Skip to main content

Advertisement

Log in

Extracellular acidity and increased exosome release as key phenotypes of malignant tumors

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating “liquid biopsies”. The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Taylor, S., Spugnini, E. P., Assaraf, Y. G., Azzarito, T., Rauch, C., & Fais, S. (2015). Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resistance Updates, 23, 69–78. https://doi.org/10.1016/j.drup.2015.08.004.

    Article  PubMed  Google Scholar 

  2. Spugnini, E. P., Sonveaux, P., Stock, C., Perez-Sayans, M., De Milito, A., Avnet, S., … Fais, S. (2015). Proton channels and exchangers in cancer. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(10), 2715–2726. doi:https://doi.org/10.1016/j.bbamem.2014.10.015.

  3. Spugnini, E., & Fais, S. (2017). Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Seminars in Cancer Biology, 43, 111–118. https://doi.org/10.1016/j.semcancer.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  4. Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–1454. https://doi.org/10.1093/jnci/djm135.

    Article  CAS  PubMed  Google Scholar 

  5. Fais, S., Venturi, G., & Gatenby, B. (2014). Microenvironmental acidosis in carcinogenesis and metastases: New strategies in prevention and therapy. Cancer and Metastasis Reviews, 33(4), 1095–1108. https://doi.org/10.1007/s10555-014-9531-3.

    Article  CAS  PubMed  Google Scholar 

  6. Gillies, R. J., & Gatenby, R. A. (2015). Metabolism and its sequelae in Cancer evolution and therapy. The Cancer Journal, 21(2), 88–96. https://doi.org/10.1097/PPO.0000000000000102.

    Article  CAS  PubMed  Google Scholar 

  7. Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: A perfect storm for cancer progression. Nature Reviews Cancer, 11(9), 671–677. https://doi.org/10.1038/nrc3110.

    Article  CAS  PubMed  Google Scholar 

  8. Reshkin, S. J., Cardone, R. A., & Harguindey, S. (2013). Na+-H+ exchanger, pH regulation and cancer. Recent Patents on Anti-Cancer Drug Discovery, 8(1), 85–99.

    Article  CAS  Google Scholar 

  9. Amith, S. R., & Fliegel, L. (2013). Regulation of the Na+/H+ exchanger (NHE1) in breast Cancer metastasis. Cancer Research, 73(4), 1259–1264. https://doi.org/10.1158/0008-5472.CAN-12-4031.

    Article  CAS  PubMed  Google Scholar 

  10. White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130(4), 663–669. https://doi.org/10.1242/jcs.195297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vaupel, P., & Multhoff, G. (2017). Accomplices of the hypoxic tumor microenvironment compromising antitumor immunity: Adenosine, lactate, acidosis, vascular endothelial growth factor, potassium ions, and phosphatidylserine. Frontiers in Immunology, 8, 1887. https://doi.org/10.3389/fimmu.2017.01887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Multhoff, G., Radons, J., & Vaupel, P. (2014). Critical role of aberrant angiogenesis in the development of tumor hypoxia and associated Radioresistance. Cancers, 6(2), 813–828. https://doi.org/10.3390/cancers6020813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mayer, A., & Vaupel, P. (2013). Hypoxia, lactate accumulation, and acidosis: Siblings or accomplices driving tumor progression and resistance to therapy? In S. Van Huffel, G. Naulaers, A. Caicedo, D. F. Bruley, & D. K. Harrison (Eds.), Oxygen transport to tissue XXXV (Vol. 789, pp. 203–209). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-7411-1_28.

    Chapter  Google Scholar 

  14. Vaupel, P., & Multhoff, G. (2018). Hypoxia-/HIF-1α-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression. In O. Thews, J. C. LaManna, & D. K. Harrison (Eds.), Oxygen transport to tissue XL (Vol. 1072, pp. 171–175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-91287-5_27.

    Chapter  Google Scholar 

  15. Parks, S. K., & Pouysségur, J. (2017). Targeting pH regulating proteins for cancer therapy–Progress and limitations. Seminars in Cancer Biology, 43, 66–73. https://doi.org/10.1016/j.semcancer.2017.01.007.

