tumor oxygenation. NMR in Biomedicine, 28(8), 937–947. https://doi.org/10.1002/nbm.3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arias-Ramos, N., Pacheco-Torres, J., & López-Larrubia, P. (2019). Magnetic resonance imaging approaches for predicting the response to hyperoxic radiotherapy in glioma-bearing rats. OBM. Neurobiology, 3(1), 18. https://doi.org/10.21926/obm.neurobiol.1901020.

    Article  Google Scholar 

  62. Little, R. A., Jamin, Y., Boult, J. K. R., Naish, J. H., Watson, Y., Cheung, S., Holliday, K. F., Lu, H., McHugh, D. J., Irlam, J., West, C. M. L., Betts, G. N., Ashton, G., Reynolds, A. R., Maddineni, S., Clarke, N. W., Parker, G. J. M., Waterton, J. C., Robinson, S. P., & O’Connor, J. P. B. (2018). Mapping hypoxia in renal carcinoma with oxygen-enhanced MRI: Comparison with intrinsic susceptibility MRI and pathology. Radiology, 288(3), 739–747. https://doi.org/10.1148/radiol.2018171531.

    Article  PubMed  Google Scholar 

  63. Zhou, H. L., Hallac, R. R., Yuan, Q., Ding, Y., Zhang, Z. W., Xie, X. J., et al. (2017). Incorporating oxygen-enhanced MRI into multi-parametric assessment of human prostate cancer. Diagnostics, 7(3), 48. https://doi.org/10.3390/diagnostics7030048.

    Article  CAS  PubMed Central  Google Scholar 

  64. Hectors, S. J., Wagner, M., Bane, O., Besa, C., Lewis, S., Remark, R., et al. (2017). Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Science Reporter, 7, 2452. https://doi.org/10.1038/S41598-017-02706-Z.

    Article  Google Scholar 

  65. Kodibagkar, V. D., Cui, W. N., Merritt, M. E., & Mason, R. P. (2006). Novel H-1 NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magnetic Resonance in Medicine, 55(4), 743–748. https://doi.org/10.1002/mrm.20826.

    Article  CAS  PubMed  Google Scholar 

  66. Mason, R. P., Zhao, D., Pacheco-Torres, J., Cui, W., Kodibagkar, V. D., Gulaka, P. K., et al. (2010). Multimodality imaging of hypoxia in preclinical settings. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 54(3), 259–280.

    CAS  Google Scholar 

  67. Agarwal, S., Shankar, R. V., Inge, L. J., & Kodibagkar, V. (2015). MRI assessment of changes in tumor oxygenation post hypoxia-targeted therapy. Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging, 9417. https://doi.org/10.1117/12.2083926.

  68. Shibata, T., Giaccia, A. J., & Brown, J. M. (2000). Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Therapy, 7(6), 493–498. https://doi.org/10.1038/sj.gt.3301124.

    Article  CAS  PubMed  Google Scholar 

  69. Vordermark, D., Shibata, T., & Brown, J. M. (2001). Green fluorescent protein is a suitable reporter of tumor hypoxia despite an oxygen requirement for chromophore formation. Neoplasia, 3(6), 527–534. https://doi.org/10.1038/sj.neo.7900192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raman, V., Artemov, D., Pathak, A. P., Winnard, P. T., McNutt, S., Yudina, A., et al. (2006). Characterizing vascular parameters in hypoxic regions: A combined magnetic resonance and optical imaging study of a human prostate cancer model. Cancer Research, 66(20), 9929–9936. https://doi.org/10.1158/0008-5472.CAN-06-0886.

