Advertisement

Cancer and Metastasis Reviews

, Volume 34, Issue 3, pp 443–464 | Cite as

New advances in genitourinary cancer: evidence gathered in 2014

  • C. Suárez
  • J. Puente
  • E. Gallardo
  • M. J. Méndez-Vidal
  • M. A. Climent
  • L. León
  • D. Olmos
  • X. García del Muro
  • E. González-Billalabeitia
  • E. Grande
  • J. Bellmunt
  • B. Mellado
  • P. Maroto
  • A. González del Alba
Clinical

Abstract

This review provides updated information published in 2014 regarding advances and major achievements in genitourinary cancer. Sections include the best in prostate cancer, renal cancer, bladder cancer, and germ cell tumors. In the field of prostate cancer, data related to treatment approach of hormone-sensitive disease, castrate-resistant prostate cancer, mechanisms of resistance, new drugs, and molecular research are presented. In relation to renal cancer, relevant aspects in the treatment of advanced renal cell carcinoma, immunotherapy, and molecular research, including angiogenesis and von Hippel-Lindau gene, molecular biology of non-clear cell histologies, and epigenetics of clear renal cell cancer are described. New strategies in the management of muscle-invasive localized bladder cancer and metastatic disease are reported as well as salient findings of biomolecular research in urothelial cancer. Some approaches intended to improve outcomes in poor prognosis patients with metastatic germ cell cancer are also reported. Results of clinical trials in these areas are discussed.

Keywords

Genitourinary cancer Bladder cancer Renal cancer Prostate cancer Molecular research Germ cell tumors 

Notes

Acknowledgments

The authors thank Marta Pulido, MD, PhD, freelance author’s editor for assistance in writing of the manuscript and Content Ed Net Communications, Madrid (Spain) for editorial assistance with funding from Astellas.

Conflict of interest

C. Suárez has participated in advisory boards for Janssen, Astellas, Sanofi, and Bayer.

J. Puente has participated in advisory boards for Astellas, Sanofi, and Janssen.

E. Gallardo has been a member of advisory boards for Astellas, Janssen, Sanofi, and Bayer and has received travel or meeting funding by Astellas, Janssen, and Sanofi.

M.J. Méndez-Vidal has served as an advisor and a speaker for Janssen, Astellas, and Sanofi.

L. León has received honoraria as a speaker from Astellas.

D. Olmos have received research funding from Astellas, Janssen, Sanofi, Bayer, and Veridex.

X. García del Muro has served as an advisor and a speaker for Pfizer, Bayer, and Novartis.

E. González-Billalabeitia has been a member of the advisory boards of Astellas, Janssen, and Sanofi at the time of writing of the manuscript.

E. Grande has received financial support for research from Astellas, GSK, and Pfizer and served as an advisor and a speaker for Pfizer, Novartis, Pierre-Fabre, and Janssen.

A. González del Alba has participated in advisory boards for Janssen, Astellas, Sanofi, GSK and Bayer at the time of writing of the manuscript.

