Cancer and Metastasis Reviews

, Volume 33, Issue 4, pp 921–928 | Cite as

Role of MTA2 in human cancer



Metastasis is the ultimate cause of death for most cancer patients. While many mechanisms have been delineated for regulation of growth and tumor initiation of the primary tumor, very little is known about the process of metastasis. Metastasis requires dynamic alteration of cellular processes in order for cells to disseminate from the primary tumor to distant sites. These alterations often involve dramatic changes in the regulation of cytoskeletal and cell-environment interactions. Furthermore, controlled refinement of these interactions requires feedback to regulatory networks in the nucleus. MTA2 is a member of the metastasis tumor-associated family of transcriptional regulators and is a central component of the nucleosome remodeling and histone deacetylation complex. MTA2 acts as a central hub for cytoskeletal organization and transcription and provides a link between nuclear and cytoskeletal organization. We will focus on MTA2 in this chapter, especially its role in breast cancer metastasis.


Metastasis-associated protein MTA2 Metastasis Breast cancer Tumor progression 



SAWF is supported by NIH/NCI R01 CA72038 and P30 CA125123-05, CPRIT RP120732-P7, and the Susan G. Komen Foundation PG12221410.


  1. 1.
    The UniProt Consortium. (2014). Activities at the Universal Protein Resource (UniProt). Nucleic Acids Research, 42(D1), D191–D198. doi: 10.1093/nar/gkt1140.PubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dephoure, N., Zhou, C., Villén, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., & Gygi, S. P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10762–10767. doi: 10.1073/pnas.0805139105.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mayya, V., Lundgren, D. H., Hwang, S.-I., Rezaul, K., Wu, L., Eng, J. K., & Han, D. K. (2009). Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Science Signaling, 2(84), ra46. doi: 10.1126/scisignal.2000007.PubMedCrossRefGoogle Scholar
  4. 4.
    Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., & Mann, M. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3. doi: 10.1126/scisignal.2000475.PubMedCrossRefGoogle Scholar
  5. 5.
    Rigbolt, K. T. G., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., & Blagoev, B. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signaling, 4(164), rs3. doi: 10.1126/scisignal.2001570.PubMedCrossRefGoogle Scholar
  6. 6.
    Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, N.Y.), 325(5942), 834–840. doi: 10.1126/science.1175371.CrossRefGoogle Scholar
  7. 7.
    Callebaut, I., Courvalin, J. C., & Mornon, J. P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446(1), 189–193.PubMedCrossRefGoogle Scholar
  8. 8.
    Boyer, L. A., Latek, R. R., & Peterson, C. L. (2004). The SANT domain: a unique histone-tail-binding module? Nature Reviews. Molecular Cell Biology, 5(2), 158–163. doi: 10.1038/nrm1314.PubMedCrossRefGoogle Scholar
  9. 9.
    Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21(3), 87–88.PubMedGoogle Scholar
  10. 10.
    Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development (Cambridge, England), 126(11), 2483–2494.Google Scholar
  11. 11.
    Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381. doi: 10.1038/35042612.PubMedCrossRefGoogle Scholar
  12. 12.
    Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., & Fuqua, S. A. W. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035. doi: 10.1210/me.2005-0063.PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar, R., Wang, R.-A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminar in Oncology, 30(5 Suppl 16), 30–37.CrossRefGoogle Scholar
  14. 14.
    Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57. doi: 10.1016/j.bbaexp.2003.10.010.PubMedCrossRefGoogle Scholar
  15. 15.
    Lai, A. Y., & Wade, P. A. (2011). Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nature Reviews Cancer, 11(8), 588–596. doi: 10.1038/nrc3091.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Moon, H.-E., Cheon, H., Chun, K.-H., Lee, S. K., Kim, Y.-S., Jung, B.-K., & Lee, M.-S. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.PubMedGoogle Scholar
