Cancer and Metastasis Reviews

, Volume 34, Issue 4, pp 735–751 | Cite as

Neutrophils: important contributors to tumor progression and metastasis

  • Agnieszka Swierczak
  • Kellie A. Mouchemore
  • John A. Hamilton
  • Robin L. Anderson


The presence of neutrophils in tumors has traditionally been considered to be indicative of a failed immune response against cancers. However, there is now evidence showing that neutrophils can promote tumor growth, and increasingly, the data support an active role for neutrophils in tumor progression to distant metastasis. Neutrophils have been implicated in promoting metastasis in cancer patients, where neutrophil numbers and neutrophil-related factors and functions have been associated with progressive disease. Nevertheless, the role of neutrophils in tumors, both at the primary and secondary sites, remains controversial, with some studies reporting their anti-tumor functions. This review will focus on the data demonstrating a role for neutrophils in both tumor growth and metastasis and will attempt to clarify the discrepancies in the literature.


Neutrophils Cancer Metastasis Inflammation 



The authors wish to acknowledge funding from the National Health and Medical Research Council (NHMRC) of Australia, research fellowships to JAH (NHMRC) and RLA (National Breast Cancer Foundation), and scholarship support to AS (NHMRC) and KAM (Monash University).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.PubMedCrossRefGoogle Scholar
  3. 3.
    Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(1), 71–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66(1), 1–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Chee, D. O., Townsend, C. M., Jr., Galbraith, M. A., Eilber, F. R., & Morton, D. L. (1978). Selective reduction of human tumor cell populations by human granulocytes in vitro. Cancer Research, 38(12), 4534–4539.PubMedGoogle Scholar
  6. 6.
    Dvorak, A. M., Connell, A. B., Proppe, K., & Dvorak, H. F. (1978). Immunologic rejection of mammary adenocarcinoma (TA3-St) in C57BL/6 mice: participation of neutrophils and activated macrophages with fibrin formation. Journal of Immunology, 120(4), 1240–1248.Google Scholar
  7. 7.
    Di Carlo, E., Forni, G., & Musiani, P. (2003). Neutrophils in the antitumoral immune response. Chemical Immunology and Allergy, 83, 182–203.PubMedCrossRefGoogle Scholar
  8. 8.
    Souto, J. C., Vila, L., & Bru, A. (2011). Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Medicinal Research Reviews, 31(3), 311–363.PubMedCrossRefGoogle Scholar
  9. 9.
    Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Colotta, F., Re, F., Polentarutti, N., Sozzani, S., & Mantovani, A. (1992). Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 80(8), 2012–2020.PubMedGoogle Scholar
  12. 12.
    Smith, J. A. (1994). Neutrophils, host defense, and inflammation: a double-edged sword. Journal of Leukocyte Biology, 56(6), 672–686.PubMedGoogle Scholar
  13. 13.
    Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology, 7(9), 678–689.PubMedCrossRefGoogle Scholar
  14. 14.
    Hermant, B., Bibert, S., Concord, E., Dublet, B., Weidenhaupt, M., Vernet, T., et al. (2003). Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. Journal of Biological Chemistry, 278(16), 14002–14012.PubMedCrossRefGoogle Scholar
  15. 15.
    Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology, 6(3), 173–182.PubMedCrossRefGoogle Scholar
  16. 16.
    Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology, 11(8), 519–531.PubMedCrossRefGoogle Scholar
  17. 17.
    Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425. author reply 426.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood, 96(12), 3838–3846.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, H., Han, Y., Guo, Q., Zhang, M., & Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.CrossRefGoogle Scholar
  21. 21.
    Rieber, N., Gille, C., Köstlin, N., Schäfer, I., Spring, B., Ost, M., et al. (2013). Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clinical and Experimental Immunology, 174(1), 45–52.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., et al. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 50(3), 799–807.PubMedCrossRefGoogle Scholar
  23. 23.
    Cao, Y., Slaney, C. Y., Bidwell, B. N., Parker, B. S., Johnstone, C. N., Rautela, J., et al. (2014). BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Research, 74(18), 5091–5102.PubMedCrossRefGoogle Scholar
  24. 24.
    Serafini, P., Mgebroff, S., Noonan, K., & Borrello, I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849.PubMedCrossRefGoogle Scholar
  26. 26.
    Rotondo, R., Barisione, G., Mastracci, L., Grossi, F., Orengo, A. M., Costa, R., et al. (2009). IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. International Journal of Cancer, 125(4), 887–893.CrossRefGoogle Scholar
  27. 27.
    Schmielau, J., & Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Research, 61(12), 4756–4760.PubMedGoogle Scholar
  28. 28.
    Coffelt, S. B., Chen, Y. Y., Muthana, M., Welford, A. F., Tal, A. O., Scholz, A., et al. (2011). Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. Journal of Immunology, 186(7), 4183–4190.CrossRefGoogle Scholar
  29. 29.
    Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.CrossRefGoogle Scholar
  30. 30.
    Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., et al. (1999). Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. Journal of Immunology, 162(10), 5728–5737.Google Scholar
  31. 31.