    Article  CAS  PubMed  Google Scholar 

  71. Krishnamachary, B., Penet, M. F., Nimmagadda, S., Mironchik, Y., Raman, V., Solaiyappan, M., Semenza, G. L., Pomper, M. G., & Bhujwalla, Z. M. (2012). Hypoxia regulates CD44 and its variant isoforms through HIF-1 alpha in triple negative breast cancer. PLoS One, 7(8), e44078. https://doi.org/10.1371/journal.pone.0044078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Danhier, P., Krishnamachary, B., Bharti, S., Kakkad, S., Mironchik, Y., & Bhujwalla, Z. M. (2015). Combining optical reporter proteins with different half-lives to detect temporal evolution of hypoxia and reoxygenation in tumors. Neoplasia, 17(12), 871–881. https://doi.org/10.1016/j.neo.2015.11.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zackrisson, S., van de Ven, S. M., & Gambhir, S. S. (2014). Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Research, 74(4), 979–1004. https://doi.org/10.1158/0008-5472.CAN-13-2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neuschmelting, V., Burton, N. C., Lockau, H., Urich, A., Harmsen, S., Ntziachristos, V., & Kircher, M. F. (2016). Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics, 4(1), 1–10. https://doi.org/10.1016/j.pacs.2015.12.001.

    Article  PubMed  Google Scholar 

  75. Goh, Y., Balasundaram, G., Moothanchery, M., Attia, A., Li, X. T., Lim, H. Q., et al. (2018). Multispectral optoacoustic tomography in assessment of breast tumor margins during breast-conserving surgery: A first-in-human case study. Clinical Breast Cancer, 18(6), E1247–E1250. https://doi.org/10.1016/j.clbc.2018.07.026.

    Article  PubMed  Google Scholar 

  76. Becker, A., Masthoff, M., Claussen, J., Ford, S. J., Roll, W., Burg, M., Barth, P. J., Heindel, W., Schäfers, M., Eisenblätter, M., & Wildgruber, M. (2018). Multispectral optoacoustic tomography of the human breast: Characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach. European Radiology, 28(2), 602–609. https://doi.org/10.1007/s00330-017-5002-x.

    Article  PubMed  Google Scholar 

  77. Overgaard, J., Overgaard, M., Nielsen, O. S., Pedersen, A. K., & Timothy, A. R. (1982). A comparative investigation of nimorazole and misonidazole as hypoxic radiosensitizers in a C3h mammary-carcinoma Invivo. British Journal of Cancer, 46(6), 904–911. https://doi.org/10.1038/Bjc.1982.300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tap, W., Papai, Z., van Tine, B., Attia, S., Ganjoo, K., Jones, R. L., et al. (2016). Randomized phase 3, multicenter, open-label study comparing evofosfamide (Evo) in combination with doxorubicin (D) vs. D alone in patients (pts) with advanced soft tissue sarcoma (STS): Study TH-CR-406/SARC021. Annals of Oncology, 27. https://doi.org/10.1093/annonc/mdw388.1.

  79. Van Cutsem, E., Lenz, H. J., Furuse, J., Tabernero, J., Heinemann, V., Ioka, T., et al. (2016). Evofosfamide (TH-302) in combination with gemcitabine in previously untreated patients with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma: Primary analysis of the randomized, double-blind phase III MAESTRO study. Journal of Clinical Oncology, 34(4). https://doi.org/10.1200/jco.2016.34.4_suppl.193.

  80. Higgins, J. P., Sarapa, N., Kim, J., & Poma, E. (2018). Unexpected pharmacokinetics of evofosfamide observed in phase III MAESTRO study. Journal of Clinical Oncology, 36(15). https://doi.org/10.1200/Jco.2018.36.15_Suppl.2568.

  81. Haider, S., McIntyre, A., van Stiphout, R. G. P. M., Winchester, L. M., Wigfield, S., Harris, A. L., et al. (2016). Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biology, 17, 140. https://doi.org/10.1186/S13059-016-0999-8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Siano, M., Espeli, V., Mach, N., Bossi, P., Licitra, L., Ghielmini, M., Frattini, M., Canevari, S., & de Cecco, L. (2018). Gene signatures and expression of miRNAs associated with efficacy of panitumumab in a head and neck cancer phase II trial. Oral Oncology, 82, 144–151. https://doi.org/10.1016/j.oraloncology.2018.05.013.