    Article  CAS  PubMed  Google Scholar 

  16. Granja, S., Tavares-Valente, D., Queirós, O., & Baltazar, F. (2017). Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Seminars in Cancer Biology, 43, 17–34. https://doi.org/10.1016/j.semcancer.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  17. Pathria, G., Scott, D. A., Feng, Y., Sang Lee, J., Fujita, Y., Zhang, G., Sahu, A. D., Ruppin, E., Herlyn, M., Osterman, A. L., & Ronai, Z. A. (2018). Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. The EMBO Journal, 37(20), e99735. https://doi.org/10.15252/embj.201899735.

    Article  CAS  PubMed  Google Scholar 

  18. Masson, N., & Ratcliffe, P. J. (2014). Hypoxia signaling pathways in cancer metabolism: The importance of co-selecting interconnected physiological pathways. Cancer & Metabolism, 2(1), 3. https://doi.org/10.1186/2049-3002-2-3.

    Article  Google Scholar 

  19. Tiburcio, P. D., Choi, H., & Huang, L. E. (2014). Complex role of HIF in cancer: The known, the unknown and the unexpected. Hypoxia (Auckland, N.Z.), 2, 59–70. https://doi.org/10.2147/HP.S50651.

    Article  Google Scholar 

  20. Semenza, G. L. (2013). HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. Journal of Clinical Investigation, 123(9), 3664–3671. https://doi.org/10.1172/JCI67230.

    Article  CAS  PubMed  Google Scholar 

  21. Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., … Dang, C. V. (1997). C-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6658–6663.

  22. Stubbs, M., & Griffiths, J. R. (2010). The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Advances in Enzyme Regulation, 50(1), 44–55. https://doi.org/10.1016/j.advenzreg.2009.10.027.

    Article  PubMed  Google Scholar 

  23. Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nature Reviews Cancer, 18(9), 576–585. https://doi.org/10.1038/s41568-018-0030-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iessi, E., Logozzi, M., Mizzoni, D., Di Raimo, R., Supuran, C., & Fais, S. (2017). Rethinking the combination of proton exchanger inhibitors in Cancer therapy. Metabolites, 8(1), 2. https://doi.org/10.3390/metabo8010002.

    Article  CAS  PubMed Central  Google Scholar 

  25. Fais, S. (2016). A nonmainstream approach against cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 882–889. https://doi.org/10.3109/14756366.2016.1156105.

    Article  CAS  PubMed  Google Scholar 

  26. Lozupone, F., & Fais, S. (2015). Cancer cell cannibalism: A primeval option to survive. Current Molecular Medicine, 15(9), 836–841.

    Article  CAS  Google Scholar 

  27. Fais, S., & Overholtzer, M. (2018). Cell-in-cell phenomena, cannibalism, and autophagy: Is there a relationship? Cell Death & Disease, 9(2), 95. https://doi.org/10.1038/s41419-017-0111-7.

    Article  CAS  Google Scholar 

  28. Fais, S., & Overholtzer, M. (2018). Cell-in-cell phenomena in cancer. Nature Reviews Cancer, 18(12), 758–766. https://doi.org/10.1038/s41568-018-0073-9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, H., Achreja, A., Iessi, E., Logozzi, M., Mizzoni, D., Di Raimo, R., et al. (2018). The key role of extracellular vesicles in the metastatic process. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1869(1), 64–77. https://doi.org/10.1016/j.bbcan.2017.11.005.

    Article  CAS  Google Scholar 

  30. Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., García-Santos, G., Ghajar, C. M., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B. A., Callahan, M. K., Yuan, J., Martins, V. R., Skog, J., Kaplan, R. N., Brady, M. S., Wolchok, J. D., Chapman, P. B., Kang, Y., Bromberg, J., & Lyden, D. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891. https://doi.org/10.1038/nm.2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nogués, L., Benito-Martin, A., Hergueta-Redondo, M., & Peinado, H. (2018). The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Molecular Aspects of Medicine, 60, 15–26. https://doi.org/10.1016/j.mam.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  32. Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., Bissell, M. J., Cox, T. R., Giaccia, A. J., Erler, J. T., Hiratsuka, S., Ghajar, C. M., & Lyden, D. (2017). Pre-metastatic niches: Organ-specific homes for metastases. Nature Reviews Cancer, 17(5), 302–317. https://doi.org/10.1038/nrc.2017.6.