References

  1. 1.
    Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians. doi: 10.3322/caac.21208.Google Scholar
  2. 2.
    James, N. D., Spears, M. R., Clarke, N. W., Dearnaley, D. P., De Bono, J. S., Gale, J., et al. (2014). Survival with newly diagnosed metastatic prostate cancer in the “docetaxel era”: data from 917 patients in the control arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019). European Urology. doi: 10.1016/j.eururo.2014.09.032.Google Scholar
  3. 3.
    Klotz, L., Miller, K., Crawford, E. D., Shore, N., Tombal, B., Karup, C., et al. (2014). Disease control outcomes from analysis of pooled individual patient data from five comparative randomised clinical trials of degarelix versus luteinising hormone-releasing hormone agonists. European Urology, 66, 1101–1108. doi: 10.1016/j.eururo.2013.12.063.PubMedCrossRefGoogle Scholar
  4. 4.
    Crawford, E. D., Shore, N. D., Moul, J. W., Tombal, B., Schröder, F. H., Miller, K., et al. (2014). Long-term tolerability and efficacy of degarelix: 5-year results from a phase III extension trial with a 1-arm crossover from leuprolide to degarelix. Urology, 83, 1122–1128. doi: 10.1016/j.urology.2014.01.013.PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia-Albeniz, X., Chan, J. M., Paciorek, A. T., Logan, R. W., Kenfield, S. A., Cooperberg, R. M., et al. (2014). Immediate versus deferred initiation of androgen deprivation therapy in prostate cancer patients with PSA-only relapse. Journal of Clinical Oncology, 32, 5s (suppl; abstr 5003).CrossRefGoogle Scholar
  6. 6.
    Tombal, B., Borre, M., Rathenborg, P., Werbrouck, P., Van Poppel, H., Heidenreich, A., et al. (2014). Enzalutamide monotherapy in hormone-naive prostate cancer: primary analysis of an open-label, single-arm, phase 2 study. Lancet Oncology, 15, 592–600. doi: 10.1016/S1470-2045(14)70129-9.PubMedCrossRefGoogle Scholar
  7. 7.
    Fizazi, K., Laplanche, A., Lesaunier, F., Delva, R., Gravis, G., Rolland, F., et al. (2014). Docetaxel-estramustine in localized high-risk prostate cancer: results of the French Genito-Urinary Tumor Group GETUG 12 phase III trial. Journal of Clinical Oncology, 32, 5s (suppl; abstr 5005).CrossRefGoogle Scholar
  8. 8.
    Asangani, I. A., Dommeti, V. L., Wang, X., Malik, R., Cieslik, M., Yang, R., et al. (2014). Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature, 510, 278–282. doi: 10.1038/nature13229.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Li, L., Chang, W., Yang, G., Ren, C., Park, S., Karantanos, T., et al. (2014). Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Science Signaling, 7, ra47. doi: 10.1126/scisignal.2005070.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lohr, J. G., Adalsteinsson, V. A., Cibulskis, K., Choudhury, A. D., Rosenberg, M., Cruz-Gordillo, P., et al. (2014). Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nature Biotcehnology, 32, 479–484. doi: 10.1038/nbt.2892.CrossRefGoogle Scholar
  11. 11.
    Carreira, S., Romanel, A., Goodall, J., Grist, E., Ferraldeschi, R., Miranda, S., et al. (2014). Tumor clone dynamics in lethal prostate cancer. Science Translational Medicine, 6, 254ra125. doi: 10.1126/scitranslmed.3009448.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Gao, D., Vela, I., Sboner, A., Iaquinta, P. J., Karthaus, W. R., Gopalan, A., et al. (2014). Organoid cultures derived from patients with advanced prostate cancer. Cell, 159, 176–187. doi: 10.1016/j.cell.2014.08.016.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Castro, E., Goh, C., Leongamornlert, D., Saunders, E., Tymrakiewicz, M., Dadaev, T., et al. (2014). Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. European Urology. doi: 10.1016/j.eururo.2014.10.022.PubMedCentralGoogle Scholar
  14. 14.
    Motzer, R. J., Hutson, T. E., Cella, D., Reeves, J., Hawkins, R., Guo, J., et al. (2013). Pazopanib versus sunitinib in metastatic renal-cell carcinoma. New England Journal of Medicine, 369, 722–731. doi: 10.1056/NEJMoa1303989.PubMedCrossRefGoogle Scholar
  15. 15.
    Motzer, E. J., Hudson, T. E., McCann, L., & Choueiri, T. K. (2014). Overall survival in renal-cell carcinoma with pazopanib versus sunitinib. New England Journal of Medicine, 370, 1769–1770. doi: 10.1056/NEJMc1400731.PubMedCrossRefGoogle Scholar
  16. 16.
    Rini, B. I., Bellmunt, J., Clancy, J., Wang, K., Niethammer, A. G., Hariharan, S., et al. (2014). Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. Journal of Clinical Oncology, 32, 752–759. doi: 10.1200/JCO.2013.50.5305.PubMedCrossRefGoogle Scholar
  17. 17.
    Motzer, R. J., Barrios, C. H., Kim, T. M., Falcon, S., Cosgriff, T., Harker, W. G., et al. (2014). Phase II randomized trial comparing sequential first-line everolimus and second-line sunitinib versus first-line sunitinib and second-line everolimus in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 32, 2765–2772. doi: 10.1200/JCO.2013.54.6911.PubMedCrossRefGoogle Scholar
  18. 18.
    Michel, M.S., Vervenne, W., Santis, M., von Weikersthal, L.F., Goebell, P.J., Juergen Lerchenmueller, J., et al. (2014). SWITCH: a randomized sequential open-label study to evaluate efficacy and safety of sorafenib (SO)/sunitinib (SU) versus SU/SO in the treatment of metastatic renal cell cancer (mRCC). Journal of Clinical Oncology,32. (suppl 4; abstr 393).Google Scholar
  19. 19.
    Hutson, T. E., Escudier, B., Esteban, E., Bjarnason, G. A., Lim, H. Y., Pittman, K. B., et al. (2014). Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 32, 760–767. doi: 10.1200/JCO.2013.50.3961.PubMedCrossRefGoogle Scholar
  20. 20.
    Motzer, R. J., Porta, C., Vogelzang, N. J., Sternberg, C. N., Szczylik, C., Zolnierek, J., et al. (2014). Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncology, 15, 286–296.Google Scholar
  21. 21.
    Heng, D. Y., Wells, J. C., Rini, B. I., Beuselinck, B., Lee, J. L., Knox, J. J., et al. (2014). Cytoreductive nephrectomy in patients with synchronous metastases from renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. European Urology, 66, 704–710. doi: 10.1016/j.eururo.2014.05.034.PubMedCrossRefGoogle Scholar
  22. 22.
    Tannir, N. M., Jonasch, E., Altinmakas, E., Ng, C. S., Qiao, W., Tamboli, P., et al. (2014). Everolimus versus sunitinib prospective evaluation in metastatic non-clear cell renal cell carcinoma (The ESPN Trial): a multicenter randomized phase 2 trial. Journal of Clinical Oncology, 32, 5s (suppl; abstr 4505).CrossRefGoogle Scholar
  23. 23.