    Article  CAS  PubMed  Google Scholar 

  83. Eustace, A., Mani, N., Span, P. N., Irlam, J. J., Taylor, J., Betts, G. N. J., Denley, H., Miller, C. J., Homer, J. J., Rojas, A. M., Hoskin, P. J., Buffa, F. M., Harris, A. L., Kaanders, J. H. A. M., & West, C. M. L. (2013). A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clinical Cancer Research, 19(17), 4879–4888. https://doi.org/10.1158/1078-0432.CCR-13-0542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salem, A., Asselin, M. C., Reymen, B., Jackson, A., Lambin, P., West, C. M. L., et al. (2018). Targeting hypoxia to improve non-small cell lung cancer outcome. Jnci-Journal of the National Cancer Institute, 110(1), 14–30. https://doi.org/10.1093/jnci/djx160.

    Article  CAS  Google Scholar 

  85. Workman, P., Aboagye, E. O., Chung, Y. L., Griffiths, J. R., Hart, R., Leach, M. O., Maxwell, R. J., McSheehy, P., Price, P. M., Zweit, J., & Cancer Research UK Pharmacodynamic/Pharmacokinetic Technologies Advisory Committee. (2006). Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. Journal of the National Cancer Institute, 98(9), 580–598. https://doi.org/10.1093/jnci/djj162.

    Article  CAS  PubMed  Google Scholar 

  86. Stadlbauer, A., Zimmermann, M., Bennani-Baiti, B., Helbich, T. H., Baltzer, P., Clauser, P., et al. (2018). Development of a non-invasive assessment of hypoxia and neovascularization with magnetic resonance imaging in benign and malignant breast tumors: Initial Results. Molecular Imaging and Biology. https://doi.org/10.1007/s11307-018-1298-4.

  87. Wegner, C. S., Hauge, A., Simonsen, T. G., Gaustad, J. V., Andersen, L. M. K., & Rofstad, E. K. (2018). DCE-MRI of sunitinib-induced changes in tumor microvasculature and hypoxia: A study of pancreatic ductal adenocarcinoma xenografts. [Research Support, Non-U.S. Gov’t]. Neoplasia, 20(7), 734–744. https://doi.org/10.1016/j.neo.2018.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tomaszewski, M. R., Gonzalez, I. Q., O’Connor, J. P., Abeyakoon, O., Parker, G. J., Williams, K. J., Gilbert, F. J., & Bohndiek, S. E. (2017). Oxygen enhanced optoacoustic tomography (OE-OT) reveals vascular dynamics in murine models of prostate cancer. [Research Support, Non-U.S. Gov’t]. Theranostics, 7(11), 2900–2913. https://doi.org/10.7150/thno.19841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kakkad, S. M., Penet, M. F., Akhbardeh, A., Pathak, A. P., Solaiyappan, M., Raman, V., et al. (2013). Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport. Plos One, 8(12), e81869. https://doi.org/10.1371/journal.pone.0081869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Penet, M. F., Kakkad, S., Pathak, A. P., Krishnamachary, B., Mironchik, Y., Raman, V., Solaiyappan, M., & Bhujwalla, Z. M. (2017). Structure and function of a prostate cancer dissemination-permissive extracellular matrix. Clinical Cancer Research, 23(9), 2245–2254. https://doi.org/10.1158/1078-0432.CCR-16-1516.

    Article  CAS  PubMed  Google Scholar 

  91. Bharti, S. K., Kakkad, S., Danhier, P., Wildes, F., Penet, M. F., Krishnamachary, B., & Bhujwalla, Z. M. (2019). Hypoxia patterns in primary and metastatic prostate cancer environments. Neoplasia, 21(2), 239–246. https://doi.org/10.1016/j.neo.2018.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. da Ponte, K. F., Berro, D. H., Collet, S., Constans, J. M., Emery, E., Valable, S., & Guillamo, J. S. (2017). In vivo relationship between hypoxia and angiogenesis in human glioblastoma: A multimodal imaging study. Journal of Nuclear Medicine, 58(10), 1574–1579. https://doi.org/10.2967/jnumed.116.188557.

