Skip to main content

Advertisement

Log in

Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

During radiotherapy, an inflammatory response might be induced by activating various enzymes involved in membrane lipid metabolism. The eicosanoid pathway associated with cytosolic phospholipase A2 (cPLA2), cyclooxygenases (COXs), and lipoxygenases (LOXs) can be induced by radiation, and many lipid metabolites might contribute to cancer-associated inflammation, cell proliferation, and cell survival in cancer. The lipid metabolites are also involved in the establishment of the tumor-associated microenvironment through promotion of angiogenesis and formation of vascular network. These biological activities of lipid metabolites are responsible for malignant progression with the acquisition of radioresistance, leading to unsatisfactory outcome of cancer radiotherapy. Many efforts have been made to identify the mechanisms associated with bioactive lipid metabolites and radiation signaling that lead to radioresistance and to develop potent radiosensitizers to improve therapeutic efficacy. Beneficial outcomes would be achieved by targeting the enzymes, such as cPLA2, COXs, and LOXs, responsible for arachidonic acid metabolism and cancer-associated inflammation during cancer radiotherapy. The current study demonstrated a brief review for the radioresistant effects of bioactive lipid metabolites and their enzymes in cancer and the radiosensitizing effects of inhibitors for the enzymes on cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koh, P. K., Faivre-Finn, C., Blackhall, F. H., & De Ruysscher, D. (2012). Targeted agents in non-small cell lung cancer (NSCLC): clinical developments and rationale for the combination with thoracic radiotherapy. Cancer Treatment Reviews, 38(6), 626–640.

    Article  PubMed  Google Scholar 

  2. Sharma, R. A., Plummer, R., Stock, J. K., Greenhalgh, T. A., Ataman, O., Kelly, S., et al. (2016). Clinical development of new drug-radiotherapy combinations. Nature Reviews. Clinical Oncology, 13(10), 627–642.

    Article  PubMed  CAS  Google Scholar 

  3. Youn, H., Son, B., Kim, W., Jun, S. Y., Lee, J. S., Lee, J. M., Kang, C. H., Kim, J., & Youn, B. H. (2015). Dissociation of MIF-rpS3 complex and sequential NF-kappaB activation is involved in IR-induced metastatic conversion of NSCLC. Journal of Cellular Biochemistry, 116(11), 2504–2516.

    Article  PubMed  CAS  Google Scholar 

  4. Kwon, T., Youn, H., Son, B., Kim, D., Seong, K. M., Park, S., Kim, W., & Youn, B. (2016). DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer. Oncotarget, 7(6), 7193–7206.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Son, B., Jun, S. Y., Seo, H., Youn, H., Yang, H. J., Kim, W., Kim, H. K., Kang, C. H., & Youn, B. H. (2016). Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer. Scientific Reports, 6, 21986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kim, W., Youn, H., Kang, C., & Youn, B. (2015). Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis, 20(9), 1242–1252.

    Article  PubMed  CAS  Google Scholar 

  7. Kang, J., Kim, W., Kwon, T., Youn, H., Kim, J. S., & Youn, B. (2016). Plasminogen activator inhibitor-1 enhances radioresistance and aggressiveness of non-small cell lung cancer cells. Oncotarget, 7(17), 23961–23974.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Son, B., Lee, S., Youn, H., Kim, E., Kim, W., & Youn, B. (2017). The role of tumor microenvironment in therapeutic resistance. Oncotarget, 8(3), 3933–3945.

    Article  PubMed  Google Scholar 

  9. Sharma, M., McCarthy, E. T., Sharma, R., Fish, B. L., Savin, V. J., Cohen, E. P., & Moulder, J. E. (2006). Arachidonic acid metabolites mediate the radiation-induced increase in glomerular albumin permeability. Experimental Biology and Medicine (Maywood, N.J.), 231(1), 99–106.

    Article  CAS  Google Scholar 

  10. Zarebska, Z., Zielinska, J., Zhukov, I., & Maslinski, W. (2005). Apoptosis induced by membrane damage in human lymphocytes; effects of arachidonic acid and its photoproducts. Acta Biochimica Polonica, 52(1), 179–194.

    PubMed  CAS  Google Scholar 

  11. Omahen, D. A. (2011). Augmentation of chemotherapy-triggered glioma cell apoptosis by blockade of arachidonic acid metabolism—the potential role of ceramide accumulation. Medical Hypotheses, 77(5), 726–733.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, S., Kim, D., Kang, J., Kim, E., Kim, W., Youn, H., & Youn, B. H. (2017). Surfactant protein B suppresses lung cancer progression by inhibiting secretory phospholipase A2 activity and arachidonic acid production. Cellular Physiology and Biochemistry, 42(4), 1684–1700.

    Article  PubMed  CAS  Google Scholar 

  13. Linkous, A., Geng, L., Lyshchik, A., Hallahan, D. E., & Yazlovitskaya, E. M. (2009). Cytosolic phospholipase A2: targeting cancer through the tumor vasculature. Clinical Cancer Research, 15(5), 1635–1644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yazlovitskaya, E. M., Linkous, A. G., Thotala, D. K., Cuneo, K. C., & Hallahan, D. E. (2008). Cytosolic phospholipase A2 regulates viability of irradiated vascular endothelium. Cell Death and Differentiation, 15(10), 1641–1653.