    Article  CAS  PubMed  Google Scholar 

  33. Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., & Lyden, D. (2016). Extracellular vesicles in Cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 30(6), 836–848. https://doi.org/10.1016/j.ccell.2016.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brinton, L. T., Sloane, H. S., Kester, M., & Kelly, K. A. (2015). Formation and role of exosomes in cancer. Cellular and Molecular Life Sciences, 72(4), 659–671. https://doi.org/10.1007/s00018-014-1764-3.

    Article  CAS  PubMed  Google Scholar 

  35. Spugnini, E., Logozzi, M., Di Raimo, R., Mizzoni, D., & Fais, S. (2018). A role of tumor-released exosomes in paracrine dissemination and metastasis. International Journal of Molecular Sciences, 19(12), 3968. https://doi.org/10.3390/ijms19123968.

    Article  PubMed Central  Google Scholar 

  36. Logozzi, M., Mizzoni, D., Angelini, D., Di Raimo, R., Falchi, M., Battistini, L., & Fais, S. (2018). Microenvironmental pH and exosome levels interplay in human Cancer cell lines of different Histotypes. Cancers, 10(10), 370. https://doi.org/10.3390/cancers10100370.

    Article  PubMed Central  Google Scholar 

  37. Fais, S., Logozzi, M., Lugini, L., Federici, C., Azzarito, T., Zarovni, N., & Chiesi, A. (2013). Exosomes: The ideal nanovectors for biodelivery. Biological Chemistry, 394(1), 1–15. https://doi.org/10.1515/hsz-2012-0236.

    Article  CAS  PubMed  Google Scholar 

  38. Yáñez-Mó, M., Siljander, P. R.-M., Andreu, Z., Bedina Zavec, A., Borràs, F. E., Buzas, E. I., et al. (2015). Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4(1), 27066. https://doi.org/10.3402/jev.v4.27066.

    Article  PubMed  Google Scholar 

  39. Luan, X., Sansanaphongpricha, K., Myers, I., Chen, H., Yuan, H., & Sun, D. (2017). Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 38(6), 754–763. https://doi.org/10.1038/aps.2017.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ohno, S., Ishikawa, A., & Kuroda, M. (2013). Roles of exosomes and microvesicles in disease pathogenesis. Advanced Drug Delivery Reviews, 65(3), 398–401. https://doi.org/10.1016/j.addr.2012.07.019.

    Article  CAS  PubMed  Google Scholar 

  41. Iraci, N., Leonardi, T., Gessler, F., Vega, B., & Pluchino, S. (2016). Focus on extracellular vesicles: Physiological role and Signalling properties of extracellular membrane vesicles. International Journal of Molecular Sciences, 17(2), 171. https://doi.org/10.3390/ijms17020171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lodillinsky, C., Podsypanina, K., & Chavrier, P. (2016). Social networking in tumor cell communities is associated with increased aggressiveness. IntraVital, 5(1), e1112476. https://doi.org/10.1080/21659087.2015.1112476.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., … Fais, S. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. Journal of Biological Chemistry, 284(49), 34211–34222. doi:https://doi.org/10.1074/jbc.M109.041152.

  44. Naito, Y., Yoshioka, Y., Yamamoto, Y., & Ochiya, T. (2017). How cancer cells dictate their microenvironment: Present roles of extracellular vesicles. Cellular and Molecular Life Sciences, 74(4), 697–713. https://doi.org/10.1007/s00018-016-2346-3.

    Article  CAS  PubMed  Google Scholar 

  45. Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010). Secretory mechanisms and intercellular transfer of MicroRNAs in living cells. Journal of Biological Chemistry, 285(23), 17442–17452. https://doi.org/10.1074/jbc.M110.107821.