    Article  CAS  PubMed  Google Scholar 

  93. Ayuso, J. M., Gillette, A., Lugo-Cintron, K., Acevedo-Acevedo, S., Gomez, I., Morgan, M., et al. (2018). Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations. Ebiomedicine, 37, 144–157. https://doi.org/10.1016/j.ebiom.2018.10.046.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shah, T., Krishnamachary, B., Wildes, F., Mironchik, Y., Kakkad, S. M., Jacob, D., et al. (2015). HIF isoforms have divergent effects on invasion, metastasis, metabolism and formation of lipid droplets. Oncotarget, 6(29), 28104–28119. https://doi.org/10.18632/oncotarget.4612.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bharti, S. K., Mironchik, Y., Wildes, F., Penet, M. F., Goggins, E., Krishnamachary, B., et al. (2018). Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget, 9(20), 15326–15339. https://doi.org/10.18632/oncotarget.24569.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(Pt 24), 4195–4200. https://doi.org/10.1242/jcs.023820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Casazza, A., Di Conza, G., Wenes, M., Finisguerra, V., Deschoemaeker, S., & Mazzone, M. (2014). Tumor stroma: A complexity dictated by the hypoxic tumor microenvironment. Oncogene, 33(14), 1743–1754. https://doi.org/10.1038/onc.2013.121.

    Article  CAS  PubMed  Google Scholar 

  98. Guadall, A., Orriols, M., Alcudia, J. F., Cachofeiro, V., Martinez-Gonzalez, J., & Rodriguez, C. (2011). Hypoxia-induced ROS signaling is required for LOX up-regulation in endothelial cells. Frontiers in Bioscience (Elite Edition), 3, 955–967.

    Google Scholar 

  99. Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., et al. (2003). Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Research, 63(5), 1138–1143.

    CAS  PubMed  Google Scholar 

  100. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G., & Amelio, I. (2018). The hypoxic tumour microenvironment. Oncogenesis, 7(1), 10. https://doi.org/10.1038/s41389-017-0011-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Postovit, L. M., Abbott, D. E., Payne, S. L., Wheaton, W. W., Margaryan, N. V., Sullivan, R., Jansen, M. K., Csiszar, K., Hendrix, M. J. C., & Kirschmann, D. A. (2008). Hypoxia/reoxygenation: A dynamic regulator of lysyl oxidase-facilitated breast cancer migration. Journal of Cellular Biochemistry, 103(5), 1369–1378. https://doi.org/10.1002/jcb.21517.

    Article  CAS  PubMed  Google Scholar 

  102. Jiang, D., & Lim, S. Y. (2016). Influence of immune myeloid cells on the extracellular matrix during cancer metastasis. Cancer Microenvironment, 9(1), 45–61. https://doi.org/10.1007/s12307-016-0181-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, Y., Wang, H., Li, J., Entenberg, D., Xue, A., Wang, W., & Condeelis, J. (2016). Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital, 5(2), e1187803. https://doi.org/10.1080/21659087.2016.1187803.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. Bmc Medicine, 4, 38. https://doi.org/10.1186/1741-7015-4-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yan, Y. M., Zuo, X. S., & Wei, D. Y. (2015). Concise review: Emerging role of CD44 in cancer stem cells: A promising biomarker and therapeutic target. Stem Cells Translational Medicine, 4(9), 1033–1043. https://doi.org/10.5966/sctm.2015-0048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Smith, S. J., Diksin, M., Chhaya, S., Sairam, S., Estevez-Cebrero, M. A., & Rahman, R. (2017). The invasive region of glioblastoma defined by 5ALA guided surgery has an altered cancer stem cell marker profile compared to central tumour. International Journal of Molecular Sciences, 18(11), 2452. https://doi.org/10.3390/Ijms18112452.

    Article  PubMed Central  Google Scholar 

  107. Fiaschi, T., Giannoni, E., Taddei, M. L., Cirri, P., Marini, A., Pintus, G., et al. (2013). Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle, 12(11), 1791–1801. https://doi.org/10.4161/cc.24902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scholer-Dahirel, A., Costa, A., & Mechta-Grigoriou, F. (2013). Control of cancer-associated fibroblast function by oxidative stress: A new piece in the puzzle. [Comment]. Cell Cycle, 12(14), 2169. https://doi.org/10.4161/cc.25547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nakao, M., Ishii, G., Nagai, K., Kawase, A., Kenmotsu, H., Kon-No, H., et al. (2009). Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. [Research Support, Non-U.S. Gov’t]. Cancer, 115(12), 2732–2743. https://doi.org/10.1002/cncr.24303.