    Article  PubMed  CAS  Google Scholar 

  15. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    Article  PubMed  CAS  Google Scholar 

  16. Gu, J., Liu, Y., Xie, B., Ye, P., Huang, J., & Lu, Z. (2018). Roles of toll-like receptors: from inflammation to lung cancer progression. Biomedical Reports, 8(2), 126–132.

    PubMed  Google Scholar 

  17. Leonardi, G. C., Accardi, G., Monastero, R., Nicoletti, F., & Libra, M. (2018). Ageing: from inflammation to cancer. Immunity & Ageing, 15(1), 1.

    Article  Google Scholar 

  18. Spiotto, M., Fu, Y. X., & Weichselbaum, R. R. (2016). The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Science Immunology, 1(3), eaag1266.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yahyapour, R., Amini, P., Rezapoor, S., Rezaeyan, A., Farhood, B., Cheki, M., et al. (2017). Targeting of inflammation for radiation protection and mitigation. Current Molecular Pharmacology. https://doi.org/10.2174/1874467210666171108165641

  20. Sethi, G., Shanmugam, M. K., Ramachandran, L., Kumar, A. P., & Tergaonkar, V. (2012). Multifaceted link between cancer and inflammation. Bioscience Reports, 32(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  21. Gonda, T. A., Tu, S., & Wang, T. C. (2009). Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle, 8(13), 2005–2013.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Multhoff, G., & Radons, J. (2012). Radiation, inflammation, and immune responses in cancer. Frontiers in Oncology, 2, 58.

    PubMed  PubMed Central  Google Scholar 

  24. Li, F., & Sethi, G. (2010). Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochimica et Biophysica Acta, 1805(2), 167–180.

    PubMed  CAS  Google Scholar 

  25. Masoodi, M., Eiden, M., Koulman, A., Spaner, D., & Volmer, D. A. (2010). Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks. Analytical Chemistry, 82(19), 8176–8185.

    Article  PubMed  CAS  Google Scholar 

  26. Helliwell, R. J., Adams, L. F., & Mitchell, M. D. (2004). Prostaglandin synthases: recent developments and a novel hypothesis. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70(2), 101–113.

    Article  PubMed  CAS  Google Scholar 

  27. Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.

    Article  PubMed  CAS  Google Scholar 

  28. Dufour, M., Faes, S., Dormond-Meuwly, A., Demartines, N., & Dormond, O. (2014). PGE2-induced colon cancer growth is mediated by mTORC1. Biochemical and Biophysical Research Communications, 451(4), 587–591.

    Article  PubMed  CAS  Google Scholar 

  29. Du, M., Shi, F., Zhang, H., Xia, S., Zhang, M., Ma, J., et al. (2015). Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of beta-catenin expression via EP3-4 receptor. Oncology Reports, 34(2), 715–726.

    Article  PubMed  CAS  Google Scholar 

  30. Bai, X., Wang, J., Guo, Y., Pan, J., Yang, Q., Zhang, M., et al. (2014). Prostaglandin E2 stimulates beta1-integrin expression in hepatocellular carcinoma through the EP1 receptor/PKC/NF-kappaB pathway. Scientific Reports, 4, 6538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yang, S. F., Chen, M. K., Hsieh, Y. S., Chung, T. T., Hsieh, Y. H., Lin, C. W., Su, J. L., Tsai, M. H., & Tang, C. H. (2010). Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells. The Journal of Biological Chemistry, 285(39), 29808–29816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Liu, Q., Tao, B., Liu, G., Chen, G., Zhu, Q., Yu, Y., Yu, Y., & Xiong, H. (2016). Thromboxane A2 receptor inhibition suppresses multiple myeloma cell proliferation by inducing p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK)-mediated G2/M progression delay and cell apoptosis. The Journal of Biological Chemistry, 291(9), 4779–4792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Huang, R. Y., Li, S. S., Guo, H. Z., Huang, Y., Zhang, X., Li, M. Y., Chen, G. G., & Zeng, X. (2014). Thromboxane A2 exerts promoting effects on cell proliferation through mediating cyclooxygenase-2 signal in lung adenocarcinoma cells. Journal of Cancer Research and Clinical Oncology, 140(3), 375–386.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, G. G., Lee, T. W., Yip, J. H., Xu, H., Lee, I. K., Mok, T. S., et al. (2006). Increased thromboxane B(2) levels are associated with lipid peroxidation and Bcl-2 expression in human lung carcinoma. Cancer Letters, 234(2), 193–198.

    Article  PubMed  CAS  Google Scholar 

  35. Leung, K. C., Hsin, M. K., Chan, J. S., Yip, J. H., Li, M., Leung, B. C., et al. (2009). Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27. Experimental Cell Research, 315(17), 2974–2981.

    Article  PubMed  CAS  Google Scholar 

  36. Jeon, W. K., Choi, J., Park, S. J., Jo, E. J., Lee, Y. K., Lim, S., Kim, J. H., Letterio, J. J., Liu, F., Kim, S. J., & Kim, B. C. (2015). The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF-beta1-induced growth inhibition by targeting Smad3 linker region. Oncotarget, 6(39), 41650–41666.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tong, W. G., Ding, X. Z., Hennig, R., Witt, R. C., Standop, J., Pour, P. M., & Adrian, T. E. (2002). Leukotriene B4 receptor antagonist LY293111 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Clinical Cancer Research, 8(10), 3232–3242.