    Article  CAS  PubMed  Google Scholar 

  46. Cruz, L., Romero, J. A. A., Iglesia, R. P., & Lopes, M. H. (2018). Extracellular vesicles: Decoding a new language for cellular communication in early embryonic development. Frontiers in Cell and Developmental Biology, 6, 94. https://doi.org/10.3389/fcell.2018.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gallala, H. D., & Sandhoff, K. (2011). Biological function of the cellular lipid BMP—BMP as a key activator for cholesterol sorting and membrane digestion. Neurochemical Research, 36(9), 1594–1600. https://doi.org/10.1007/s11064-010-0337-6.

    Article  CAS  PubMed  Google Scholar 

  48. Camussi, G., Deregibus, M.-C., Bruno, S., Grange, C., Fonsato, V., & Tetta, C. (2011). Exosome/microvesicle-mediated epigenetic reprogramming of cells. American Journal of Cancer Research, 1(1), 98–110.

    PubMed  Google Scholar 

  49. Antonyak, M. A., & Cerione, R. A. (2014). Microvesicles as mediators of intercellular communication in Cancer. In M. Robles-Flores (Ed.), Cancer Cell Signaling (Vol. 1165, pp. 147–173). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-0856-1_11.

    Chapter  Google Scholar 

  50. Leal, A. C., Mizurini, D. M., Gomes, T., Rochael, N. C., Saraiva, E. M., Dias, M. S., Werneck, C. C., Sielski, M. S., Vicente, C. P., & Monteiro, R. Q. (2017). Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of Cancer-associated thrombosis. Scientific Reports, 7(1), 6438. https://doi.org/10.1038/s41598-017-06893-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiménez-Alcázar, M., Kim, N., & Fuchs, T. A. (2017). Circulating extracellular DNA: Cause or consequence of thrombosis? Seminars in Thrombosis and Hemostasis, 43(6), 553–561. https://doi.org/10.1055/s-0036-1597284.

    Article  CAS  PubMed  Google Scholar 

  52. Cui, J., Li, Q., Luo, M., Zhong, Z., Zhou, S., Jiang, L., Shen, N., Geng, Z., Cheng, H., Meng, L., Yi, S., Sun, H., Wu, F., Zhu, Z., Zou, P., You, Y., Guo, A. Y., & Zhu, X. (2018). Leukemia cell-derived microvesicles induce T cell exhaustion via miRNA delivery. Oncoimmunology, 7(7), e1448330. https://doi.org/10.1080/2162402X.2018.1448330.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Almiñana, C., Tsikis, G., Labas, V., Uzbekov, R., da Silveira, J. C., Bauersachs, S., & Mermillod, P. (2018). Deciphering the oviductal extracellular vesicles content across the estrous cycle: Implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics, 19(1), 622. https://doi.org/10.1186/s12864-018-4982-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Felicetti, F., De Feo, A., Coscia, C., Puglisi, R., Pedini, F., Pasquini, L., … Carè, A. (2016). Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. Journal of Translational Medicine, 14, 56. doi:https://doi.org/10.1186/s12967-016-0811-2.

  55. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659. https://doi.org/10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  56. Hannafon, B. N., & Ding, W.-Q. (2013). Intercellular communication by exosome-derived microRNAs in cancer. International Journal of Molecular Sciences, 14(7), 14240–14269. https://doi.org/10.3390/ijms140714240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: Small particle, big player. Journal of Hematology & Oncology, 8, 83. https://doi.org/10.1186/s13045-015-0181-x.

    Article  CAS  Google Scholar 

  58. Whiteside, T. L. (2016). Tumor-derived exosomes and their role in Cancer progression. Advances in Clinical Chemistry, 74, 103–141. https://doi.org/10.1016/bs.acc.2015.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, W., Gao, Y., Li, N., Shao, F., Wang, C., Wang, P., Yang, Z., Li, R., & He, J. (2017). Exosomes: New players in cancer (review). Oncology Reports, 38(2), 665–675. https://doi.org/10.3892/or.2017.5714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Z., Chen, J.-Q., Liu, J.-L., & Tian, L. (2016). Exosomes in tumor microenvironment: Novel transporters and biomarkers. Journal of Translational Medicine, 14(1), 297. https://doi.org/10.1186/s12967-016-1056-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kahlert, C., & Kalluri, R. (2013). Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine (Berlin, Germany), 91(4), 431–437. https://doi.org/10.1007/s00109-013-1020-6.