    A proof of concept study of maintenance therapy with tasquinimod in patients with metastatic castrate-resistant prostate cancer who are not progressing after a first line docetaxel based chemotherapy. Available at: http://clinicaltrials.gov/ct2/show/NCT01732549. Accessed June 6, 2014.
  24. 24.
    Ojemuyinwa, M.A., Karzai, F.H., Shah, A.A., Theoret, M.R., Harold, N., Chun, G., et al. (2014). A safety study of trebananib (AMG 386) and abiraterone in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 32. (suppl; abstr 218).Google Scholar
  25. 25.
    Kwon, E. D., Drake, C. G., Scher, H. I., Fizazi, K., Bossi, A., van den Eertwegh, A. J., et al. (2014). Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multi- centre, randomised, double-blind, phase 3 trial. Lancet Oncology, 15, 700–712. doi: 10.1016/S1470-2045(14)70189-5.PubMedCrossRefGoogle Scholar
  26. 26.
    Drake, C.G., Kwon, E.D., Fizazi, K., Bossi, A., van den Eertwegh, A.J., Logothetis, C. (2014). Results of subset analyses on overall survival (OS) from the study CA184-043: ipilimumab versus placebo in post-docetaxel metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 32. (suppl 4; abstr 2).Google Scholar
  27. 27.
    Schweizer, M.T., Drake, C.G. (2014). Immunotherapy for prostate cancer: recent developments and future challenges. Cancer Metastasis Reviews: 33641–55.Google Scholar
  28. 28.
    Miyahira, A. K., Kissick, H. T., Bishop, J. L., Takeda, E. Y., Barbieri, C. E., Simons, J. W., et al. (2014). Beyond immune checkpoint blockade: new approaches to targeting host-tumor interactions in prostate cancer: report from the 2014 Coffey-Holden Prostate Cancer Academy meeting. Prostate, 75, 337–347. doi: 10.1002/pros.22920.PubMedCrossRefGoogle Scholar
  29. 29.
    Olson, B. M., Johnson, L. E., & McNeel, D. G. (2013). The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer. Cancer Immunology, Immunotherapy, 62, 585–596. doi: 10.1007/s00262-012-1363-9.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lucas, J. M., Heinlein, C., Kim, T., Hernandez, S. A., Malik, M. S., True, L. D., et al. (2014). The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discovery, 4, 1310–1325. doi: 10.1158/2159-8290.CD-13-1010.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Theurillat, J. P., Udeshi, N. D., Errington, W. J., Svinkina, T., Baca, S. C., Pop, M., et al. (2014). Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science, 346, 85–89. doi: 10.1126/science.1250255.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Hussong, M., Börno, S. T., Kerick, M., Wunderlich, A., Franz, A., Sültmann, H., et al. (2014). The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response. Cell Death Diseases, 5, e1195. doi: 10.1038/cddis.2014.157.CrossRefGoogle Scholar
  33. 33.
    Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. New England Journal of Medicine, 351, 1502–1512.PubMedCrossRefGoogle Scholar
  34. 34.
    Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M. E., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. New England Journal of Medicine, 351, 1513–1520.PubMedCrossRefGoogle Scholar
  35. 35.
    Berthold, D. R., Pond, G. R., Soban, F., de Wit, R., Eisenberger, M., & Tannock, I. F. (2008). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. Journal of Clinical Oncology, 26, 242–245. doi: 10.1200/JCO.2007.12.4008.PubMedCrossRefGoogle Scholar
  36. 36.
    Clarke, J. M., & Armstrong, A. J. (2013). Novel therapies for the treatment of advanced prostate cancer. Current Treatment Options in Oncology, 14, 109–126. doi: 10.1007/s11864-012-0222-4.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sweeney, C., Chen, Y. H., Carducci, M. A., Liu, G., Jarrard, D. F., Eisenberger, M. A., et al. (2014). Impact on overall survival (OS) with chemohormonal therapy versus hormonal therapy for hormone-sensitive newly metastatic prostate cancer (mPrCa): an ECOG-led phase III randomized trial. Journal of Clinical Oncology, 32, 5s (suppl; abstr LBA2).CrossRefGoogle Scholar
  38. 38.
    Gravis, G., Fizazi, K., Joly, F., Oudard, S., Priou, F., Esterni, B., et al. (2013). Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncology, 14, 149–158. doi: 10.1016/S1470-2045(12)70560-0.PubMedCrossRefGoogle Scholar
  39. 39.
    James, N. D., Sydes, M. R., Mason, M.D., et al. (2015). Docetaxel and/or zoledronic acid for hormone-naïve prostate cancer: first overall survival results from STAMPEDE. Journal of Clinical Oncology, 33. (suppl; abstr 5001)Google Scholar
  40. 40.
    Dreicer, R., Jones, R., Oudard, S., Efstathiou, E., Saad, F., de Wit, R., et al. (2014). Results from a phase 3, randomized, double-blind, multicenter, placebo-controlled trial of orteronel (TAK-700) plus prednisone in patients with metastatic castration-resistant prostate cancer (mCRPC) that has progressed during or following docetaxel-based therapy (ELM-PC 5 trial). Journal of Clinical Oncology, 32. (suppl 4; abstr 7˄).Google Scholar
  41. 41.
    de Wit, R., Fizazi, K., Jinga, V., Efstathiou, E., Fong, P., Wirth, M., et al. (2014). Phase 3, randomized, placebo-controlled trial of orteronel (TAK-700) plus prednisone in patients (pts) with chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC) (ELM-PC 4 trial). Journal of Clinical Oncology, 32, 5s (suppl; abstr 5008).CrossRefGoogle Scholar
  42. 42.
    Efstathiou, E. Enzalutamide (ENZA) in combination with abiraterone acetate (AA) in bone metastatic castration resistant prostate cancer (mCRPC). Available at: http://meetinglibrary.asco.org/content/94606
  43. 43.
    Scher, H. I., Fizazi, K., Saad, F., Taplin, M. E., Sternberg, C. N., Miller, K., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. New England Journal of Medicine, 367, 1187–1197.PubMedCrossRefGoogle Scholar
  44. 44.
    Beer, T.M., Armstrong, A.J., Sternberg, C.N., Higano, C.S., Iversen, P., Loriot, Y., et al. (2014). Enzalutamide in men with chemotherapy-naive metastatic prostate cancer (mCRPC): results of phase III PREVAIL study. Journal of Clinical Oncology, 32. (suppl 4; abstr LBA1^).Google Scholar
  45. 45.
    Parker, C., Vogelzang, N. J., Sartor, A. O., Bottomley, D., Coleman, R. E., Skjorestad, I., et al. (2014). 1.5-year post-treatment follow-up of radium-223 dichloride (Ra-223) safety in patients with castration-resistant prostate cancer (CRPC) and symptomatic bone metastases from the phase 3 ALSYMPCA study. Journal of Clinical Oncology, 32, 5s (suppl; abstr 5070).CrossRefGoogle Scholar
  46. 46.