    PubMed  CAS  Google Scholar 

  38. Kim, E. Y., Seo, J. M., Cho, K. J., & Kim, J. H. (2010). Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene, 29(8), 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  39. Kim, Y. R., Park, M. K., Kang, G. J., Kim, H. J., Kim, E. J., Byun, H. J., Lee, M. Y., & Lee, C. H. (2016). Leukotriene B4 induces EMT and vimentin expression in PANC-1 pancreatic cancer cells: involvement of BLT2 via ERK2 activation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 115, 67–76.

    Article  PubMed  CAS  Google Scholar 

  40. Nguyen, C. H., Stadler, S., Brenner, S., Huttary, N., Krieger, S., Jager, W., et al. (2016). Cancer cell-derived 12(S)-HETE signals via 12-HETE receptor, RHO, ROCK and MLC2 to induce lymph endothelial barrier breaching. British Journal of Cancer, 115(3), 364–370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Stadler, S., Nguyen, C. H., Schachner, H., Milovanovic, D., Holzner, S., Brenner, S., Eichsteininger, J., Stadler, M., Senfter, D., Krenn, L., Schmidt, W. M., Huttary, N., Krieger, S., Koperek, O., Bago-Horvath, Z., Brendel, K. A., Marian, B., de Wever, O., Mader, R. M., Giessrigl, B., Jäger, W., Dolznig, H., & Krupitza, G. (2017). Colon cancer cell-derived 12(S)-HETE induces the retraction of cancer-associated fibroblast via MLC2, RHO/ROCK and Ca(2+) signalling. Cellular and Molecular Life Sciences, 74(10), 1907–1921.

    Article  PubMed  CAS  Google Scholar 

  42. Ding, X. Z., Tong, W. G., & Adrian, T. E. (2001). 12-lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation. International Journal of Cancer, 94(5), 630–636.

    Article  PubMed  CAS  Google Scholar 

  43. Zong, L., Li, J., Chen, X., Chen, K., Li, W., Li, X., Zhang, L., Duan, W., Lei, J., Xu, Q., Shan, T., Ma, Q., & Sun, H. (2016). Lipoxin A4 attenuates cell invasion by inhibiting ROS/ERK/MMP pathway in pancreatic cancer. Oxidative Medicine and Cellular Longevity, 2016(6815727), 1–9.

    Google Scholar 

  44. Zong, L., Chen, K., Jiang, Z., Chen, X., Sun, L., Ma, J., Zhou, C., Xu, Q., Duan, W., Han, L., Lei, J., Li, X., Ma, Q., & Wang, Z. (2017). Lipoxin A4 reverses mesenchymal phenotypes to attenuate invasion and metastasis via the inhibition of autocrine TGF-beta1 signaling in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 36(1), 181.

    Article  Google Scholar 

  45. Hao, H., Xu, F., Hao, J., He, Y. Q., Zhou, X. Y., Dai, H., Wu, L. Q., & Liu, F. R. (2015). Lipoxin A4 suppresses lipopolysaccharide-induced hela cell proliferation and migration via NF-kappaB pathway. Inflammation, 38(1), 400–408.

    Article  PubMed  CAS  Google Scholar 

  46. Nithipatikom, K., Brody, D. M., Tang, A. T., Manthati, V. L., Falck, J. R., Williams, C. L., & Campbell, W. B. (2010). Inhibition of carcinoma cell motility by epoxyeicosatrienoic acid (EET) antagonists. Cancer Science, 101(12), 2629–2636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Thuy Phuong, N. T., Kim, J. W., Kim, J. A., Jeon, J. S., Lee, J. Y., Xu, W. J., Yang, J. W., Kim, S. K., & Kang, K. W. (2017). Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget, 8(41), 71054–71069.

    PubMed  PubMed Central  Google Scholar 

  48. Luo, J., Yao, J. F., Deng, X. F., Zheng, X. D., Jia, M., Wang, Y. Q., Huang, Y., & Zhu, J. H. (2018). 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin alphavbeta3 and activating FAK/PI3K/AKT signaling. Journal of Experimental & Clinical Cancer Research, 37(1), 23.

    Article  Google Scholar 

  49. Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., Luo, X., Clarke, D., Lamba, J., Schuetz, E., Donner, D. B., Puli, N., Falck, J. R., Capdevila, J., Gupta, K., Blair, I. A., & Potter, D. A. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (+/−)-14,15-epoxyeicosatrienoic acid (EET). The Journal of Biological Chemistry, 286(20), 17543–17559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Quach, N. D., Arnold, R. D., & Cummings, B. S. (2014). Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochemical Pharmacology, 90(4), 338–348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science, 258(5082), 607–614.

    Article  PubMed  CAS  Google Scholar 

  52. Han, W. K., Sapirstein, A., Hung, C. C., Alessandrini, A., & Bonventre, J. V. (2003). Cross-talk between cytosolic phospholipase A2 alpha (cPLA2 alpha) and secretory phospholipase A2 (sPLA2) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells: sPLA2 regulates cPLA2 alpha activity that is responsible for arachidonic acid release. The Journal of Biological Chemistry, 278(26), 24153–24163.

    Article  PubMed  CAS  Google Scholar 

  53. Rupprecht, G., Scholz, K., Beck, K. F., Geiger, H., Pfeilschifter, J., & Kaszkin, M. (1999). Cross-talk between group IIA-phospholipase A2 and inducible NO-synthase in rat renal mesangial cells. British Journal of Pharmacology, 127(1), 51–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li, Z., Qu, M., Sun, Y., Wan, H., Chai, F., Liu, L., & Zhang, P. (2018). Blockage of cytosolic phospholipase A2 alpha sensitizes aggressive breast cancer to doxorubicin through suppressing ERK and mTOR kinases. Biochemical and Biophysical Research Communications, 496(1), 153–158.