  17. 17.
    Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125. doi: 10.1007/s10911-007-9043-7.PubMedCrossRefGoogle Scholar
  18. 18.
    Barone, I., Brusco, L., Gu, G., Selever, J., Beyer, A., Covington, K. R., & Fuqua, S. A. W. (2011). Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor α. Journal of the National Cancer Institute, 103(7), 538–552. doi: 10.1093/jnci/djr058.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., & Fuqua, S. A. W. (2013). Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Research and Treatment. doi: 10.1007/s10549-013-2709-5.PubMedGoogle Scholar
  20. 20.
    Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.PubMedCrossRefGoogle Scholar
  21. 21.
    Fujita, N., Kajita, M., Taysavang, P., & Wade, P. A. (2004). Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Molecular Endocrinology, 18(12), 2937–2949. doi: 10.1210/me.2004-0258.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486. doi: 10.1158/1078-0432.CCR-05-1519.PubMedCrossRefGoogle Scholar
  23. 23.
    Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Research, 50(19), 6130–6138.PubMedGoogle Scholar
  24. 24.
    Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the “soil” for breast cancer metastasis: the pre-metastatic niche. Breast Disease, 26, 65–74.PubMedGoogle Scholar
  25. 25.
    Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the “pre-metastatic niche”: within bone and beyond. Cancer Metastasis Reviews, 25(4), 521–529. doi: 10.1007/s10555-006-9036-9.PubMedCrossRefGoogle Scholar
  26. 26.
    Fidler, I. J. (1970). Metastasis: guantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMedGoogle Scholar
  27. 27.
    Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.PubMedCrossRefGoogle Scholar
  28. 28.
    Buyse, M., Loi, S., Veer, L., van’t Viale, G., Delorenzi, M., Glas, A. M., & Consortium, T. R. A. N. S. B. I. G. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute, 98(17), 1183–1192.PubMedCrossRefGoogle Scholar
  29. 29.
    Sabatier, R., Finetti, P., Cervera, N., Lambaudie, E., Esterni, B., Mamessier, E., & Bertucci, F. (2011). A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Research and Treatment, 126(2), 407–420. doi: 10.1007/s10549-010-0897-9.PubMedCrossRefGoogle Scholar
  30. 30.
    Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., & Thompson, E. W. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252. doi: 10.1007/s10911-010-9175-z.PubMedCrossRefGoogle Scholar
  31. 31.
    Alves, C. C., Carneiro, F., Hoefler, H., & Becker, K.-F. (2009). Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Frontiers in Bioscience, 14, 3035–3050.CrossRefGoogle Scholar
  32. 32.
    Yamazaki, D., Kurisu, S., & Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Science, 96(7), 379–386. doi: 10.1111/j.1349-7006.2005.00062.x.PubMedCrossRefGoogle Scholar
  33. 33.
    Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., & Friedl, P. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology, 160(2), 267–277. doi: 10.1083/jcb.200209006.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Carr, H. S., Zuo, Y., Oh, W., & Frost, J. A. (2013). Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Molecular and Cellular Biology, 33(14), 2773–2786. doi: 10.1128/MCB.00175-13.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Narumiya, S., Tanji, M., & Ishizaki, T. (2009). Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Reviews, 28(1–2), 65–76. doi: 10.1007/s10555-008-9170-7.PubMedCrossRefGoogle Scholar
  36. 36.
    Cavallo, F., De Giovanni, C., Nanni, P., Forni, G., & Lollini, P.-L. (2011). 2011: the immune hallmarks of cancer. Cancer Immunology, Immunotherapy: CII, 60(3), 319–326. doi: 10.1007/s00262-010-0968-0.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi: 10.1016/j.cell.2011.02.013.PubMedCrossRefGoogle Scholar