    Ryan, C.J., Smith, M.R., Fizazi, K., Miller, K., Muders, P.F.A., Sternberg, C.N., et al. Final overall survival analysis of COU-AA-302, a randomized phase 3 study of abiraterone acetate in metastatic castration-resistant prostate cancer patients without prior chemotherapy. Available at: http://www.ascopost.com/ViewNews.aspx?nid=18643
  47. 47.
    Zong, Y., & Goldstein, A. S. (2013). Adaptation or selection—mechanisms of castration-resistant prostate cancer. Nature Reviews. Urology, 10, 90–98. doi: 10.1007/s11427-013-4522-0.PubMedCrossRefGoogle Scholar
  48. 48.
    Karantanos, T., Evans, C. P., Tombal, B., Thompson, T. C., Montironi, R., & Isaacs, W. B. (2014). Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. European Urology. doi: 10.1016/j.eururo.2014.09.049.PubMedGoogle Scholar
  49. 49.
    Mills, I. G. (2014). Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nature Reviews Cancer, 14, 187–198. doi: 10.1038/nrc3678.PubMedCrossRefGoogle Scholar
  50. 50.
    Li, P., Yang, R., & Gao, W. Q. (2014). Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Molecular Cancer, 13, 55. doi: 10.1186/1476-4598-13-55.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Fleischmann, A., Rocha, C., Schobinger, S., Seiler, R., Wiese, B., & Thalmann, G. N. (2011). Androgen receptors are differentially expressed in Gleason patterns of prostate cancer and down-regulated in matched lymph node metastases. Prostate, 71, 453–460. doi: 10.1002/pros.21259.PubMedCrossRefGoogle Scholar
  52. 52.
    Terry, S., & Beltran, H. (2014). The many faces of neuroendocrine differentiation in prostate cancer progression. Frontiers in Oncology, 4, 60. doi: 10.3389/fonc.2014.00060.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Efstathiou, E., Titus, M., Tsavachidou, D., Tzelepi, V., Wen, S., Hoang, A., et al. (2012). Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. Journal of Clinical Oncology, 30, 637–643. doi: 10.1200/JCO.2010.33.7675.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Efstathiou, E., Titus, M., Wen, S., Hoang, A., Karlou, M., Ashe, R., et al. (2015). Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. European Urology, 67, 53–60. doi: 10.1016/j.eururo.2014.05.005.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rathkopf, D., & Scher, H. I. (2013). Androgen receptor antagonists in castration-resistant prostate cancer. Cancer Journal, 19, 43–49. doi: 10.1097/PPO.0b013e318282635a.CrossRefGoogle Scholar
  56. 56.
    Powell, K.A., Seeman, L., Maddipati, K.R., et al. (2014). ERG regulation of intracrine androgen production and castration-resistant prostate cancer progression [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5–9; San Diego, CA. Philadelphia (PA): AACR. Abstract nr 456.Google Scholar
  57. 57.
    Mateo, J., Hall, E., Sandhu, S., Omlin, A.G., Miranda, S., Carreira, S., et al. (2014). Antitumour activity of the PARP inhibitor olaparib in unselected sporadic castration-resistant prostate cancer (CRPC) in the TOPARP trial. Annals of Oncology, 251–41. doi:  10.1093/annonc/mdu438.
  58. 58.
    Conteduca, V., Salvi, S., Casadio, V., Burgio, S. L., Menna, C., Rossi, L., et al. (2014). AR and CYP17A1 copy number variations may predict clinical outcome of patients with metastatic castration-resistant prostate cancer treated with abiraterone. Annals of Oncology, 25(suppl 4), iv257–iv258. doi: 10.1093/annonc/mdu336.7. Abstract 759PD.Google Scholar
  59. 59.
    Bremmer, F., Jarry, H., Strauß, A., Behnes, C. L., Trojan, L., & Thelen, P. (2014). Increased expression of CYP17A1 indicates an effective targeting of the androgen receptor axis in castration resistant prostate cancer (CRPC). Springerplus, 3, 574. doi: 10.1186/2193-1801-3-574. eCollection 2014.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Wang, H. T., Yao, Y. H., Li, B. G., Tang, Y., Chang, J. W., & Zhang, J. (2014). Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis—a systematic review and pooled analysis. Journal of Clinical Oncology, 32(30), 3383–3390. doi: 10.1200/JCO.2013.54.3553.PubMedCrossRefGoogle Scholar
  61. 61.
    Small, E. J., Youngren, J., Alumkal, J., et al. (2014). Neuroendocrine prostate cancer (NEPC) in patients (pts) with metastatic castration resistant prostate cancer (MCRPC) resistant to abiraterone (ABI) or enzalutamide (ENZ): preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT). Annals of Oncology, 25(suppl 4), iv258. doi: 10.1093/annonc/mdu336.8. Abstract 760PD.Google Scholar
  62. 62.
    Mulholland, D.J. (2014). Persistent androgen ablation promotes enhanced neuroendocrine features in Pten-deficient prostate cancer [abstract]. Proceeding of the American Association for Cancer Research; 2014 Apr 5–9; San Diego, CA. Philadelphia (PA): AACR. Abstract nr LB-44.Google Scholar
  63. 63.
    Ware, K. E., Garcia-Blanco, M. A., Armstrong, A. J., & Dehm, S. M. (2014). Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocrine-Related Cancer, 21, T87–T103. doi: 10.1158/1078-0432.CCR-13-1863.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Antonarakis, E. S., Lu, C., Wang, H., Luber, B., Nakazawa, M., Roeser, J. C., et al. (2014). AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. New England Journal of Medicine, 371, 1028–1038. doi: 10.1056/NEJMoa1315815.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Yu, Z., Chen, S., Sowalsky, A. G., Voznesensky, O. S., Mostaghel, E. A., Nelson, P. S., et al. (2014). Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer. Clinical Cancer Research, 20, 1590–1600. doi: 10.1158/1078-0432.CCR-13-1863.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Arora, V. K., Schenkein, E., Murali, R., et al. (2013). Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell, 155, 1309–1322. doi: 10.1016/j.cell.2013.11.012.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Bishop, J. L., Sio, A., Angeles, A., Roberts, M. E., Azad, A. A., Chi, K. N., et al. (2015). PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget, 6, 232–242.CrossRefGoogle Scholar
  68. 68.
    Nguyen, H. G., Yang, J. C., Kung, H. J., Shi, X. B., Tilki, D., Lara, P. N., Jr., et al. (2014). Targeting autophagy overcomes enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene, 33, 4521–4530. doi: 10.1038/onc.2014.25.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Chi, K. N., Higano, C., Reeves, J., Feyerabend, S., Gravis, G., Ferrero, J., et al. (2014). A randomized phase 3 study comparing first-line docetaxel/prednisone (DP) to DP plus custirsen in men with metastatic castration-resistant prostate cancer (mCRPC). Annals of Oncology, 25(suppl 4), iv256. doi: 10.1093/annonc/mdu336.3.Google Scholar
  70. 70.