    Article  PubMed  CAS  Google Scholar 

  55. Nakamura, H., Moriyama, Y., Watanabe, K., Tomizawa, S., Yamazaki, R., Takahashi, H., et al. (2017). Lactosylceramide-induced phosphorylation signaling to group IVA phospholipase A2 via reactive oxygen species in tumor necrosis factor-alpha-treated cells. 118(12), 4370–4382.

  56. Nakanishi, M., & Rosenberg, D. W. (2006). Roles of cPLA2alpha and arachidonic acid in cancer. Biochimica et Biophysica Acta, 1761(11), 1335–1343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fu, H., He, Y., Qi, L., Chen, L., Luo, Y., Chen, L., Li, Y., Zhang, N., & Guo, H. (2017). cPLA2alpha activates PI3K/AKT and inhibits Smad2/3 during epithelial-mesenchymal transition of hepatocellular carcinoma cells. Cancer Letters, 403, 260–270.

    Article  PubMed  CAS  Google Scholar 

  58. Chen, L., Fu, H., Luo, Y., Chen, L., Cheng, R., Zhang, N., & Guo, H. (2017). cPLA2alpha mediates TGF-beta-induced epithelial-mesenchymal transition in breast cancer through PI3k/Akt signaling. Cell Death & Disease, 8(4), e2728.

    Article  CAS  Google Scholar 

  59. Gowda, R., Dinavahi, S. S., Iyer, S., Banerjee, S., Neves, R. I., Pameijer, C. R., et al. (2018). Nanoliposomal delivery of cytosolic phospholipase A2 inhibitor arachidonyl trimethyl ketone for melanoma treatment. Nanomedicine, 14(3), 865–875.

    Google Scholar 

  60. Dong, Q., Patel, M., Scott, K. F., Graham, G. G., Russell, P. J., & Sved, P. (2006). Oncogenic action of phospholipase A2 in prostate cancer. Cancer Letters, 240(1), 9–16.

    Article  PubMed  CAS  Google Scholar 

  61. Zheng, Z., He, X., Xie, C., Hua, S., Li, J., Wang, T., Yao, M., Vignarajan, S., Teng, Y., Hejazi, L., Liu, B., & Dong, Q. (2014). Targeting cytosolic phospholipase A2 alpha in colorectal cancer cells inhibits constitutively activated protein kinase B (AKT) and cell proliferation. Oncotarget, 5(23), 12304–12316.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thotala, D., Craft, J. M., Ferraro, D. J., Kotipatruni, R. P., Bhave, S. R., Jaboin, J. J., & Hallahan, D. E. (2013). Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models. PLoS One, 8(7), e69688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., Pastorino, S., Purow, B. W., Christopher, N., Zhang, W., Park, J. K., & Fine, H. A. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.

    Article  PubMed  CAS  Google Scholar 

  64. Stearman, R. S., Dwyer-Nield, L., Zerbe, L., Blaine, S. A., Chan, Z., Bunn Jr., P. A., Johnson, G. L., Hirsch, F. R., Merrick, D. T., Franklin, W. A., Baron, A. E., Keith, R. L., Nemenoff, R. A., Malkinson, A. M., & Geraci, M. W. (2005). Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. The American Journal of Pathology, 167(6), 1763–1775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Han, C., Demetris, A. J., Liu, Y., Shelhamer, J. H., & Wu, T. (2004). Transforming growth factor-beta (TGF-beta) activates cytosolic phospholipase A2alpha (cPLA2alpha)-mediated prostaglandin E2 (PGE)2/EP1 and peroxisome proliferator-activated receptor-gamma (PPAR-gamma)/Smad signaling pathways in human liver cancer cells. A novel mechanism for subversion of TGF-beta-induced mitoinhibition. The Journal of Biological Chemistry, 279(43), 44344–44354.

    Article  PubMed  CAS  Google Scholar 

  66. Blaine, S. A., Wick, M., Dessev, C., & Nemenoff, R. A. (2001). Induction of cPLA2 in lung epithelial cells and non-small cell lung cancer is mediated by Sp1 and c-Jun. The Journal of Biological Chemistry, 276(46), 42737–42743.

    Article  PubMed  CAS  Google Scholar 

  67. Hua, S., Vignarajan, S., Yao, M., Xie, C., Sved, P., & Dong, Q. (2015). AKT and cytosolic phospholipase A2alpha form a positive loop in prostate cancer cells. Current Cancer Drug Targets, 15(9), 781–791.

    Article  PubMed  CAS  Google Scholar 

  68. Todoric, J., Antonucci, L., & Karin, M. (2016). Targeting inflammation in cancer prevention and therapy. Cancer Prevention Research (Philadelphia, Pa.), 9(12), 895–905.

    Article  CAS  Google Scholar 

  69. Pang, L. Y., Hurst, E. A., & Argyle, D. J. (2016). Cyclooxygenase-2: a role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells International, 2016(2048731), 1–11.

    Article  CAS  Google Scholar 

  70. Qiu, J., Shi, Z., & Jiang, J. (2017). Cyclooxygenase-2 in glioblastoma multiforme. Drug Discovery Today, 22(1), 148–156.