    Youn, J. I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 14(3), 211–220.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.PubMedCrossRefGoogle Scholar
  33. 33.
    Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.CrossRefGoogle Scholar
  34. 34.
    Augier, S., Ciucci, T., Luci, C., Carle, G. F., Blin-Wakkach, C., & Wakkach, A. (2010). Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance. Journal of Immunology, 185(12), 7165–7173.CrossRefGoogle Scholar
  35. 35.
    Fleming, T. J., Fleming, M. L., & Malek, T. R. (1993). Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. Journal of Immunology, 151(5), 2399–2408.Google Scholar
  36. 36.
    Rose, S., Misharin, A., & Perlman, H. (2012). A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry. Part A, 81(4), 343–350.CrossRefGoogle Scholar
  37. 37.
    Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174(8), 4880–4891.CrossRefGoogle Scholar
  38. 38.
    Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.PubMedCrossRefGoogle Scholar
  39. 39.
    Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 22(2), 238–244.PubMedCrossRefGoogle Scholar
  40. 40.
    Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G + Ly6C+ granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lenzo, J. C., Turner, A. L., Cook, A. D., Vlahos, R., Anderson, G. P., Reynolds, E. C., et al. (2011). Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunology and Cell Biology, 90(4), 429–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Research, 70(14), 5728–5739.PubMedCrossRefGoogle Scholar
  43. 43.
    Granot, Z., Henke, E., Comen, E. A., King, T. A., Norton, L., & Benezra, R. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bao, Y., & Cao, X. (2011). Revisiting the protective and pathogenic roles of neutrophils: Ly-6G is key! European Journal of Immunology, 41(9), 2535–2538.PubMedCrossRefGoogle Scholar
  45. 45.
    Carr, K. D., Sieve, A. N., Indramohan, M., Break, T. J., Lee, S., & Berg, R. E. (2011). Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. European Journal of Immunology, 41(9), 2666–2676.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. Journal of Pathology, 196(3), 254–265.PubMedCrossRefGoogle Scholar
  47. 47.
    Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.PubMedCrossRefGoogle Scholar
  48. 48.
    Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer and Metastasis Reviews, 25(3), 315–322.PubMedCrossRefGoogle Scholar
  49. 49.
    Kershaw, M. H., Trapani, J. A., & Smyth, M. J. (1995). Cytotoxic lymphocytes: redirecting the cell-mediated immune response for the therapy of cancer. Therapeutic Immunology, 2(3), 173–181.PubMedGoogle Scholar
  50. 50.
    Ghiringhelli, F., Menard, C., Martin, F., & Zitvogel, L. (2006). The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunology Reviews, 214, 229–238.CrossRefGoogle Scholar
  51. 51.
    Orentas, R. J., Kohler, M. E., & Johnson, B. D. (2006). Suppression of anti-cancer immunity by regulatory T cells: back to the future. Seminars in Cancer Biology, 16(2), 137–149.PubMedCrossRefGoogle Scholar
  52. 52.
    Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R., & Johansson, C. C. (2010). Regulatory T cells in cancer. Advances in Cancer Research, 107, 57–117.PubMedCrossRefGoogle Scholar
  53. 53.
    Draca, S. R. (1993). The participation of natural cytotoxicity in the control of malignant disease. Panminerva Medica, 35(3), 123–126.PubMedGoogle Scholar
  54. 54.
    Alderson, K. L., & Sondel, P. M. (2011). Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. Journal of Biomedicine and Biotechnology, 2011, 379123.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Gillgrass, A., & Ashkar, A. (2011). Stimulating natural killer cells to protect against cancer: recent developments. Expert Review of Clinical Immunology, 7(3), 367–382.PubMedCrossRefGoogle Scholar
  56. 56.
    Johnson, G. R., Whitehead, R., & Nicola, N. A. (1985). Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis. International Journal of Cell Cloning, 3(2), 91–105.PubMedCrossRefGoogle Scholar
  57. 57.
    Hardy, C. L., & Balducci, L. (1986). Early hematopoietic events during tumor growth in mice. Journal of the National Cancer Institute, 76(3), 535–540.PubMedGoogle Scholar
  58. 58.
    Wislez, M., Rabbe, N., Marchal, J., Milleron, B., Crestani, B., Mayaud, C., et al. (2003). Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Research, 63(6), 1405–1412.PubMedGoogle Scholar
  59. 59.
    Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J. F., et al. (1998). Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. American Journal of Pathology, 152(1), 83–92.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Clark, R. A., & Klebanoff, S. J. (1975). Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. Journal of Experimental Medicine, 141(6), 1442–1447.PubMedCrossRefGoogle Scholar
  61. 61.
    Kondo, M., Kato, H., Yoshikawa, T., & Sugino, S. (1986). Treatment of cancer ascites by intraperitoneal administration of a streptococcal preparation OK-432 with fresh human complement—role of complement-derived chemotactic factor to neutrophils. International Journal of Immunopharmacology, 8(7), 715–721.PubMedCrossRefGoogle Scholar
  62. 62.
    Lichtenstein, A. (1987). Stimulation of the respiratory burst of murine peritoneal inflammatory neutrophils by conjugation with tumor cells. Cancer Research, 47(9), 2211–2217.PubMedGoogle Scholar
  63. 63.