    Haas, N.B., Manola, J., Uzzo, R.G., Atkins, M.B., Wilding, G., Pins, M., et al. (2015) Initial results from ASSURE (E2805): adjuvant sorafenib or sunitinib for unfavorable renal carcinoma, an ECOG-ACRIN-led, NCTN phase III trial. Journal of Clinical Oncology, 33. (suppl 7; abstr 403).Google Scholar
  71. 71.
    Melero, I., Grimaldi, A. M., Perez-Gracia, J. L., & Ascierto, P. A. (2013). Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Cancer Clinical Research, 29, 997–1008. doi: 10.1158/1078-0432.CCR-12-2214.CrossRefGoogle Scholar
  72. 72.
    Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39, 1–10. doi: 10.1016/j.immuni.2013.07.012.PubMedCrossRefGoogle Scholar
  73. 73.
    Morse, M., McDermott, D. F., Daniels, G. A., Kaufman, H., Wong, M. K. K., Aung, S., et al. (2014). High-dose (HD) IL-2 for metastatic renal cell carcinoma (mRCC) in the targeted therapy era: extension of OS benefits beyond complete response (CR) and partial response (PR). Journal of Clinical Oncology, 32, 5s (suppl; abstr 4523).CrossRefGoogle Scholar
  74. 74.
    Choueiri, T. K., Fishman, M. N., Escudier, B. J., Kim, J. J., Kluger, H. M., Stadler, W. M., et al. (2014). Immunomodulatory activity of nivolumab in previously treated and untreated metastatic renal cell carcinoma (mRCC): biomarker-based results from a randomized clinical trial. Journal of Clinical Oncology, 32, 5s (suppl; abstr 5012).CrossRefGoogle Scholar
  75. 75.
    Choueiri, T.K., Fishman, M.N., Escudier, B.J., Kim, J.J., Kluger, H.M., Stadler, W.M., et al. (2014). Exploratory study to investigate the immunomodulatory activity of nivolumab antibody in subjects with metastatic clear cell renal carcinoma (RCC) (CA209-009(NCT01358721. Annals of Oncology, 25. (suppl 4, abstr 1051).Google Scholar
  76. 76.
    Motzer, R.J., Rini, B.I., McDermott, D.F., Redman, B.G., Kuzel, T.M., Harrison, M.R., et al. (2014). Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. Journal of Clinical Oncology.Google Scholar
  77. 77.
    McDermott, D. F., Sznol, M., Sosman, J. A., Soria, J., Gordon, M. S., Hamid, O., et al. (2014). Immune correlates and long term follow up of a phase Ia study of MPDL3280A, an engineered PD-L1 antibody, in patients with metastatic renal cell carcinoma (mRCC). Annals of Oncology, 25(suppl_4), iv280–iv304. doi: 10.1093/annonc/mdu337.Google Scholar
  78. 78.
    Pardoll, D. M. (2012). The blockade of immune check-points in cancer immunotherapy. Nature Reviews Cancer, 12, 252–264.PubMedCrossRefGoogle Scholar
  79. 79.
    Hammers, H., Plimack, E.R., Infante, J.R., Ernstoff, M.S., Rini, B.I., McDermott, D.F., et al. (2014). Phase I of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). Journal of Clinical Oncology, 32. (Suppl 15s, abstr 4504).Google Scholar
  80. 80.
    Amin, S., Plimack, E.R., Infante, J.R., Ernstoff, M.S., Rini, B.I., McDermott, D.F., et al. (2014). Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC). Journal of Clinical Oncology, 32. (suppl, abstr 5010).Google Scholar
  81. 81.
    Amin, S., Plimack, E. R., Infante, J. R., Ernstoff, M. S., Rini, B. I., McDermott, D. F., et al. (2014). Nivolumab (N) (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib (S) or pazopanib (P) in patients (pts) with metastatic renal cell carcinoma (mRCC). Annals of Oncology, 25(suppl_4), iv361–iv372. doi: 10.1093/annonc/mdu342.Google Scholar
  82. 82.
    Choueri, T.K. (2014). Phase 1/2 study of pembrolizumab (MK-3475) in combination with pegylated interferon alfa-2b or ipilimumab in patients with advanced melanoma or renal cell carcinoma. Annals of Oncology, 25. (suppl 4, abstr 1075).Google Scholar
  83. 83.
    McDermott, D. F., Infante, J. R., Voss, M. H., Motzer, R. J., Haanen, J. B. A. G., Chowdhury, S., et al. (2014). A phase I/II study to assess the safety and efficacy of pazopanib and MK-3475 in subjects with advanced renal cell carcinoma. Journal of Clinical Oncology, 32, 5s (suppl; abstr TPS4604^).CrossRefGoogle Scholar
  84. 84.
    Lieu, C., Bendell, J., Powderly, J. D., Pishvaian, M. J., Hochster, H., Eckhardt, S. G., et al. (2014). Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or chemotherapy (chemo) in patients (pts) with locally advanced or metastatic solid tumors. Annals of Oncology, 25(suppl_4), iv361–iv372. doi: 10.1093/annonc/mdu342.Google Scholar
  85. 85.
    Callahan, M. K., Ott, P. A., Odunsi, K., Bertolini, S. V., Pan, L. S., Venhaus, R. R., et al. (2014). A phase 1 study to evaluate the safety and tolerability of MEDI4736, an anti-PD-L1 antibody, in combination with tremelimumab in patients with advanced solid tumors. Journal of Clinical Oncology, 32, 5s (suppl; abstr TPS3120^).CrossRefGoogle Scholar
  86. 86.
    Amin, A., Dudek, A. Z., Logan, T. F., Lance, R. S., Holzbeierlein, J. M., Master, V. A., et al. (2014). Long-term survival in unfavorable-risk mRCC patients treated with a combination of autologous immunotherapy (AGS-003) plus sunitinib. Journal of Clinical Oncology, 32, 5s (suppl; abstr 4524^).CrossRefGoogle Scholar
  87. 87.
    Khleif, S., Munn, D., Nyak-Kapoor, A., Mautino, M. R., Kennedy, E., Vahanian, N. V., et al. (2014). First-in-human phase 1 study of the novel indoleamine-2,3-dioxygenase (IDO) inhibitor NLG-919. Journal of Clinical Oncology, 32, 5s (suppl; abstr TPS3121).CrossRefGoogle Scholar
  88. 88.
    Infante, J. R., Burris, H. A., III, Ansell, S. M., Nemunaltis, J. J., Weiss, G. R., Villalobos, V. M., et al. (2014). Immunologic activity of an activating anti-CD27 antibody (CDX-1127) in patients (pts) with solid tumors. Journal of Clinical Oncology, 32, 5s (suppl; abstr 3027).CrossRefGoogle Scholar
  89. 89.
    Bellmunt, J., Fougeray, R., Rosenberg, J. E., von der Maase, H., Schutz, F. A., Salhi, Y., et al. (2013). Long-term survival results of a randomized phase III trial of vinflunine plus best supportive care versus best supportive care alone in advanced urothelial carcinoma patients after failure of platinum-based chemotherapy. Annals of Oncology, 24, 1466–1472. doi: 10.1093/annonc/mdt007.PubMedCrossRefGoogle Scholar
  90. 90.
    Hagenkord, J. M., Gatalica, Z., Jonasch, E., & Monzon, F. A. (2011). Clinical genomics of renal epithelial tumors. Cancer Genetics, 204, 285–297. doi: 10.1016/j.cancergen.2011.06.001.PubMedCrossRefGoogle Scholar
  91. 91.
    Maher, E. R. (2013). Genomics and epigenomics of renal cell carcinoma. Seminars in Cancer Biology, 23, 10–17. doi: 10.1016/j.semcancer.2012.06.003.PubMedCrossRefGoogle Scholar
  92. 92.
    Cohen, H. T., & McGovern, F. J. (2005). Renal-cell carcinoma. New England Journal of Medicine, 353, 2477–2490.PubMedCrossRefGoogle Scholar