    Article  CAS  Google Scholar 

  62. Jiang, X., Hu, S., Liu, Q., Qian, C., Liu, Z., & Luo, D. (2017). Exosomal microRNA remodels the tumor microenvironment. PeerJ, 5, e4196. https://doi.org/10.7717/peerj.4196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Federici, C., Petrucci, F., Caimi, S., Cesolini, A., Logozzi, M., Borghi, M., D'Ilio, S., Lugini, L., Violante, N., Azzarito, T., Majorani, C., Brambilla, D., & Fais, S. (2014). Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One, 9(2), e88193. https://doi.org/10.1371/journal.pone.0088193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luciani, F., Spada, M., De Milito, A., Molinari, A., Rivoltini, L., Montinaro, A., et al. (2004). Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. Journal of the National Cancer Institute, 96(22), 1702–1713. https://doi.org/10.1093/jnci/djh305.

    Article  CAS  PubMed  Google Scholar 

  65. De Milito, A., Canese, R., Marino, M. L., Borghi, M., Iero, M., Villa, A., et al. (2010). pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. International Journal of Cancer, 127(1), 207–219. https://doi.org/10.1002/ijc.25009.

    Article  CAS  PubMed  Google Scholar 

  66. Azzarito, T., Venturi, G., Cesolini, A., & Fais, S. (2015). Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma. Cancer Letters, 356(2), 697–703. https://doi.org/10.1016/j.canlet.2014.10.017.

    Article  CAS  PubMed  Google Scholar 

  67. Federici, C., Lugini, L., Marino, M. L., Carta, F., Iessi, E., Azzarito, T., Supuran, C. T., & Fais, S. (2016). Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup1), 119–125. https://doi.org/10.1080/14756366.2016.1177525.

    Article  CAS  PubMed  Google Scholar 

  68. Canitano, A., Iessi, E., Spugnini, E. P., Federici, C., & Fais, S. (2016). Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma. Cancer Letters, 376(2), 278–283. https://doi.org/10.1016/j.canlet.2016.04.015.

    Article  CAS  PubMed  Google Scholar 

  69. Logozzi, M., Angelini, D. F., Iessi, E., Mizzoni, D., Di Raimo, R., Federici, C., … Fais, S. (2017). Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Letters, 403, 318–329. doi:https://doi.org/10.1016/j.canlet.2017.06.036.

  70. Oosthuyzen, W., Sime, N. E. L., Ivy, J. R., Turtle, E. J., Street, J. M., Pound, J., et al. (2013). Quantification of human urinary exosomes by nanoparticle tracking analysis: Nanoparticle tracking analysis and exosomes. The Journal of Physiology, 591(23), 5833–5842. https://doi.org/10.1113/jphysiol.2013.264069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, W., Peng, P., Kuang, Y., Yang, J., Cao, D., You, Y., & Shen, K. (2016). Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(3), 4213–4221. https://doi.org/10.1007/s13277-015-4105-8.

    Article  CAS  Google Scholar 

  72. Hisey, C. L., Dorayappan, K. D. P., Cohn, D. E., Selvendiran, K., & Hansford, D. J. (2018). Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes. Lab on a Chip, 18(20), 3144–3153. https://doi.org/10.1039/c8lc00834e.

    Article  CAS  PubMed  Google Scholar 

  73. Ren, J., Ding, L., Zhang, D., Shi, G., Xu, Q., Shen, S., Wang, Y., Wang, T., & Hou, Y. (2018). Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 8(14), 3932–3948. https://doi.org/10.7150/thno.25541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., et al. (2012). Modulation of microenvironment acidity reverses Anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Research, 72(11), 2746–2756. https://doi.org/10.1158/0008-5472.CAN-11-1272.