    Article  CAS  PubMed  Google Scholar 

  110. Nakamura, H., Ichikawa, T., Nakasone, S., Miyoshi, T., Sugano, M., Kojima, M., Fujii, S., Ochiai, A., Kuwata, T., Aokage, K., Suzuki, K., Tsuboi, M., & Ishii, G. (2018). Abundant tumor promoting stromal cells in lung adenocarcinoma with hypoxic regions. Lung Cancer, 115, 56–63. https://doi.org/10.1016/j.lungcan.2017.11.013.

    Article  PubMed  Google Scholar 

  111. Lee, S. H., Mcintyre, D., Honess, D., Hulikova, A., Pacheco-Torres, J., Cerdan, S., et al. (2018). Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. British Journal of Cancer, 119(5), 622–630. https://doi.org/10.1038/s41416-018-0216-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ray, K. J., Simard, M. A., Larkin, J. R., Coates, J., Kinchesh, P., Smart, S. C., Higgins, G. S., Chappell, M., & Sibson, N. (2019). Tumour pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-18-2168.

  113. Bhujwalla, Z. M., Kakkad, S., Chen, Z., Jin, J., Hapuarachchige, S., Artemov, D., & Penet, M. F. (2018). Theranostics and metabolotheranostics for precision medicine in oncology. Journal of Magnetic Resonance, 291, 141–151. https://doi.org/10.1016/j.jmr.2018.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Song, G., Cheng, L., Chao, Y., Yang, K., & Liu, Z. (2017). Emerging nanotechnology and advanced materials for cancer radiation therapy. [Review]. Adv Mater, 29(32). https://doi.org/10.1002/adma.201700996.

  115. Lau, J., Lin, K. S., & Benard, F. (2017). Past, present, and future: Development of theranostic agents targeting carbonic anhydrase IX. [Review Research Support, Non-U.S. Gov’t]. Theranostics, 7(17), 4322–4339. https://doi.org/10.7150/thno.21848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Iikuni, S., Ono, M., Watanabe, H., Shimizu, Y., Sano, K., & Saji, H. (2018). Cancer radiotheranostics targeting carbonic anhydrase-IX with (111)In- and (90)Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics, 8(11), 2992–3006. https://doi.org/10.7150/thno.20982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, Y., Bian, X., Aliru, M., Deorukhkar, A. A., Ekpenyong, O., Liang, S., et al. (2018). Hypoxia-targeted gold nanorods for cancer photothermal therapy. Oncotarget, 9(41), 26556–26571. https://doi.org/10.18632/oncotarget.25492.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Alsaab, H. O., Sau, S., Alzhrani, R. M., Cheriyan, V. T., Polin, L. A., Vaishampayan, U., Rishi, A. K., & Iyer, A. K. (2018). Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials, 183, 280–294. https://doi.org/10.1016/j.biomaterials.2018.08.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Meng, X. Q., Zhang, J. L., Sun, Z. H., Zhou, L. H., Deng, G. J., Li, S. P., et al. (2018). Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics, 8(21), 6025–6034. https://doi.org/10.7150/thno.26607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hua, L., Wang, Z., Zhao, L., Mao, H., Wang, G., Zhang, K., Liu, X., Wu, D., Zheng, Y., Lu, J., Yu, R., & Liu, H. (2018). Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics, 8(18), 5088–5105. https://doi.org/10.7150/thno.26225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feng, L., Cheng, L., Dong, Z., Tao, D., Barnhart, T. E., Cai, W., Chen, M., & Liu, Z. (2017). Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano, 11(1), 927–937. https://doi.org/10.1021/acsnano.6b07525.

    Article  CAS  PubMed  Google Scholar 

  122. Chen, Z. H., Penet, M. F., Krishnamachary, B., Banerjee, S. R., Pomper, M. G., & Bhujwalla, Z. M. (2016). PSMA-specific theranostic nanoplex for combination of TRAIL gene and 5-FC prodrug therapy of prostate cancer. Biomaterials, 80, 57–67. https://doi.org/10.1016/j.biomaterials.2015.11.048.