  93. 93.
    Moserle, L., Jiménez-Valerio, G., & Casanovas, O. (2014). Antiangiogenic therapies: going beyond their limits. Cancer Discovery, 4, 31–41. doi: 10.1158/2159-8290.CD-13-0199.PubMedCrossRefGoogle Scholar
  94. 94.
    Jäger, W., Thomas, C., Fazli, L., Hurtado-Coll, A., Li, E., Janssen, C., et al. (2014). DHH is an independent prognosticator of oncologic outcome of clear cell renal cell carcinoma. Journal of Urology, 192, 1842–1848. doi: 10.1016/j.juro.2014.07.013.PubMedCrossRefGoogle Scholar
  95. 95.
    Miles, K. M., Seshadri, M., Ciamporcero, E., Adelaiye, R., Gillard, B., Sotomayor, P., et al. (2014). Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts. PLoS One, 9, e112371. doi: 10.1371/journal.pone.0112371.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Graham, D. K., DeRyckere, D., Davies, K. D., & Earp, H. S. (2014). The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nature Reviews Cancer, 14, 769–785.PubMedCrossRefGoogle Scholar
  97. 97.
    Cancer Genome Atlas Research Network. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499, 43–49. doi: 10.1038/nature12222.CrossRefGoogle Scholar
  98. 98.
    Li, S., Kong, Y., Si, L., Chi, Z., Cui, C., Sheng, X., & Guo, J. (2014). Phosphorylation of mTOR and S6RP predicts the efficacy of everolimus in patients with metastatic renal cell carcinoma. BMC Cancer, 14, 376. doi: 10.1186/1471-2407-14-376.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Kwiatkowski, D. J., & Manning, B. D. (2014). Molecular basis of giant cells in tuberous sclerosis complex. New England Journal of Medicine, 371, 778–780.PubMedCrossRefGoogle Scholar
  100. 100.
    Pal, S. K., He, M., Tong, T., Wu, H., Liu, X., Lau, C., et al. (2014). RNA-seq reveals aurora kinase-driven mTOR pathway activation in patients with sarcomatoid metastatic renal cell carcinoma. Molecular Cancer Research. doi: 10.1158/1541-7786.MCR-14-0352.Google Scholar
  101. 101.
    Davis, C. F., Ricketts, C. J., Wang, M., Yang, L., Cherniack, A. D., Shen, H., et al. (2014). The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell, 26, 319–330. doi: 10.1016/j.ccr.2014.07.014.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Scelo, G., Riazalhosseini, Y., Greger, L., Letourneau, L., Gonzàlez-Porta, M., Wozniak, M. B., et al. (2014). Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nature Communications, 5, 5135. doi: 10.1038/ncomms6135.PubMedCrossRefGoogle Scholar
  103. 103.
    Brugarolas, J. (2014). Molecular genetics of clear-cell renal cell carcinoma. Journal of Clinical Oncology, 32, 1968–1976. doi: 10.1200/JCO.2012.45.2003.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Juengel, E., Nowaz, S., Makarevi, J., Natsheh, I., Werner, I., Nelson, K., et al. (2014). HDAC-inhibition counteracts everolimus resistance in renal cell carcinoma in vitro by diminishing cdk2 and cyclin A. Molecular Cancer, 13, 152. doi: 10.1186/1476-4598-13-152.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine, 366, 883–889. doi: 10.1056/NEJMoa1113205.PubMedCrossRefGoogle Scholar
  106. 106.
    Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481, 306–313. doi: 10.1038/nature10762.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Hiley, C. T., & Swanton, C. (2014). Spatial and temporal cancer evolution: causes and consequences of tumour diversity. Clinical Medicine, 14(Suppl 6), s33–s37. doi: 10.7861/clinmedicine.14-6-s33.PubMedCrossRefGoogle Scholar
  108. 108.
    Gerlinger, M., Horswell, S., Larkin, J., Rowan, A. J., Salm, M. P., Varela, I., et al. (2014). Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nature Genetics, 46, 225–233. doi: 10.1038/ng.2891.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Burrell, R. A., & Swanton, C. (2014). Tumour heterogeneity and the evolution of polyclonal drug resistance. Molecular Oncology, 8, 1095–1111. doi: 10.1016/j.molonc.2014.06.005.PubMedCrossRefGoogle Scholar
  110. 110.
    Gulati, S., Martinez, P., Joshi, T., Birkbak, N. J., Santos, C. R., Rowan, A. J., et al. (2014). Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. European Urology. doi: 10.1016/j.eururo.2014.06.053.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Prior, C., Perez-Gracia, J. L., Garcia-Donas, J., Rodriguez-Antona, C., Guruceaga, E., Esteban, E., et al. (2014). Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS One, 9, e86263. doi: 10.1371/journal.pone.0086263.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Grossman, H. B., Natale, R. B., Tangen, C. M., Speights, V. O., Vogelzang, N. J., Trump, D. L., et al. (2003). Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. New England Journal of Medicine, 28, 859–866.CrossRefGoogle Scholar
  113. 113.
    International Collaboration Trialists. (2011). International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long- term results of the BA06 30894 trial. Journal of Clinical Oncology, 29, 2171–2177.Google Scholar
  114. 114.
    Petrelli, F., Coinu, A., Cabiddu, M., Ghilardi, M., Vavassori, I., & Barni, S. (2014). Correlation of pathologic complete response with survival after neoadjuvant chemotherapy in bladder cancer treated with cystectomy: a meta-analysis. European Urology, 65, 350–357.PubMedCrossRefGoogle Scholar
  115. 115.
    Zargar, H., Espiritu, P. N., Fairey, A. S., Mertens, L. S., Dinney, C. P., Mir, M. C., et al. (2014). Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. European Urology. doi: 10.1016/j.eururo.2014.09.007.Google Scholar
  116. 116.
    Choueiri, T. K., Jacobus, S., Bellmunt, J., Qu, A., Appleman, L. J., Tretter, C., et al. (2014). Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. Journal of Clinical Oncology, 32, 1889–1894. doi: 10.1200/JCO.2013.52.4785.PubMedCrossRefGoogle Scholar
  117. 117.
    Sternberg, C. N., Skoneczna, I. A., Kerst, J. M., Fossa, S. D., Albers, P., Agerbaek, M., et al. (2015). Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): an intergroup, open-label, randomised phase 3 trial. Lancet Oncology, 16, 76–86. doi: 10.1016/S1470-2045(14)71160-X.PubMedCrossRefGoogle Scholar
  118. 118.
    Leow, J. J., Martin-Doyle, W., Rajagopal, P. S., Patel, C. G., Anderson, E. M., Rothman, A. T., et al. (2014). Adjuvant chemotherapy for invasive bladder cancer: a 2013 updated systematic review and meta-analysis of randomized trials. European Urology, 66, 42–54. doi: 10.1016/j.eururo.2013.08.033.PubMedCrossRefGoogle Scholar
  119. 119.