    Article  PubMed  CAS  Google Scholar 

  71. Yang, G., Deng, Q., Fan, W., Zhang, Z., Xu, P., Tang, S., et al. (2017). Cyclooxygenase-2 expression is positively associated with lymph node metastasis in nasopharyngeal carcinoma. PLoS One12(3), e0173641.

  72. Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., Kim, J. Y. H., Goumnerova, L. C., Black, P. M., Lau, C., Allen, J. C., Zagzag, D., Olson, J. M., Curran, T., Wetmore, C., Biegel, J. A., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D. N., Mesirov, J. P., Lander, E. S., & Golub, T. R. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870), 436–442.

    Article  PubMed  CAS  Google Scholar 

  73. Skrzypczak, M., Goryca, K., Rubel, T., Paziewska, A., Mikula, M., Jarosz, D., Pachlewski J., Oledzki J., Ostrowski J. (2010). Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS One, 5(10), e13091

  74. Salehifar, E., & Hosseinimehr, S. J. (2016). The use of cyclooxygenase-2 inhibitors for improvement of efficacy of radiotherapy in cancers. Drug Discovery Today, 21(4), 654–662.

    Article  PubMed  CAS  Google Scholar 

  75. Maru, G. B., Gandhi, K., Ramchandani, A., & Kumar, G. (2014). The role of inflammation in skin cancer. Advances in Experimental Medicine and Biology, 816, 437–469.

    Article  PubMed  CAS  Google Scholar 

  76. Steinauer, K. K., Gibbs, I., Ning, S., French, J. N., Armstrong, J., & Knox, S. J. (2000). Radiation induces upregulation of cyclooxygenase-2 (COX-2) protein in PC-3 cells. International Journal of Radiation Oncology, Biology, Physics, 48(2), 325–328.

    Article  PubMed  CAS  Google Scholar 

  77. Choy, H., & Milas, L. (2003). Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? Journal of the National Cancer Institute, 95(19), 1440–1452.

    Article  PubMed  CAS  Google Scholar 

  78. Yang, H. J., Youn, H., Seong, K. M., Yun, Y. J., Kim, W., Kim, Y. H., Lee, J. Y., Kim, C. S., Jin, Y. W., & Youn, B. H. (2011). Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation. Biochemical Pharmacology, 82(5), 524–534.

    Article  PubMed  CAS  Google Scholar 

  79. Wang, A. H., Tian, X. Y., Yu, J. J., Mi, J. Q., Liu, H., & Wang, R. F. (2012). Celecoxib radiosensitizes the human cervical cancer HeLa cell line via a mechanism dependent on reduced cyclo-oxygenase-2 and vascular endothelial growth factor C expression. The Journal of International Medical Research, 40(1), 56–66.

    Article  PubMed  Google Scholar 

  80. Yang, M. Y., Lee, H. T., Chen, C. M., Shen, C. C., & Ma, H. I. (2014). Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. International Journal of Molecular Sciences, 15(6), 11013–11029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Liu, D. B., Hu, G. Y., Long, G. X., Qiu, H., Mei, Q., & Hu, G. Q. (2012). Celecoxib induces apoptosis and cell-cycle arrest in nasopharyngeal carcinoma cell lines via inhibition of STAT3 phosphorylation. Acta Pharmacologica Sinica, 33(5), 682–690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Park, S. B., Jee, B. C., Kim, S. H., Cho, Y. J., & Han, M. (2014). Cyclooxygenase-2 inhibitor, celecoxib, inhibits leiomyoma cell proliferation through the nuclear factor kappaB pathway. Reproductive Sciences, 21(9), 1187–1195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Li, G., Wang, Z., Chong, T., Yang, J., Li, H., & Chen, H. (2017). Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-kappaB signaling pathway. Biomedicine & Pharmacotherapy, 94, 974–981.

    Article  CAS  Google Scholar 

  84. Cook, P. J., Thomas, R., Kingsley, P. J., Shimizu, F., Montrose, D. C., Marnett, L. J., Tabar, V. S., Dannenberg, A. J., & Benezra, R. (2016). Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma. Neuro-Oncology, 18(10), 1379–1389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Shen, J., Li, W. X., Xiao, Z. G., Zhang, L., Li, M. X., Li, L. F., Hu, W., Lu, L., Boudreau, F., & Cho, C. H. (2016). The co-regulatory role of 5-lipoxygenase and cyclooxygenase-2 in the carcinogenesis and their promotion by cigarette smoking in colons. Current Medicinal Chemistry, 23(11), 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  86. Chatterjee, M., Das, S., Roy, K., & Chatterjee, M. (2013). Overexpression of 5-lipoxygenase and its relation with cell proliferation and angiogenesis in 7,12-dimethylbenz(alpha)anthracene-induced rat mammary carcinogenesis. Molecular Carcinogenesis, 52(5), 359–369.

    Article  PubMed  CAS  Google Scholar 

  87. Kumar, G., Patlolla, J. M., Madka, V., Mohammed, A., Li, Q., Zhang, Y., Biddick, L., Singh, A., Gillaspy, A., Lightfoot, S., Steele, V. E., Kopelovich, L., & Rao, C. V. (2016). Simultaneous targeting of 5-LOX-COX and ODC block NNK-induced lung adenoma progression to adenocarcinoma in A/J mice. American Journal of Cancer Research, 6(5), 894–909.