    Lichtenstein, A., & Kahle, J. (1985). Anti-tumor effect of inflammatory neutrophils: characteristics of in vivo generation and in vitro tumor cell lysis. International Journal of Cancer, 35(1), 121–127.CrossRefGoogle Scholar
  64. 64.
    Pickaver, A. H., Ratcliffe, N. A., Williams, A. E., & Smith, H. (1972). Cytotoxic effects of peritoneal neutrophils on a syngeneic rat tumour. Nature - New Biology, 235(58), 186–187.PubMedCrossRefGoogle Scholar
  65. 65.
    Inoue, T., & Sendo, F. (1983). In vitro induction of cytotoxic polymorphonuclear leukocytes by supernatant from a concanavalin A-stimulated spleen cell culture. Journal of Immunology, 131(5), 2508–2514.Google Scholar
  66. 66.
    Colombo, M. P., Lombardi, L., Stoppacciaro, A., Melani, C., Parenza, M., Bottazzi, B., et al. (1992). Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo. Neutrophils discriminate between G-CSF-producing and G-CSF-nonproducing tumor cells. Journal of Immunology, 149(1), 113–119.Google Scholar
  67. 67.
    Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., et al. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation, 74(1), 146–157.PubMedGoogle Scholar
  68. 68.
    Colombo, M. P., Ferrari, G., Stoppacciaro, A., Parenza, M., Rodolfo, M., Mavilio, F., et al. (1991). Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. Journal of Experimental Medicine, 173(4), 889–897.PubMedCrossRefGoogle Scholar
  69. 69.
    Aeed, P. A., Nakajima, M., & Welch, D. R. (1988). The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. International Journal of Cancer, 42(5), 748–759.CrossRefGoogle Scholar
  70. 70.
    Aeed, P. A., & Welch, D. R. (1988). Sensitivity of locally recurrent rat mammary tumour cell lines to syngeneic polymorphonuclear cell, macrophage and natural killer cell cytolysis. British Journal of Cancer, 58(6), 746–752.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Dallegri, F., Ballestrero, A., Ottonello, L., & Patrone, F. (1989). Defective antibody-dependent tumour cell lysis by neutrophils from cancer patients. Clinical and Experimental Immunology, 77(1), 58–61.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2010). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193.CrossRefGoogle Scholar
  73. 73.
    Tazzyman, S., Barry, S. T., Ashton, S., Wood, P., Blakey, D., Lewis, C. E., et al. (2011). Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. International Journal of Cancer, 129(4), 847–58.CrossRefGoogle Scholar
  74. 74.
    Shang, K., Bai, Y. P., Wang, C., Wang, Z., Gu, H. Y., Du, X., et al. (2012). Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One, 7(12), e51848.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Tazawa, H., Okada, F., Kobayashi, T., Tada, M., Mori, Y., Une, Y., et al. (2003). Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. American Journal of Pathology, 163(6), 2221–2232.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Ishikawa, M., Koga, Y., Hosokawa, M., & Kobayashi, H. (1986). Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis. International Journal of Cancer, 37(6), 919–924.CrossRefGoogle Scholar
  77. 77.
    Jung, M. R., Park, Y. K., Jeong, O., Seon, J. W., Ryu, S. Y., Kim, D. Y., et al. (2011). Elevated preoperative neutrophil to lymphocyte ratio predicts poor survival following resection in late stage gastric cancer. Journal of Surgical Oncology, 104(5), 504–510.PubMedCrossRefGoogle Scholar
  78. 78.
    Shimada, H., Takiguchi, N., Kainuma, O., Soda, H., Ikeda, A., Cho, A., et al. (2010). High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer, 13(3), 170–176.PubMedCrossRefGoogle Scholar
  79. 79.
    Ubukata, H., Konishi, S., Nagata, H., Kasuga, N., Watanabe, Y., Goto, Y., et al. (2010). Significance of preoperative evaluations of tumor necrosis factor-alpha, the granulocyte/lymphocyte ratio and their correlation with regard to outcome in gastric cancer patients. Digestive Surgery, 27(4), 324–330.PubMedCrossRefGoogle Scholar
  80. 80.
    Ding, P. R., An, X., Zhang, R. X., Fang, Y. J., Li, L. R., Chen, G., et al. (2010). Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. International Journal of Colorectal Disease, 25(12), 1427–1433.PubMedCrossRefGoogle Scholar
  81. 81.
    Roxburgh, C. S., Wallace, A. M., Guthrie, G. K., Horgan, P. G., & McMillan, D. C. (2010). Comparison of the prognostic value of tumour- and patient-related factors in patients undergoing potentially curative surgery for colon cancer. Colorectal Disease, 12(10), 987–994.PubMedCrossRefGoogle Scholar
  82. 82.
    Chua, W., Charles, K. A., Baracos, V. E., & Clarke, S. J. (2011). Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. British Journal of Cancer, 104(8), 1288–1295.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Tomita, M., Shimizu, T., Ayabe, T., Yonei, A., & Onitsuka, T. (2011). Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Research, 31(9), 2995–2998.PubMedGoogle Scholar
  84. 84.