    Mak, R. H., Hunt, D., Shipley, W. U., Efstathiou, J. A., Tester, W. J., Hagan, M. P., et al. (2014). Long-term outcomes in patients with muscle-invasive bladder cancer after selective bladder-preserving combined-modality therapy: a pooled analysis of Radiation Therapy Oncology Group protocols 8802, 8903, 9506, 9706, 9906, and 0233. Journal of Clinical Oncology, 32, 3801–3809. doi: 10.1200/JCO.2014.57.5548.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Castellano, D. E., Bellmunt, J., Maroto, J. P., Font-Pous, A., Morales-Barrera, R., Ghanem, I., et al. (2014). Phase II clinical trial of PM00104 (Zalypsis(®)) in urothelial carcinoma patients progressing after first-line platinum-based regimen. Cancer Chemotherapy and Pharmacology, 73, 857–867. doi: 10.1007/s00280-014-2419-7.PubMedCrossRefGoogle Scholar
  121. 121.
    Hoffman-Censits, J.H., Vaughn, D.J., Lin, J., Keefe, S.M., Haas, N.B. (2014). A phase II study of cabazitaxel in patients with urothelial carcinoma who have disease progression following platinum-based chemotherapy. Journal of Clinical Oncology, 32. (suppl; abstr e15519).Google Scholar
  122. 122.
    Alva, A., Daignault, S., Smith, D. C., & Hussain, M. (2014). Phase II trial of combination nab-paclitaxel, carboplatin and gemcitabine in first line therapy of advanced urothelial carcinoma. Investigational New Drugs, 32, 188–194. doi: 10.1007/s10637-013-0054-5.PubMedCrossRefGoogle Scholar
  123. 123.
    De Santis, M., Wiechno, P. J., Lucas, C., Lin, C., Su, W., Bellmunt, J., et al. (2014). Mature survival (OS) data of a randomised international phase II trial (JASINT1): vinflunine (VFL) gemcitabine (GEM) vs. VFL-CBDCA in CDDP-unfit patients (pts) with advanced urothelial carcinoma (UC). Annals of Oncology, 25(suppl_4), iv280–iv304. doi: 10.1093/annonc/mdu337.Google Scholar
  124. 124.
    Hussain, M., Daignault, S., Agarwal, N., Grivas, P. D., Siefker-Radtke, A. O., Puzanov, I., et al. (2014). A randomized phase 2 trial of gemcitabine/cisplatin with or without cetuximab in patients with advanced urothelial carcinoma. Cancer, 120, 2684–2693. doi: 10.1002/cncr.28767.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Oudard, S., Culine, S., Vano, Y., Goldwasser, F., Théodore, C., Nguyen, T., et al. (2015). Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. European Journal of Cancer, 51, 45–54. doi: 10.1016/j.ejca.2014.10.009.PubMedCrossRefGoogle Scholar
  126. 126.
    Milowsky, M. I., Dittrich, C., Durán, I., Jagdev, S., Millard, F. E., Sweeney, C. J., et al. (2014). Phase 2 trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma. European Journal of Cancer, 50, 3145–3152. doi: 10.1016/j.ejca.2014.10.013.PubMedCrossRefGoogle Scholar
  127. 127.
    Kilgour, E., Ferry, D., Saggese, M., Arkenau, H. T., Rooney, C., Smith, N. R., et al. (2014). Exploratory biomarker analysis of a phase I study of AZD4547, an inhibitor of fibroblast growth factor receptor (FGFR), in patients with advanced solid tumors. Journal of Clinical Oncology, 32, 5 (suppl; abstr 11010).CrossRefGoogle Scholar
  128. 128.
    Grivas, P. D., Daignault, S., Tagawa, S. T., Nanus, D. M., Stadler, W. M., Dreicer, R., et al. (2014). Double-blind, randomized, phase 2 trial of maintenance sunitinib versus placebo after response to chemotherapy in patients with advanced urothelial carcinoma. Cancer, 120, 692–701. doi: 10.1002/cncr.28477.PubMedCrossRefGoogle Scholar
  129. 129.
    Krege, S., Rexer, H., von Dorp, F., de Geeter, P., Klotz, T., Retz, M., et al. (2014). Prospective randomized double-blind multicentre phase II study comparing gemcitabine and cisplatin plus sorafenib chemotherapy with gemcitabine and cisplatin plus placebo in locally advanced and/or metastasized urothelial cancer: SUSE (AUO-AB 31/05). BJU International, 113, 429–436. doi: 10.1111/bju.12437.PubMedCrossRefGoogle Scholar
  130. 130.
    Srinivas, S., Narayanan, S., Harshman, L.C., Lam, A.P., Vaishampayan, U.K., Haas, D., et al. Phase II trial of pazopanib and weekly paclitaxel in metastatic urothelial cancer (UC). Journal of Clinical Oncology, 32. (suppl 4; abstr 299).Google Scholar
  131. 131.
    Apolo, A.B..., Parnes, H.L., Madan, R.A., Gulley, J.L., Wright, J.J, Hoffman-Censits, J.H., et al. (2014). A phase II study of cabozantinib in patients (pts) with relapsed or refractory metastatic urothelial carcinoma (mUC). Journal of Clinical Oncology, 32. (suppl 4; abstr 307).Google Scholar
  132. 132.
    Powles, T., Eder, J. P., Fine, G. D., Braiteh, F. S., Loriot, Y., Cruz, C., et al. (2014). MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature, 515, 558–562.PubMedCrossRefGoogle Scholar
  133. 133.
    The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 507, 315–322.PubMedCentralCrossRefGoogle Scholar
  134. 134.
    Iyer, G., Al-Ahmadie, H., Schultz, N., Hanrahan, A. J., Ostrovnaya, I., Balar, A. V., et al. (2013). Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. Journal of Clinical Oncology, 31, 3133–3140. doi: 10.1200/JCO.2012.46.5740.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Sjodahl, G., Lauss, M., Lovgren, K., Chebil, G., Gudjonsson, S., Veerla, S., et al. (2012). A molecular taxonomy for urothelial carcinoma. Clinical Cancer Research, 18, 3377–3386. doi: 10.1158/1078-0432.CCR-12-0077-T.PubMedCrossRefGoogle Scholar
  136. 136.
    Choi, W., Porten, S., Kim, S. H., Willis, D., Plimack, E. R., Hoffman-Censits, J., et al. (2014). Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell, 25, 152–165. doi: 10.1016/j.ccr.2014.01.009.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Damrauer, J. S., Hoadley, K. A., Chism, D. D., Fan, C., Tiganelli, C. J., Wobker, S. E., et al. (2014). Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proceedings of the National Academy of Sciences of the United States of America, 111, 3110–3115. doi: 10.1073/pnas.1318376111.PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Hussain, M. H., MacVicar, G. R., Petrylak, D. P., Dunn, R. L., Vaishampayan, U., Lara, P. N., Jr., et al. (2007). Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. Journal of Clinical Oncology, 25, 2218–2224.PubMedCrossRefGoogle Scholar
  139. 139.
    Vaughn, D. J., Broome, C. M., Hussain, M., Gutheil, J. C., & Markowitz, A. B. (2002). Phase II trial of weekly paclitaxel in patients with previously treated advanced urothelial cancer. Journal of Clinical Oncology, 20, 937–940.PubMedCrossRefGoogle Scholar
  140. 140.
    Rebouissou, S., Bernard-Pierrot, I., de Reynies, A., Lepage, M. L., Krucker, C., Chapeaublanc, E., et al. (2014). EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Science Translational Medicine, 6, 244ra291. doi: 10.1126/scitranslmed.3008970.CrossRefGoogle Scholar