    Article  PubMed  Google Scholar 

  75. Lugini, L., Valtieri, M., Federici, C., Cecchetti, S., Meschini, S., Condello, M., Signore, M., & Fais, S. (2016). Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget, 7(31), 50086–50098. https://doi.org/10.18632/oncotarget.10574.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li, X., Seebacher, N. A., Hornicek, F. J., Xiao, T., & Duan, Z. (2018). Application of liquid biopsy in bone and soft tissue sarcomas: Present and future. Cancer Letters, 439, 66–77. https://doi.org/10.1016/j.canlet.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  77. Miki, Y., Yashiro, M., Okuno, T., Kuroda, K., Togano, S., Hirakawa, K., & Ohira, M. (2018). Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PLoS One, 13(9), e0202956. https://doi.org/10.1371/journal.pone.0202956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kobayashi, M., Sawada, K., Nakamura, K., Yoshimura, A., Miyamoto, M., Shimizu, A., Ishida, K., Nakatsuka, E., Kodama, M., Hashimoto, K., Mabuchi, S., & Kimura, T. (2018). Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. Journal of Ovarian Research, 11(1), 81. https://doi.org/10.1186/s13048-018-0458-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng, H., Zhan, Y., Liu, S., Lu, J., Luo, J., Feng, J., & Fan, S. (2018). The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. Journal of experimental & clinical cancer research: CR, 37(1), 226. https://doi.org/10.1186/s13046-018-0901-5.

    Article  CAS  Google Scholar 

  80. Hu, C., Chen, M., Jiang, R., Guo, Y., Wu, M., & Zhang, X. (2018). Exosome-related tumor microenvironment. Journal of Cancer, 9(17), 3084–3092. https://doi.org/10.7150/jca.26422.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang, J., Zhang, H., Zhou, X., Wang, T., Zhang, J., Zhu, W., Zhu, H., & Cheng, W. (2018). Five serum-based miRNAs were identified as potential diagnostic biomarkers in gastric cardia adenocarcinoma. Cancer Biomarkers: Section A of Disease Markers, 23(2), 193–203. https://doi.org/10.3233/CBM-181258.

    Article  CAS  PubMed  Google Scholar 

  82. Barbagallo, C., Brex, D., Caponnetto, A., Cirnigliaro, M., Scalia, M., Magnano, A., Caltabiano, R., Barbagallo, D., Biondi, A., Cappellani, A., Basile, F., di Pietro, C., Purrello, M., & Ragusa, M. (2018). LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Molecular Therapy. Nucleic Acids, 12, 229–241. https://doi.org/10.1016/j.omtn.2018.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiao, Y., Li, Y., Yuan, Y., Liu, B., Pan, S., Liu, Q., et al. (2018). The potential of exosomes derived from colorectal cancer as a biomarker. Clinica Chimica Acta; International Journal of Clinical Chemistry, 490, 186–193. https://doi.org/10.1016/j.cca.2018.09.007.

    Article  CAS  PubMed  Google Scholar 

  84. Shao, Y., Chen, T., Zheng, X., Yang, S., Xu, K., Chen, X., Xu, F., Wang, L., Shen, Y., Wang, T., Zhang, M., Hu, W., Ye, C., Yu, X. F., Shao, J., & Zheng, S. (2018). Colorectal Cancer-derived small extracellular vesicles establish an inflammatory pre-metastatic niche in liver metastasis. Carcinogenesis, 39, 1368–1379. https://doi.org/10.1093/carcin/bgy115.

    Article  CAS  PubMed  Google Scholar 

  85. Xu, Z.-H., Miao, Z.-W., Jiang, Q.-Z., Gan, D.-X., Wei, X.-G., Xue, X.-Z., et al. (2018). Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 5, fj201800428R. https://doi.org/10.1096/fj.201800428R.

    Article  Google Scholar 

  86. Liu, B., & Pilarsky, C. (2018). Analysis of DNA Hypermethylation in pancreatic Cancer using methylation-specific PCR and bisulfite sequencing. Methods in Molecular Biology (Clifton, N.J.), 1856, 269–282. https://doi.org/10.1007/978-1-4939-8751-1_16.

    Article  Google Scholar 

  87. Peng, Z.-Y., Gu, R.-H., & Yan, B. (2018). Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. Journal of Cellular Biochemistry, 120, 1457–1463. https://doi.org/10.1002/jcb.27291.