  38. 38.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Meng, S., Tripathy, D., Frenkel, E. P., Shete, S., Naftalis, E. Z., Huth, J. F., & Uhr, J. W. (2004). Circulating tumor cells in patients with breast cancer dormancy. Clinical Cancer Research, 10(24), 8152–8162. doi: 10.1158/1078-0432.CCR-04-1110.PubMedCrossRefGoogle Scholar
  40. 40.
    Schackmann, R. C. J., van Amersfoort, M., Haarhuis, J. H. I., Vlug, E. J., Halim, V. A., Roodhart, J. M. L., & Derksen, P. W. B. (2011). Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. Journal of Clinical Investigation, 121(8), 3176–3188. doi: 10.1172/JCI41695.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Fu, J., Qin, L., He, T., Qin, J., Hong, J., Wong, J., & Xu, J. (2011). The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Research, 21(2), 275–289. doi: 10.1038/cr.2010.118.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    (EBCTCG), E. B. C. T. C. G, Davies, C., Godwin, J., Gray, R., Clarke, M., Cutter, D., & Peto, R. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378(9793), 771–784. doi: 10.1016/S0140-6736(11)60993-8.PubMedCrossRefGoogle Scholar
  43. 43.
    Goss, P. E., & Chambers, A. F. (2010). Does tumour dormancy offer a therapeutic target? Nature Reviews Cancer, 10(12), 871–877. doi: 10.1038/nrc2933.PubMedCrossRefGoogle Scholar
  44. 44.
    Heyn, C., Ronald, J. A., Ramadan, S. S., Snir, J. A., Barry, A. M., MacKenzie, L. T., & Foster, P. J. (2006). In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine, 56(5), 1001–1010. doi: 10.1002/mrm.21029.PubMedCrossRefGoogle Scholar
  45. 45.
    Riethdorf, S., & Pantel, K. (2008). Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology, 75(2), 140–148. doi: 10.1159/000123852.PubMedCrossRefGoogle Scholar
  46. 46.
    Kedrin, D., van Rheenen, J., Hernandez, L., Condeelis, J., & Segall, J. E. (2007). Cell motility and cytoskeletal regulation in invasion and metastasis. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 143–152. doi: 10.1007/s10911-007-9046-4.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., & Shang, Y. (2009). LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell, 138(4), 660–672. doi: 10.1016/j.cell.2009.05.050.PubMedCrossRefGoogle Scholar
  48. 48.
    Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739–1740. doi: 10.1093/bioinformatics/btr260.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 67(9), 545–554. doi: 10.1002/cm.20472.CrossRefGoogle Scholar
  50. 50.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMedCrossRefGoogle Scholar
  51. 51.
    Casas, E., Kim, J., Bendesky, A., Ohno-Machado, L., Wolfe, C. J., & Yang, J. (2011). Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Research, 71(1), 245–254. doi: 10.1158/0008-5472.CAN-10-2330.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Vansteenkiste, J., Cutsem, E. V., Dumez, H., Chen, C., Ricker, J. L., Randolph, S. S., & Schöffski, P. (2008). Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investigational New Drugs, 26(5), 483–488. doi: 10.1007/s10637-008-9131-6.PubMedCrossRefGoogle Scholar
  53. 53.
    Pulford, B., Reim, N., Bell, A., Veatch, J., Forster, G., Bender, H., & Zabel, M. D. (2010). Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP on neuronal cells and PrP in infected cell cultures. PLoS One, 5(6), e11085. doi: 10.1371/journal.pone.0011085.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Liu, G. J., Wang, Z. J., Wang, Y. F., Xu, L. L., Wang, X. L., Liu, Y., & Zeng, Y. J. (2012). Systematic assessment and meta-analysis of the efficacy and safety of fasudil in the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage. European Journal of Clinical Pharmacology, 68(2), 131–139. doi: 10.1007/s00228-011-1100-x.PubMedCrossRefGoogle Scholar
  55. 55.
    Ying, H., Biroc, S. L., Li, W.-W., Alicke, B., Xuan, J.-A., Pagila, R., & Dinter, H. (2006). The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Molecular Cancer Therapeutics, 5(9), 2158–2164. doi: 10.1158/1535-7163.MCT-05-0440.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Lester and Sue Smith Breast Center, One Baylor PlazaBaylor College of MedicineHoustonUSA

Personalised recommendations