    Article  CAS  PubMed  Google Scholar 

  123. Hsiao, H. T., Xing, L. G., Deng, X. L., Sun, X. R., Ling, C. C., & Li, G. C. (2014). Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells. Oncology Reports, 32(2), 723–729. https://doi.org/10.3892/or.2014.3238.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kumar, D., New, J., Vishwakarma, V., Joshi, R., Enders, J., Lin, F. C., et al. (2018). Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Research, 78(14), 3769–3782. https://doi.org/10.1158/0008-5472.CAN-17-1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kashima, H., Noma, K., Ohara, T., Kato, T., Katsura, Y., Komoto, S., Sato, H., Katsube, R., Ninomiya, T., Tazawa, H., Shirakawa, Y., & Fujiwara, T. (2019). Cancer-associated fibroblasts (CAFs) promote the lymph node metastasis of esophageal squamous cell carcinoma. International Journal of Cancer, 144(4), 828–840. https://doi.org/10.1002/ijc.31953.

    Article  CAS  PubMed  Google Scholar 

  126. Donnarumma, E., Fiore, D., Nappa, M., Roscigno, G., Adamo, A., Iaboni, M., et al. (2017). Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget, 8(12), 19592–19608. https://doi.org/10.18632/oncotarget.14752.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Paidi, S. K., Rizwan, A., Zheng, C., Cheng, M. L., Glunde, K., & Barman, I. (2017). Label-free Raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer. Cancer Research, 77(2), 247–256. https://doi.org/10.1158/0008-5472.CAN-16-1862.

    Article  CAS  PubMed  Google Scholar 

  128. Napel, S., Mu, W., Jardim-Perassi, B. V., Aerts, H. J. W. L., & Gillies, R. J. (2018). Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer, 124(24), 4633–4649. https://doi.org/10.1002/cncr.31630.

    Article  PubMed  Google Scholar 

  129. Stasinopoulos, I., Penet, M. F., Krishnamachary, B., & Bhujwalla, Z. M. (2010). Molecular and functional imaging of invasion and metastasis: Windows into the metastatic cascade. Cancer Biomarkers, 7(4), 173–188. https://doi.org/10.3233/CBM-2010-0188.

    Article  CAS  PubMed  Google Scholar 

  130. Seong, J., Tajik, A., Sun, J., Guan, J. L., Humphries, M. J., Craig, S. E., Shekaran, A., Garcia, A. J., Lu, S., Lin, M. Z., Wang, N., & Wang, Y. (2013). Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19372–19377. https://doi.org/10.1073/pnas.1307405110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Polacheck, W. J., Zervantonakis, I. K., & Kamm, R. D. (2013). Tumor cell migration in complex microenvironments. Cellular and Molecular Life Sciences, 70(8), 1335–1356. https://doi.org/10.1007/s00018-012-1115-1.

    Article  CAS  PubMed  Google Scholar 

  132. Sulzmaier, F. J., Jean, C., & Schlaepfer, D. D. (2014). FAK in cancer: Mechanistic findings and clinical applications. Nature Reviews. Cancer, 14(9), 598–610. https://doi.org/10.1038/nrc3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yoon, H., Dehart, J. P., Murphy, J. M., & Lim, S. T. (2015). Understanding the roles of FAK in cancer: Inhibitors, genetic models, and new insights. The Journal of Histochemistry and Cytochemistry, 63(2), 114–128. https://doi.org/10.1369/0022155414561498.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge valuable discussions with Dr. R. J. Gillies over the past two decades.

Funding

Support from NIH R01 CA82337, R01 CA136576, R01 CA193365, and R35 CA209960 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaver M. Bhujwalla.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkad, S., Krishnamachary, B., Jacob, D. et al. Molecular and functional imaging insights into the role of hypoxia in cancer aggression. Cancer Metastasis Rev 38, 51–64 (2019). https://doi.org/10.1007/s10555-019-09788-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09788-3

Keywords

Navigation