    Sharaiha, R. Z., Halazun, K. J., Mirza, F., Port, J. L., Lee, P. C., Neugut, A. I., et al. (2011). Elevated preoperative neutrophil: lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Annals of Surgical Oncology, 18(12), 3362–9.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Aliustaoglu, M., Bilici, A., Seker, M., Dane, F., Gocun, M., Konya, V., et al. (2010). The association of pre-treatment peripheral blood markers with survival in patients with pancreatic cancer. Hepato-Gastroenterology, 57(99–100), 640–645.PubMedGoogle Scholar
  86. 86.
    An, X., Ding, P. R., Li, Y. H., Wang, F. H., Shi, Y. X., Wang, Z. Q., et al. (2010). Elevated neutrophil to lymphocyte ratio predicts survival in advanced pancreatic cancer. Biomarkers, 15(6), 516–522.PubMedCrossRefGoogle Scholar
  87. 87.
    Bhatti, I., Peacock, O., Lloyd, G., Larvin, M., & Hall, R. I. (2010). Preoperative hematologic markers as independent predictors of prognosis in resected pancreatic ductal adenocarcinoma: neutrophil-lymphocyte versus platelet-lymphocyte ratio. American Journal of Surgery, 200(2), 197–203.PubMedCrossRefGoogle Scholar
  88. 88.
    Tavares-Murta, B. M., Mendonca, M. A., Duarte, N. L., da Silva, J. A., Mutao, T. S., Garcia, C. B., et al. (2010). Systemic leukocyte alterations are associated with invasive uterine cervical cancer. International Journal of Gynecological Cancer, 20(7), 1154–1159.PubMedCrossRefGoogle Scholar
  89. 89.
    Cho, H., Hur, H. W., Kim, S. W., Kim, S. H., Kim, J. H., Kim, Y. T., et al. (2009). Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunology, Immunotherapy, 58(1), 15–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Thavaramara, T., Phaloprakarn, C., Tangjitgamol, S., & Manusirivithaya, S. (2011). Role of neutrophil to lymphocyte ratio as a prognostic indicator for epithelial ovarian cancer. Journal of the Medical Association of Thailand, 94(7), 871–877.PubMedGoogle Scholar
  91. 91.
    Yamashita, J., Ogawa, M., & Shirakusa, T. (1995). Free-form neutrophil elastase is an independent marker predicting recurrence in primary breast cancer. Journal of Leukocyte Biology, 57(3), 375–378.PubMedGoogle Scholar
  92. 92.
    Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 27(28), 4709–4717.PubMedCrossRefGoogle Scholar
  93. 93.
    Kuang, D. M., Zhao, Q., Wu, Y., Peng, C., Wang, J., Xu, Z., et al. (2011). Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. Journal of Hepatology, 54(5), 948–955.PubMedCrossRefGoogle Scholar
  94. 94.
    Mentzel, T., Brown, L. F., Dvorak, H. F., Kuhnen, C., Stiller, K. J., Katenkamp, D., et al. (2001). The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv, 438(1), 13–22.PubMedCrossRefGoogle Scholar
  95. 95.
    Jensen, T. O., Schmidt, H., Moller, H. J., Donskov, F., Hoyer, M., & Sjoegren, P. (2011). Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer, 118(9), 2476–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu, H., Ubukata, H., Tabuchi, T., Takemura, A., Motohashi, G., Nishimura, M., et al. (2009). It is possible that tumour-infiltrating granulocytes promote tumour progression. Oncology Reports, 22(1), 29–33.PubMedGoogle Scholar
  97. 97.
    Mantovani, A. (2009). The yin-yang of tumor-associated neutrophils. Cancer Cell, 16(3), 173–174.PubMedCrossRefGoogle Scholar
  98. 98.
    Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Mantovani, A., Sica, A., & Locati, M. (2005). Macrophage polarization comes of age. Immunity, 23(4), 344–346.PubMedCrossRefGoogle Scholar
  100. 100.
    Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., & Weiss, S. (2010). Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. Journal of Clinical Investigation, 120(4), 1151–1164.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Houghton, A. M. (2010). The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle, 9(9), 1732–1737.PubMedCrossRefGoogle Scholar
  102. 102.
    Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J., & Fridlender, Z. G. (2013). Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunology, Immunotherapy, 62(11), 1745–1756.PubMedCrossRefGoogle Scholar
  103. 103.
    Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D., & Redmond, H. P. (2001). Human neutrophils facilitate tumor cell transendothelial migration. American Journal of Physiology - Cellular Physiology, 280(4), C814–822.Google Scholar
  104. 104.
    Wislez, M., Fleury-Feith, J., Rabbe, N., Moreau, J., Cesari, D., Milleron, B., et al. (2001). Tumor-derived granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor prolong the survival of neutrophils infiltrating bronchoalveolar subtype pulmonary adenocarcinoma. American Journal of Pathology, 159(4), 1423–1433.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357(9255), 539–545.PubMedCrossRefGoogle Scholar
  106. 106.
    Hannelien, V., Karel, G., Jo, V. D., & Sofie, S. (2011). The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochimica et Biophysica Acta, 1825(1), 117–129.PubMedGoogle Scholar
  107. 107.