    Article  CAS  Google Scholar 

  88. Jiao, Y.-J., Jin, D.-D., Jiang, F., Liu, J.-X., Qu, L.-S., Ni, W.-K., et al. (2018). Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. Journal of Cellular Biochemistry, 120, 988–999. https://doi.org/10.1002/jcb.27465.

    Article  CAS  PubMed  Google Scholar 

  89. Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M., … Fais, S. (2009). High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One, 4(4), e5219. doi:https://doi.org/10.1371/journal.pone.0005219.

  90. Ni, Q., Stevic, I., Pan, C., Müller, V., Oliviera-Ferrer, L., Pantel, K., & Schwarzenbach, H. (2018). Different signatures of miR-16, miR-30b and miR-93 in exosomes from breast cancer and DCIS patients. Scientific Reports, 8(1), 12974. https://doi.org/10.1038/s41598-018-31108-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boussadia, Z., Lamberti, J., Mattei, F., Pizzi, E., Puglisi, R., Zanetti, C., Pasquini, L., Fratini, F., Fantozzi, L., Felicetti, F., Fecchi, K., Raggi, C., Sanchez, M., D’Atri, S., Carè, A., Sargiacomo, M., & Parolini, I. (2018). Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules. Journal of Experimental & Clinical Cancer Research, 37(1), 245. https://doi.org/10.1186/s13046-018-0915-z.

    Article  CAS  Google Scholar 

  92. Ban, J.-J., Lee, M., Im, W., & Kim, M. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communications, 461(1), 76–79. https://doi.org/10.1016/j.bbrc.2015.03.172.

    Article  CAS  PubMed  Google Scholar 

  93. King, H. W., Michael, M. Z., & Gleadle, J. M. (2012). Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 12, 421. https://doi.org/10.1186/1471-2407-12-421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal stem cells: Key players in cancer progression. Molecular Cancer, 16(1), 31. https://doi.org/10.1186/s12943-017-0597-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., Squarcina, P., Accornero, P., Lozupone, F., Lugini, L., Stringaro, A., Molinari, A., Arancia, G., Gentile, M., Parmiani, G., & Fais, S. (2002). Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. The Journal of Experimental Medicine, 195(10), 1303–1316.

    Article  CAS  Google Scholar 

  96. Huber, V., Fais, S., Iero, M., Lugini, L., Canese, P., Squarcina, P., Zaccheddu, A., Colone, M., Arancia, G., Gentile, M., Seregni, E., Valenti, R., Ballabio, G., Belli, F., Leo, E., Parmiani, G., & Rivoltini, L. (2005). Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: Role in immune escape. Gastroenterology, 128(7), 1796–1804.

    Article  CAS  Google Scholar 

  97. Iero, M., Valenti, R., Huber, V., Filipazzi, P., Parmiani, G., Fais, S., & Rivoltini, L. (2008). Tumour-released exosomes and their implications in cancer immunity. Cell Death and Differentiation, 15(1), 80–88. https://doi.org/10.1038/sj.cdd.4402237.

    Article  CAS  PubMed  Google Scholar 

  98. Namee, N. M., & O’Driscoll, L. (2018). Extracellular vesicles and anti-cancer drug resistance. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1870(2), 123–136. https://doi.org/10.1016/j.bbcan.2018.07.003.

    Article  CAS  Google Scholar 

  99. Gurusamy, D., Clever, D., Eil, R., & Restifo, N. P. (2017). Novel “elements” of immune suppression within the tumor microenvironment. Cancer Immunology Research, 5(6), 426–433. https://doi.org/10.1158/2326-6066.CIR-17-0117.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fais, S., O’Driscoll, L., Borras, F. E., Buzas, E., Camussi, G., Cappello, F., Carvalho, J., Cordeiro da Silva, A., del Portillo, H., el Andaloussi, S., Ficko Trček, T., Furlan, R., Hendrix, A., Gursel, I., Kralj-Iglic, V., Kaeffer, B., Kosanovic, M., Lekka, M. E., Lipps, G., Logozzi, M., Marcilla, A., Sammar, M., Llorente, A., Nazarenko, I., Oliveira, C., Pocsfalvi, G., Rajendran, L., Raposo, G., Rohde, E., Siljander, P., van Niel, G., Vasconcelos, M. H., Yáñez-Mó, M., Yliperttula, M. L., Zarovni, N., Zavec, A. B., & Giebel, B. (2016). Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano, 10(4), 3886–3899. https://doi.org/10.1021/acsnano.5b08015.