    PubMed  PubMed Central  Google Scholar 

  88. Gupta, S., Srivastava, M., Ahmad, N., Sakamoto, K., Bostwick, D. G., & Mukhtar, H. (2001). Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer, 91(4), 737–743.

    Article  PubMed  CAS  Google Scholar 

  89. Klil-Drori, A. J., & Ariel, A. (2013). 15-Lipoxygenases in cancer: a double-edged sword? Prostaglandins & Other Lipid Mediators, 106, 16–22.

    Article  CAS  Google Scholar 

  90. Kuhn, H., Banthiya, S., & van Leyen, K. (2015). Mammalian lipoxygenases and their biological relevance. Biochimica et Biophysica Acta, 1851(4), 308–330.

    Article  PubMed  CAS  Google Scholar 

  91. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M., & Sgroi, D. C. (2009). Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research, 11(1), R7.

    Article  PubMed  CAS  Google Scholar 

  92. Nie, D., Nemeth, J., Qiao, Y., Zacharek, A., Li, L., Hanna, K., Tang, K., Hillman, G. G., Cher, M. L., Grignon, D. J., & Honn, K. V. (2003). Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clinical & Experimental Metastasis, 20(7), 657–663.

    Article  CAS  Google Scholar 

  93. Pidgeon, G. P., Tang, K., Cai, Y. L., Piasentin, E., & Honn, K. V. (2003). Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. Cancer Research, 63(14), 4258–4267.

    PubMed  CAS  Google Scholar 

  94. Lovey, J., Nie, D., Tovari, J., Kenessey, I., Timar, J., Kandouz, M., et al. (2013). Radiosensitivity of human prostate cancer cells can be modulated by inhibition of 12-lipoxygenase. Cancer Letters, 335(2), 495–501.

    Article  PubMed  CAS  Google Scholar 

  95. Yoshinaga, M., Buchanan, F. G., & DuBois, R. N. (2004). 15-LOX-1 inhibits p21 (Cip/WAF 1) expression by enhancing MEK-ERK 1/2 signaling in colon carcinoma cells. Prostaglandins & Other Lipid Mediators, 73(1–2), 111–122.

    Article  CAS  Google Scholar 

  96. Cimen, I., Astarci, E., & Banerjee, S. (2011). 15-Lipoxygenase-1 exerts its tumor suppressive role by inhibiting nuclear factor-kappa B via activation of PPAR gamma. Journal of Cellular Biochemistry, 112(9), 2490–2501.

    Article  PubMed  CAS  Google Scholar 

  97. Yang, Q., Feng, Y., Schultz, C. J., Li, X. A., Wu, H., & Wang, D. (2008). Synergistic effect of 15-lipoxygenase 2 and radiation in killing head-and-neck cancer. Cancer Gene Therapy, 15(5), 323–330.

    Article  PubMed  CAS  Google Scholar 

  98. Schulte, R. R., Linkous, A. G., Hallahan, D. E., & Yazlovitskaya, E. M. (2011). Cytosolic phospholipase A2 as a molecular target for the radiosensitization of ovarian cancer. Cancer Letters, 304(2), 137–143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Strijbos, M. H., Gratama, J. W., Kraan, J., Lamers, C. H., den Bakker, M. A., & Sleijfer, S. (2008). Circulating endothelial cells in oncology: pitfalls and promises. British Journal of Cancer, 98(11), 1731–1735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lio, Y. C., Reynolds, L. J., Balsinde, J., & Dennis, E. A. (1996). Irreversible inhibition of Ca(2+)-independent phospholipase A2 by methyl arachidonyl fluorophosphonate. Biochimica et Biophysica Acta, 1302(1), 55–60.

    Article  PubMed  Google Scholar 

  101. Conde-Frieboes, K., Reynolds, L. J., Lio, Y.-C., Hale, M. R., Wasserman, H. H., & Dennis, E. A. (1996). Activated ketones as inhibitors of intracellular Ca2+-dependent and Ca2+-independent phospholipase A2. Journal of the American Chemical Society, 118(24), 5519–5525.

    Article  CAS  Google Scholar 

  102. Magrioti, V., & Kokotos, G. (2013). Phospholipase A2 inhibitors for the treatment of inflammatory diseases: a patent review (2010–present). Expert Opinion on Therapeutic Patents, 23(3), 333–344.

    Article  PubMed  CAS  Google Scholar 

  103. Kokotou, M. G., Limnios, D., Nikolaou, A., Psarra, A., & Kokotos, G. (2017). Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016). Expert Opinion on Therapeutic Patents, 27(2), 217–225.

    Article  PubMed  CAS  Google Scholar 

  104. Kim, E., Tunset, H. M., Cebulla, J., Vettukattil, R., Helgesen, H., Feuerherm, A. J., Engebråten, O., Mælandsmo, G. M., Johansen, B., & Moestue, S. A. (2016). Anti-vascular effects of the cytosolic phospholipase A2 inhibitor AVX235 in a patient-derived basal-like breast cancer model. BMC Cancer, 16, 191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lin, F., Luo, J., Gao, W., Wu, J., Shao, Z., Wang, Z., Meng, J., Ou, Z., & Yang, G. (2013). COX-2 promotes breast cancer cell radioresistance via p38/MAPK-mediated cellular anti-apoptosis and invasiveness. Tumour Biology, 34(5), 2817–2826.

    Article  PubMed  CAS  Google Scholar 

  106. Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., & Tofilon, P. J. (1999). Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. Journal of the National Cancer Institute, 91(17), 1501–1504.