    Murdoch, C., & Finn, A. (2000). Chemokine receptors and their role in inflammation and infectious diseases. Blood, 95(10), 3032–3043.PubMedGoogle Scholar
  108. 108.
    Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14(21), 6735–6741.PubMedCrossRefGoogle Scholar
  109. 109.
    Eck, M., Schmausser, B., Scheller, K., Brandlein, S., & Muller-Hermelink, H. K. (2003). Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clinical and Experimental Immunology, 134(3), 508–515.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.PubMedCrossRefGoogle Scholar
  111. 111.
    Cheng, W. L., Wang, C. S., Huang, Y. H., Tsai, M. M., Liang, Y., & Lin, K. H. (2011). Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Annals of Oncology, 22(10), 2267–2276.PubMedCrossRefGoogle Scholar
  112. 112.
    Strell, C., Lang, K., Niggemann, B., Zaenker, K. S., & Entschladen, F. (2010). Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Experimental Cell Research, 316(1), 138–148.PubMedCrossRefGoogle Scholar
  113. 113.
    di Celle, P. F., Carbone, A., Marchis, D., Zhou, D., Sozzani, S., Zupo, S., et al. (1994). Cytokine gene expression in B-cell chronic lymphocytic leukemia: evidence of constitutive interleukin-8 (IL-8) mRNA expression and secretion of biologically active IL-8 protein. Blood, 84(1), 220–228.PubMedGoogle Scholar
  114. 114.
    Green, A. R., Green, V. L., White, M. C., & Speirs, V. (1997). Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. International Journal of Cancer, 72(6), 937–941.CrossRefGoogle Scholar
  115. 115.
    Tjiong, M. Y., van der Vange, N., ten Kate, F. J., Tjong, A. H. S. P., ter Schegget, J., Burger, M. P., et al. (1999). Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer. Gynecologic Oncology, 73(2), 285–291.PubMedCrossRefGoogle Scholar
  116. 116.
    Scheibenbogen, C., Mohler, T., Haefele, J., Hunstein, W., & Keilholz, U. (1995). Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Research, 5(3), 179–181.PubMedCrossRefGoogle Scholar
  117. 117.
    Haqqani, A. S., Sandhu, J. K., & Birnboim, H. C. (2000). Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia, 2(6), 561–568.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., et al. (2003). Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. International Journal of Cancer, 103(3), 335–343.CrossRefGoogle Scholar
  119. 119.
    Yao, C., Lin, Y., Chua, M. S., Ye, C. S., Bi, J., Li, W., et al. (2007). Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. International Journal of Cancer, 121(9), 1949–1957.CrossRefGoogle Scholar
  120. 120.
    Maus, U. A., Waelsch, K., Kuziel, W. A., Delbeck, T., Mack, M., Blackwell, T. S., et al. (2003). Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation: role of the CCL2-CCR2 axis. Journal of Immunology, 170(6), 3273–3278.CrossRefGoogle Scholar
  121. 121.
    Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., et al. (1991). Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. Journal of Cellular Biochemistry, 45(2), 167–176.PubMedCrossRefGoogle Scholar
  122. 122.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedCrossRefGoogle Scholar
  123. 123.
    Lawrence, M. B., & Springer, T. A. (1993). Neutrophils roll on E-selectin. Journal of Immunology, 151(11), 6338–6346.Google Scholar
  124. 124.
    Woodfin, A., Voisin, M. B., & Nourshargh, S. (2010). Recent developments and complexities in neutrophil transmigration. Current Opinion in Hematology, 17(1), 9–17.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Opdenakker, G., & Van Damme, J. (2004). The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. International Journal of Developmental Biology, 48(5–6), 519–527.PubMedCrossRefGoogle Scholar
  126. 126.
    Piccard, H., Muschel, R. J., & Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 82(3), 296–309.PubMedCrossRefGoogle Scholar
  127. 127.
    Pham, C. T. (2006). Neutrophil serine proteases: specific regulators of inflammation. Nature Reviews Immunology, 6(7), 541–550.PubMedCrossRefGoogle Scholar
  128. 128.
    Hager, M., Cowland, J. B., & Borregaard, N. (2010). Neutrophil granules in health and disease. Journal of Internal Medicine, 268(1), 25–34.PubMedGoogle Scholar
  129. 129.
    Belaaouaj, A., McCarthy, R., Baumann, M., Gao, Z., Ley, T. J., Abraham, S. N., et al. (1998). Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nature Medicine, 4(5), 615–618.PubMedCrossRefGoogle Scholar
  130. 130.
    Lee, W. L., & Downey, G. P. (2001). Leukocyte elastase: physiological functions and role in acute lung injury. American Journal of Respiratory and Critical Care Medicine, 164(5), 896–904.PubMedCrossRefGoogle Scholar
  131. 131.
    Houghton, A. M., Rzymkiewicz, D. M., Ji, H., Gregory, A. D., Egea, E. E., Metz, H. E., et al. (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 16(2), 219–223.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Wada, Y., Yoshida, K., Hihara, J., Konishi, K., Tanabe, K., Ukon, K., et al. (2006). Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha. Cancer Science, 97(10), 1037–1043.PubMedCrossRefGoogle Scholar
  133. 133.