    Article  CAS  PubMed  Google Scholar 

  101. Letelier, P., Riquelme, I., Hernández, A., Guzmán, N., Farías, J., & Roa, J. (2016). Circulating MicroRNAs as biomarkers in biliary tract cancers. International Journal of Molecular Sciences, 17(5), 791. https://doi.org/10.3390/ijms17050791.

    Article  CAS  PubMed Central  Google Scholar 

  102. Yokoyama, S., Takeuchi, A., Yamaguchi, S., Mitani, Y., Watanabe, T., Matsuda, K., Hotta, T., Shively, J. E., & Yamaue, H. (2017). Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction-measurement by ELISA. PLoS One, 12(8), e0183337. https://doi.org/10.1371/journal.pone.0183337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kharaziha, P., Ceder, S., Li, Q., & Panaretakis, T. (2012). Tumor cell-derived exosomes: A message in a bottle. Biochimica et Biophysica Acta, 1826(1), 103–111. https://doi.org/10.1016/j.bbcan.2012.03.006.

    Article  CAS  PubMed  Google Scholar 

  104. Logozzi, M., Capasso, C., Di Raimo, R., Del Prete, S., Mizzoni, D., Falchi, M., & Fais, S. (2018). Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity. Journal of Enzyme Inhibition and Medicinal Chemistry, in press, 34, 272–278. https://doi.org/10.1080/14756366.2018.1538980.

    Article  CAS  Google Scholar 

  105. Cappello, F., Logozzi, M., Campanella, C., Bavisotto, C. C., Marcilla, A., Properzi, F., & Fais, S. (2017). Exosome levels in human body fluids: A tumor marker by themselves? European Journal of Pharmaceutical Sciences, 96, 93–98. https://doi.org/10.1016/j.ejps.2016.09.010.

    Article  CAS  PubMed  Google Scholar 

  106. Properzi, F., Logozzi, M., & Fais, S. (2013). Exosomes: The future of biomarkers in medicine. Biomarkers in Medicine, 7(5), 769–778. https://doi.org/10.2217/bmm.13.63.

    Article  CAS  PubMed  Google Scholar 

  107. Properzi, F., Logozzi, M., Abdel-Haq, H., Federici, C., Lugini, L., Azzarito, T., et al. (2015). Detection of exosomal prions in blood by immunochemistry techniques. The Journal of General Virology, 96(Pt 7), 1969–1974. https://doi.org/10.1099/vir.0.000117.

    Article  CAS  PubMed  Google Scholar 

  108. Azzarito, T., Lugini, L., Spugnini, E. P., Canese, R., Gugliotta, A., Fidanza, S., & Fais, S. (2016). Effect of modified alkaline supplementation on Syngenic melanoma growth in CB57/BL mice. PLoS One, 11(7), e0159763. https://doi.org/10.1371/journal.pone.0159763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Spugnini, E. P., Buglioni, S., Carocci, F., Francesco, M., Vincenzi, B., Fanciulli, M., & Fais, S. (2014). High dose lansoprazole combined with metronomic chemotherapy: A phase I/II study in companion animals with spontaneously occurring tumors. Journal of Translational Medicine, 12, 225. https://doi.org/10.1186/s12967-014-0225-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Iessi, E., Logozzi, M., Lugini, L., Azzarito, T., Federici, C., Spugnini, E. P., Mizzoni, D., di Raimo, R., Angelini, D. F., Battistini, L., Cecchetti, S., & Fais, S. (2017). Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 648–657. https://doi.org/10.1080/14756366.2017.1292263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Regione Lazio FILAS (grant number RU 2014-2041 FascJ9L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Fais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logozzi, M., Spugnini, E., Mizzoni, D. et al. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 38, 93–101 (2019). https://doi.org/10.1007/s10555-019-09783-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09783-8

Keywords

Navigation