    Article  PubMed  CAS  Google Scholar 

  107. Davis, T. W., Hunter, N., Trifan, O. C., Milas, L., & Masferrer, J. L. (2003). COX-2 inhibitors as radiosensitizing agents for cancer therapy. American Journal of Clinical Oncology, 26(4), S58–S61.

    Article  PubMed  Google Scholar 

  108. Bijnsdorp, I. V., van den Berg, J., Kuipers, G. K., Wedekind, L. E., Slotman, B. J., van Rijn, J., Lafleur, M. V. M., & Sminia, P. (2007). Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells. Journal of Neuro-Oncology, 85(1), 25–31.

    Article  PubMed  CAS  Google Scholar 

  109. Meng, Z., & Gan, Y. H. (2015). Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization. Biochemical and Biophysical Research Communications, 460(2), 198–204.

    Article  PubMed  CAS  Google Scholar 

  110. Xia, S., Zhao, Y., Yu, S., & Zhang, M. (2010). Activated PI3K/Akt/COX-2 pathway induces resistance to radiation in human cervical cancer HeLa cells. Cancer Biotherapy & Radiopharmaceuticals, 25(3), 317–323.

    Article  CAS  Google Scholar 

  111. Yusup, G., Akutsu, Y., Mutallip, M., Qin, W., Hu, X., Komatsu-Akimoto, A., et al. (2014). A COX-2 inhibitor enhances the antitumor effects of chemotherapy and radiotherapy for esophageal squamous cell carcinoma. International Journal of Oncology, 44(4), 1146–1152.

    Article  PubMed  CAS  Google Scholar 

  112. Davis, T. W., O'Neal, J. M., Pagel, M. D., Zweifel, B. S., Mehta, P. P., Heuvelman, D. M., et al. (2004). Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature. Cancer Research, 64(1), 279–285.

    Article  PubMed  CAS  Google Scholar 

  113. Toomey, D. P., Murphy, J. F., & Conlon, K. C. (2009). COX-2, VEGF and tumour angiogenesis. Surgeon, 7(3), 174–180.

    Article  PubMed  CAS  Google Scholar 

  114. Wagemakers, M., van der Wal, G. E., Cuberes, R., Alvarez, I., Andres, E. M., Buxens, J., et al. (2009). COX-2 inhibition combined with radiation reduces orthotopic glioma outgrowth by targeting the tumor vasculature. Translational Oncology, 2(1), 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Suzuki, K., Gerelchuluun, A., Hong, Z., Sun, L., Zenkoh, J., Moritake, T., & Tsuboi, K. (2013). Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro-Oncology, 15(9), 1186–1199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zhang, S. X., Qiu, Q. H., Chen, W. B., Liang, C. H., & Huang, B. (2014). Celecoxib enhances radiosensitivity via induction of G(2)-M phase arrest and apoptosis in nasopharyngeal carcinoma. Cellular Physiology and Biochemistry, 33(5), 1484–1497.

    Article  PubMed  CAS  Google Scholar 

  117. Raju, U., Nakata, E., Yang, P., Newman, R. A., Ang, K. K., & Milas, L. (2002). In vitro enhancement of tumor cell radiosensitivity by a selective inhibitor of cyclooxygenase-2 enzyme: mechanistic considerations. International Journal of Radiation Oncology, Biology, Physics, 54(3), 886–894.

    Article  PubMed  CAS  Google Scholar 

  118. Carnero, A., Garcia-Mayea, Y., Mir, C., Lorente, J., Rubio, I. T., & ME, L. L. (2016). The cancer stem-cell signaling network and resistance to therapy. Cancer Treatment Reviews, 49, 25–36.

    Article  PubMed  CAS  Google Scholar 

  119. Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., Park, H. G., Han, S. I., & Kang, H. S. (2017). Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Molecular Cancer, 16(1), 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Chen, K. H., Hsu, C. C., Song, W. S., Huang, C. S., Tsai, C. C., Kuo, C. D., Hsu, H. S., Tsai, T. H., Tsai, C. Y., Woung, L. C., Chiou, S. H., Lu, K. H., & Chen, Y. W. (2010). Celecoxib enhances radiosensitivity in medulloblastoma-derived CD133-positive cells. Child's Nervous System, 26(11), 1605–1612.

    Article  PubMed  Google Scholar 

  121. Bhala, N., Emberson, J., Merhi, A., Abramson, S., Arber, N., Baron, J. A., et al. (2013). Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet, 382(9894), 769–779.

    Article  PubMed  CAS  Google Scholar 

  122. Grimes, K. R., Warren, G. W., Fang, F., Xu, Y., & St Clair, W. H. (2006). Cyclooxygenase-2 inhibitor, nimesulide, improves radiation treatment against non-small cell lung cancer both in vitro and in vivo. Oncology Reports, 16(4), 771–776.

    PubMed  CAS  Google Scholar 

  123. Kim, B. M., Won, J., Maeng, K. A., Han, Y. S., Yun, Y. S., & Hong, S. H. (2009). Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3. International Journal of Oncology, 34(5), 1467–1473.

    PubMed  CAS  Google Scholar 

  124. Min, B. S., Choi, Y. J., Pyo, H. R., Kim, H., Seong, J., Chung, H. C., Rha, S. Y., & Kim, N. K. (2008). Cyclooxygenase-2 expression in pretreatment biopsy as a predictor of tumor responses after preoperative chemoradiation in rectal cancer. Archives of Surgery, 143(11), 1091–1097 discussion 1097.