  141. 141.
    Guo, G., Sun, X., Chen, C., Wu, S., Huang, P., Li, Z., et al. (2013). Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nature Genetics, 45, 1459–1463. doi: 10.1038/ng.2798.PubMedCrossRefGoogle Scholar
  142. 142.
    Iyer, G., Hanrahan, A. J., Milowsky, M. I., Al-Ahmadie, H., Scott, S. N., Janakiraman, M., et al. (2012). Genome sequencing identifies a basis for everolimus sensitivity. Science, 338, 221. doi: 10.1126/science.1226344.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Wagle, N., Grabiner, B. C., Van Allen, E. M., Hodis, E., Jacobus, S., Supko, J. G., et al. (2014). Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discovery, 4, 546–553.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Gui, Y., Guo, G., Huang, Y., Hu, X., Tang, A., Gao, S., et al. (2011). Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genetics, 43, 875–878. doi: 10.1038/ng.907.PubMedCrossRefGoogle Scholar
  145. 145.
    Lehmann, A. R. (2001). The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes and Development, 15, 15–23.PubMedCrossRefGoogle Scholar
  146. 146.
    Van Allen, E. M., Mouw, K. W., Kim, P., Iyer, G., Wagle, N., Al-Ahmadie, H., et al. (2014). Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discovery, 4, 1140–1153. doi: 10.1158/2159-8290.CD-14-0623.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Blaveri, E., Simko, J. P., Korkola, J. E., Brewer, J. L., Baehner, F., Mehta, K., et al. (2005). Bladder cancer outcome and subtype classification by gene expression. Clinical Cancer Research, 11, 4044–4055.PubMedCrossRefGoogle Scholar
  148. 148.
    Powles, T. N. J. V., Fine, G. D., Eder, J. P., Braiteh, F. S., Loriot, Y., & Zambrano, C. Z. (2014). Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). Journal of Clinical Oncology, 32, 5s (suppl; abstr 5011)CrossRefGoogle Scholar
  149. 149.
    International Germ Cell Cancer Collaborative Group. (1997). International germ cell consensus classification: a prognostic factor-based staging system for metastatic germ cell cancers. Journal of Clinical Oncology, 15, 594–603.Google Scholar
  150. 150.
    Einhorn, L. H., Williams, S. D., Loehrer, P. J., Birch, R., Drasga, R., Omura, G., et al. (1989). Evaluation of optimal duration of chemotherapy in favorable-prognosis disseminated germ cell tumors: a Southeastern Cancer Study Group protocol. Journal of Clinical Oncology, 7, 387–391.PubMedGoogle Scholar
  151. 151.
    Kondagunta, G. V., Bacik, J., Donadio, A., Bajorin, D., Marion, S., Sheinfeld, J., et al. (2005). Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. Journal of Clinical Oncology, 23, 6549–6555.PubMedCrossRefGoogle Scholar
  152. 152.
    Motzer, R. J., Nichols, C. J., Margolin, K. A., Bacik, J., Richardson, P. G., Vogelzang, N. J., et al. (2007). Phase III randomized trial of conventional-dose chemotherapy with or without high-dose chemotherapy and autologous hematopoietic stem-cell rescue as first-line treatment for patients with poor-prognosis metastatic germ cell tumors. Journal of Clinical Oncology, 25, 247–256.PubMedCrossRefGoogle Scholar
  153. 153.
    Daugaard, G., Skoneczna, I., Aass, N., De Wit, R., De Santis, M., Dumez, H., et al. (2011). A randomized phase III study comparing standard dose BEP with sequential high-dose cisplatin, etoposide, and ifosfamide (VIP) plus stem-cell support in males with poor-prognosis germ-cell cancer. An intergroup study of EORTC, GTCSG, and Grupo Germinal (EORTC 30974). Annals of Oncology, 22, 1054.61. doi: 10.1093/annonc/mdq575.PubMedCrossRefGoogle Scholar
  154. 154.
    Fizazi, K., Culine, S., Kramar, A., Amato, R. J., Bouzy, J., Chen, I., et al. (2004). Early predicted time to normalization of tumor markers predicts outcome in poor-prognosis nonseminomatous germ cell tumors. Journal of Clinical Oncology, 22, 3868–3876.PubMedCrossRefGoogle Scholar
  155. 155.
    Massard, C., Kramar, A., Beyer, J., Hartmann, J. T., Lorch, A., Pico, J. L., et al. (2013). Tumor marker kinetics predict outcome in patients with relapsed disseminated non-seminomatous germ-cell tumors. Annals of Oncology, 24, 322–328. doi: 10.1093/annonc/mds504.PubMedCrossRefGoogle Scholar
  156. 156.
    Fizazi, K., Pagliaro, L.C., Flechon, A., Mardiak, J., Geoffrois, L., Kerbrat, P., et al. (2013). A phase III trial of personalized chemotherapy based on serum tumor marker decline in poor-prognosis germ-cell tumors: results of GETUG 13. Journal of Clinical Oncology, 31. (suppl; abstr LBA4500).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • C. Suárez
    • 1
  • J. Puente
    • 2
  • E. Gallardo
    • 3
  • M. J. Méndez-Vidal
    • 4
  • M. A. Climent
    • 5
  • L. León
    • 6
  • D. Olmos
    • 7
    • 8
    • 9
  • X. García del Muro
    • 10
  • E. González-Billalabeitia
    • 11
  • E. Grande
    • 12
  • J. Bellmunt
    • 13
  • B. Mellado
    • 14
  • P. Maroto
    • 15
  • A. González del Alba
    • 16
  1. 1.Vall d’Hebron University Hospital and Institute of OncologyUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Medical Oncology DepartmentHospital Clínico Universitario San CarlosMadridSpain
  3. 3.Medical Oncology DepartmentHospital Universitari Parc TaulíBarcelonaSpain
  4. 4.Medical Oncology Department, Instituto Maimónides de Investigación Biomédica (IMIBIC)Hospital Universitario Reina SofíaCórdobaSpain
  5. 5.Medical Oncology DepartmentFundación Instituto Valenciano de OncologíaValenciaSpain
  6. 6.Medical Oncology DepartmentHospital ClínicoSantiago de CompostelaSpain
  7. 7.Prostate Cancer Clinical Research UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
  8. 8.CNIO-IBIMA Genitourinary Cancer Research UnitHospitales Universitarios Virgen de la Victoria & Regional de MálagaMadridSpain
  9. 9.Centro Integral Oncológico Clara CampalMadridSpain
  10. 10.Institut Català d’Oncologia L’HospitaletBarcelonaSpain
  11. 11.Medical Oncology and Hematology DepartmentHospital G. U. Morales MeseguerMurciaSpain
  12. 12.Medical Oncology Department, GI, Endocrine and Translational Research Unit, Early Drug Development Unit-IRYCISRamon y Cajal University HospitalMadridSpain
  13. 13.Bladder Cancer Center, Dana-Farber Cancer Institute, Dana-Farber/Brigham and Women’s Cancer CenterHarvard Medical SchoolBostonUSA
  14. 14.Medical Oncology DepartmentHospital ClinicBarcelonaSpain
  15. 15.Medical Oncology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
  16. 16.Medical Oncology DepartmentHospital Universitario Son EspasesPalma de MallorcaSpain

Personalised recommendations