    Gong, L., Cumpian, A. M., Caetano, M. S., Ochoa, C. E., De la Garza, M. M., Lapid, D. J., et al. (2013). Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Molecular Cancer, 12(1), 154.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Clavel, C., Polette, M., Doco, M., Binninger, I., & Birembaut, P. (1992). Immunolocalization of matrix metallo-proteinases and their tissue inhibitor in human mammary pathology. Bulletin du Cancer, 79(3), 261–270.PubMedGoogle Scholar
  135. 135.
    Hojilla, C. V., Wood, G. A., & Khokha, R. (2008). Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Research, 10(2), 205.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Pollard, J. W. (2008). Macrophages define the invasive microenvironment in breast cancer. Journal of Leukocyte Biology, 84(3), 623–30.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Nielsen, B. S., Timshel, S., Kjeldsen, L., Sehested, M., Pyke, C., Borregaard, N., et al. (1996). 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. International Journal of Cancer, 65(1), 57–62.CrossRefGoogle Scholar
  138. 138.
    Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Bausch, D., Pausch, T., Krauss, T., Hopt, U. T., Fernandez-del-Castillo, C., Warshaw, A. L., et al. (2011). Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis, 14(3), 235–243.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Bekes, E. M., Schweighofer, B., Kupriyanova, T. A., Zajac, E., Ardi, V. C., Quigley, J. P., et al. (2011). Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. American Journal of Pathology, 179(3), 1455–1470.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Nakamura, T., Kuwai, T., Kim, J. S., Fan, D., Kim, S. J., & Fidler, I. J. (2007). Stromal metalloproteinase-9 is essential to angiogenesis and progressive growth of orthotopic human pancreatic cancer in parabiont nude mice. Neoplasia, 9(11), 979–986.PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Starkey, J. R., Liggitt, H. D., Jones, W., & Hosick, H. L. (1984). Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium. International Journal of Cancer, 34(4), 535–543.CrossRefGoogle Scholar
  143. 143.
    Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Research, 70(14), 6071–6082.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.PubMedCrossRefGoogle Scholar
  145. 145.
    Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6 Suppl 16), 15–18.PubMedCrossRefGoogle Scholar
  146. 146.
    Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509.PubMedCrossRefGoogle Scholar
  147. 147.
    Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: potential initiators of the angiogenic cascade. Chemical Immunology and Allergy, 83, 167–181.PubMedCrossRefGoogle Scholar
  148. 148.
    Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172(8), 5034–5040.CrossRefGoogle Scholar
  149. 149.
    Van Coillie, E., Van Aelst, I., Wuyts, A., Vercauteren, R., Devos, R., De Wolf-Peeters, C., et al. (2001). Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. American Journal of Pathology, 159(4), 1405–1414.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481–490.PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemical Biology, 3(11), 895–904.CrossRefGoogle Scholar
  152. 152.
    Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410.PubMedCrossRefGoogle Scholar
  153. 153.
    Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–174.PubMedCrossRefGoogle Scholar
  154. 154.
    Opdenakker, G., Van den Steen, P. E., Dubois, B., Nelissen, I., Van Coillie, E., Masure, S., et al. (2001). Gelatinase B functions as regulator and effector in leukocyte biology. Journal of Leukocyte Biology, 69(6), 851–859.PubMedGoogle Scholar
  155. 155.
    Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I., & Quigley, J. P. (2007). Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20262–20267.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Deryugina, E. I., Zajac, E., Juncker-Jensen, A., Kupriyanova, T. A., Welter, L., & Quigley, J. P. (2014). Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia, 16(10), 771–788.PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Morikawa, K., Kamegaya, S., Yamazaki, M., & Mizuno, D. (1985). Hydrogen peroxide as a tumoricidal mediator of murine polymorphonuclear leukocytes induced by a linear beta-1,3-D-glucan and some other immunomodulators. Cancer Research, 45(8), 3482–3486.PubMedGoogle Scholar
  158. 158.
    Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3), 181–189.PubMedCrossRefGoogle Scholar
  159. 159.
    Babior, B. M., Lambeth, J. D., & Nauseef, W. (2002). The neutrophil NADPH oxidase. Archives of Biochemistry and Biophysics, 397(2), 342–344.PubMedCrossRefGoogle Scholar
  160. 160.
    Fialkow, L., Wang, Y., & Downey, G. P. (2007). Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radical Biology and Medicine, 42(2), 153–164.PubMedCrossRefGoogle Scholar
  161. 161.
    Evans, T. J., Buttery, L. D., Carpenter, A., Springall, D. R., Polak, J. M., & Cohen, J. (1996). Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9553–9558.PubMedCentralPubMedCrossRefGoogle Scholar
  162. 162.
    Wheeler, M. A., Smith, S. D., Garcia-Cardena, G., Nathan, C. F., Weiss, R. M., & Sessa, W. C. (1997). Bacterial infection induces nitric oxide synthase in human neutrophils. Journal of Clinical Investigation, 99(1), 110–116.PubMedCentralPubMedCrossRefGoogle Scholar
  163. 163.