    Article  PubMed  Google Scholar 

  125. Zhou, Y. Y., Hu, Z. G., Zeng, F. J., & Han, J. (2016). Clinical profile of cyclooxygenase-2 inhibitors in treating non-small cell lung cancer: a meta-analysis of nine randomized clinical trials. PLoS One, 11(3), e0151939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wang, L. W., Hsiao, C. F., Chen, W. T., Lee, H. H., Lin, T. C., Chen, H. C., et al. (2014). Celecoxib plus chemoradiotherapy for locally advanced rectal cancer: a phase II TCOG study. Journal of Surgical Oncology, 109(6), 580–585.

    Article  PubMed  CAS  Google Scholar 

  127. Araujo-Mino, E. P., Patt, Y. Z., Murray-Krezan, C., Hanson, J. A., & Bansal, P. (2018). Phase II trial using a combination of oxaliplatin, capecitabine, and celecoxib with concurrent radiation for newly diagnosed resectable rectal cancer. Oncologist, 23(1), 2–e5.

    Article  PubMed  CAS  Google Scholar 

  128. Kao, J., Genden, E. M., Chen, C. T., Rivera, M., Tong, C. C., Misiukiewicz, K., et al. (2011). Phase 1 trial of concurrent erlotinib, celecoxib, and reirradiation for recurrent head and neck cancer. Cancer, 117(14), 3173–3181.

    Article  PubMed  CAS  Google Scholar 

  129. Romano, M., Catalano, A., Nutini, M., D'Urbano, E., Crescenzi, C., Claria, J., et al. (2001). 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. The FASEB Journal, 15(13), 2326–2336.

    Article  PubMed  CAS  Google Scholar 

  130. Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26(4), 827–834.

    Article  PubMed  CAS  Google Scholar 

  131. Ye, Y. N., Liu, E. S., Shin, V. Y., Wu, W. K., & Cho, C. H. (2004). Contributory role of 5-lipoxygenase and its association with angiogenesis in the promotion of inflammation-associated colonic tumorigenesis by cigarette smoking. Toxicology, 203(1–3), 179–188.

    Article  PubMed  CAS  Google Scholar 

  132. Zhang, L., Cheng, L., Wang, Q., Zhou, D., Wu, Z., Shen, L., Zhang, L., & Zhu, J. (2015). Atorvastatin protects cardiomyocytes from oxidative stress by inhibiting LOX-1 expression and cardiomyocyte apoptosis. Acta Biochim Biophys Sin (Shanghai), 47(3), 174–182.

    Article  CAS  Google Scholar 

  133. Czubowicz, K., Czapski, G. A., Cieslik, M., & Strosznajder, R. P. (2010). Lipoxygenase inhibitors protect brain cortex macromolecules against oxidation evoked by nitrosative stress. Folia Neuropathologica, 48(4), 283–292.

    PubMed  CAS  Google Scholar 

  134. Czapski, G. A., Czubowicz, K., & Strosznajder, R. P. (2012). Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacological Reports, 64(5), 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  135. Liu, Y., Wang, W., Li, Y., Xiao, Y., Cheng, J., & Jia, J. (2015). The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biological & Pharmaceutical Bulletin, 38(8), 1234–1239.

    Article  CAS  Google Scholar 

  136. Braeckman, R. A., Granneman, G. R., Locke, C. S., Machinist, J. M., Cavannaugh, J. H., & Awni, W. M. (1995). The pharmacokinetics of zileuton in healthy young and elderly volunteers. Clinical Pharmacokinetics, 29(Suppl 2), 42–48.

    Article  PubMed  CAS  Google Scholar 

  137. Joshi, E. M., Heasley, B. H., & Macdonald, T. L. (2009). 2-ABT-S-oxide detoxification by glutathione S-transferases A1-1, M1-1 and P1-1: implications for toxicity associated with zileuton. Xenobiotica, 39(3), 197–204.

    Article  PubMed  CAS  Google Scholar 

  138. Morina, N., Bocari, G., Iljazi, A., Hyseini, K., & Halac, G. (2016). Maximum time of the effect of antileukotriene—zileuton in treatment of patients with bronchial asthma. Acta Informatica Medica, 24(1), 16–19.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gilroy, D. W., Tomlinson, A., & Willoughby, D. A. (1998). Differential effects of inhibitors of cyclooxygenase (cyclooxygenase 1 and cyclooxygenase 2) in acute inflammation. European Journal of Pharmacology, 355(2–3), 211–217.

    Article  PubMed  CAS  Google Scholar 

  140. Che, X. H., Chen, C. L., Ye, X. L., Weng, G. B., Guo, X. Z., Yu, W. Y., et al. (2016). Dual inhibition of COX-2/5-LOX blocks colon cancer proliferation, migration and invasion in vitro. Oncology Reports, 35(3), 1680–1688.

    Article  PubMed  CAS  Google Scholar 

  141. Nakamura, A., Osonoi, T., & Terauchi, Y. (2010). Relationship between urinary sodium excretion and pioglitazone-induced edema. Journal of Diabetes Investigation, 1(5), 208–211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BuHyun Youn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Son, B., Lee, S. et al. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 37, 213–225 (2018). https://doi.org/10.1007/s10555-018-9742-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9742-0

Keywords

Navigation