    Sandhu, J. K., Privora, H. F., Wenckebach, G., & Birnboim, H. C. (2000). Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. American Journal of Pathology, 156(2), 509–518.PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Weitzman, S. A., & Gordon, L. I. (1990). Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 76(4), 655–663.PubMedGoogle Scholar
  165. 165.
    Wilkinson, D., Sandhu, J. K., Breneman, J. W., Tucker, J. D., & Birnboim, H. C. (1995). Hprt mutants in a transplantable murine tumour arise more frequently in vivo than in vitro. British Journal of Cancer, 72(5), 1234–1240.PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Tamir, S., & Tannenbaum, S. R. (1996). The role of nitric oxide (NO.) in the carcinogenic process. Biochimica et Biophysica Acta, 1288(2), F31–36.PubMedGoogle Scholar
  167. 167.
    Knaapen, A. M., Gungor, N., Schins, R. P., Borm, P. J., & Van Schooten, F. J. (2006). Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis, 21(4), 225–236.PubMedCrossRefGoogle Scholar
  168. 168.
    Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5(8), 641–654.PubMedCrossRefGoogle Scholar
  169. 169.
    Peinado, H., Rafii, S., & Lyden, D. (2008). Inflammation joins the “niche”. Cancer Cell, 14(5), 347–349.PubMedCentralPubMedCrossRefGoogle Scholar
  170. 170.
    Roy, L. D., Ghosh, S., Pathangey, L. B., Tinder, T. L., Gruber, H. E., & Mukherjee, P. (2011). Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer, 11, 365.PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: the premetastatic niche. Cancer Research, 66(23), 11089–11093.PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research, 10(15), 4895–4900.PubMedCrossRefGoogle Scholar
  174. 174.
    Welch, D. R., Schissel, D. J., Howrey, R. P., & Aeed, P. A. (1989). Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 86(15), 5859–5863.PubMedCentralPubMedCrossRefGoogle Scholar
  175. 175.
    Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMedGoogle Scholar
  176. 176.
    Dong, C., Slattery, M. J., Liang, S., & Peng, H. H. (2005). Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Molecular & Cellular Biomechanics, 2(3), 145–159.Google Scholar
  177. 177.
    Slattery, M. J., & Dong, C. (2003). Neutrophils influence melanoma adhesion and migration under flow conditions. International Journal of Cancer, 106(5), 713–722.CrossRefGoogle Scholar
  178. 178.
    Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122.PubMedCentralPubMedCrossRefGoogle Scholar
  179. 179.
    Liotta, L. A., Saidel, M. G., & Kleinerman, J. (1976). The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Research, 36(3), 889–894.PubMedGoogle Scholar
  180. 180.
    Morimoto-Kamata, R., Mizoguchi, S., Ichisugi, T., & Yui, S. (2012). Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediators of Inflammation, 2012, 456462.PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Yui, S., Tomita, K., Kudo, T., Ando, S., & Yamazaki, M. (2005). Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Science, 96(9), 560–570.PubMedCrossRefGoogle Scholar
  182. 182.
    Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66(1), 259–266.PubMedCentralPubMedCrossRefGoogle Scholar
  183. 183.
    Fox, S., Leitch, A. E., Duffin, R., Haslett, C., & Rossi, A. G. (2010). Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. Journal of Innate Immunity, 2(3), 216–227.PubMedCentralPubMedCrossRefGoogle Scholar
  184. 184.
    Filardy, A. A., Pires, D. R., Nunes, M. P., Takiya, C. M., Freire-de-Lima, C. G., Ribeiro-Gomes, F. L., et al. (2010). Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. Journal of Immunology, 185(4), 2044–2050.CrossRefGoogle Scholar
  185. 185.
    Broug-Holub, E., Toews, G. B., van Iwaarden, J. F., Strieter, R. M., Kunkel, S. L., Paine, R., 3rd, et al. (1997). Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infection and Immunity, 65(4), 1139–1146.PubMedCentralPubMedGoogle Scholar
  186. 186.
    Pahler, J. C., Tazzyman, S., Erez, N., Chen, Y. Y., Murdoch, C., Nozawa, H., et al. (2008). Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia, 10(4), 329–340.PubMedCentralPubMedCrossRefGoogle Scholar
  187. 187.
    Silva, M. T. (2011). Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. Journal of Leukocyte Biology, 89(5), 675–683.PubMedCrossRefGoogle Scholar
  188. 188.
    Allenbach, C., Zufferey, C., Perez, C., Launois, P., Mueller, C., & Tacchini-Cottier, F. (2006). Macrophages induce neutrophil apoptosis through membrane TNF, a process amplified by Leishmania major. Journal of Immunology, 176(11), 6656–6664.CrossRefGoogle Scholar
  189. 189.
    Swierczak, A., Cook, A. D., Lenzo, J. C., Restall, C. M., Doherty, J. P., Anderson, R. L., et al. (2014). The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunology Research, 2(8), 765–776.PubMedCrossRefGoogle Scholar
  190. 190.
    Denardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.PubMedCentralPubMedCrossRefGoogle Scholar
  191. 191.
    Ries, C. H., Cannarile, M. A., Hoves, S., Benz, J., Wartha, K., Runza, V., et al. (2014). Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 25(6), 846–859.PubMedCrossRefGoogle Scholar
  192. 192.
    Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.PubMedCentralPubMedCrossRefGoogle Scholar
  193. 193.
    Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503–3521.PubMedGoogle Scholar
  194. 194.
    Tazzyman, S., Lewis, C. E., & Murdoch, C. (2009). Neutrophils: key mediators of tumour angiogenesis. International Journal of Experimental Pathology, 90(3), 222–231.PubMedCentralPubMedCrossRefGoogle Scholar
  195. 195.
    Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Glass, M., Burdick, M. D., & Strieter, R. M. (1996). Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. Journal of Clinical Investigation, 97(12), 2792–2802.PubMedCentralPubMedCrossRefGoogle Scholar
  196. 196.
    Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., et al. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 161(1), 125–134.PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Walters, I., Austin, C., Austin, R., Bonnert, R., Cage, P., Christie, M., et al. (2008). Evaluation of a series of bicyclic CXCR2 antagonists. Bioorganic and Medicinal Chemistry Letters, 18(2), 798–803.PubMedCrossRefGoogle Scholar
  198. 198.
    Varney, M. L., Singh, S., Li, A., Mayer-Ezell, R., Bond, R., & Singh, R. K. (2011). Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Letters, 300(2), 180–188.PubMedCentralPubMedCrossRefGoogle Scholar
  199. 199.
    Singh, S., Sadanandam, A., Nannuru, K. C., Varney, M. L., Mayer-Ezell, R., Bond, R., et al. (2009). Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clinical Cancer Research, 15(7), 2380–2386.PubMedCentralPubMedCrossRefGoogle Scholar
  200. 200.
    Ning, Y., Labonte, M. J., Zhang, W., Bohanes, P. O., Gerger, A., Yang, D., et al. (2012). The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Molecular Cancer Therapeutics, 11(6), 1353–1364.PubMedCrossRefGoogle Scholar
  201. 201.
    Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., et al. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522(7556), 345–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Gadducci, A., Sergiampietri, C., & Guiggi, I. (2013). Antiangiogenic agents in advanced, persistent or recurrent endometrial cancer: a novel treatment option. Gynecological Endocrinology, 29(9), 811–6.PubMedCrossRefGoogle Scholar
  203. 203.
    Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6742–6747.PubMedCentralPubMedCrossRefGoogle Scholar
  204. 204.
    Phan, V. T., Wu, X., Cheng, J. H., Sheng, R. X., Chung, A. S., Zhuang, G., et al. (2013). Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6079–6084.PubMedCentralPubMedCrossRefGoogle Scholar
  205. 205.
    Shojaei, F., & Ferrara, N. (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Research, 68(14), 5501–5504.PubMedCrossRefGoogle Scholar
  206. 206.
    Sanford, M. A., Yan, Y., Canfield, S. E., Hassan, W., Selleck, W. A., Atkinson, G., et al. (2001). Independent contributions of GR-1+ leukocytes and Fas/FasL interactions to induce apoptosis following interleukin-12 gene therapy in a metastatic model of prostate cancer. Human Gene Therapy, 12(12), 1485–1498.PubMedCrossRefGoogle Scholar
  207. 207.
    Siders, W. M., Shields, J., Garron, C., Hu, Y., Boutin, P., Shankara, S., et al. (2010). Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models. Leukemia and Lymphoma, 51(7), 1293–1304.PubMedCrossRefGoogle Scholar
  208. 208.
    Hernandez-Ilizaliturri, F. J., Jupudy, V., Ostberg, J., Oflazoglu, E., Huberman, A., Repasky, E., et al. (2003). Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clinical Cancer Research, 9(16 Pt 1), 5866–5873.PubMedGoogle Scholar
  209. 209.
    Thornton, L. M., Andersen, B. L., & Carson, W. E., 3rd. (2008). Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case–control analysis. Cancer Immunology, Immunotherapy, 57(10), 1471–1481.PubMedCentralPubMedCrossRefGoogle Scholar
  210. 210.
    Fridlender, Z. G., & Albelda, S. M. (2012). Tumor-associated neutrophils: friend or foe? Carcinogenesis, 33(5), 949–955.PubMedCrossRefGoogle Scholar
  211. 211.
    Remedi, M. M., Donadio, A. C., & Chiabrando, G. A. (2009). Polymorphonuclear cells stimulate the migration and metastatic potential of rat sarcoma cells. International Journal of Experimental Pathology, 90(1), 44–51.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Agnieszka Swierczak
    • 1
    • 2
  • Kellie A. Mouchemore
    • 1
    • 3
  • John A. Hamilton
    • 2
  • Robin L. Anderson
    • 1
    • 4
    • 5
  1. 1.Research DivisionPeter MacCallum Cancer CentreEast MelbourneAustralia
  2. 2.Arthritis and Inflammation Research Centre, Department of MedicineThe University of Melbourne, Royal Melbourne HospitalMelbourneAustralia
  3. 3.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
  4. 4.Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneAustralia
  5. 5.Department of PathologyThe University of MelbourneMelbourneAustralia

Personalised recommendations