Skip to main content

Advertisement

Log in

Molecular functions and significance of the MTA family in hormone-independent cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The members of the metastasis-associated protein (MTA) family play pivotal roles in both physiological and pathophysiological processes, especially in cancer development and metastasis, and their role as master regulators has come to light. Due to the fact that they were first identified as crucial factors in estrogen receptor-mediated breast cancer metastasis, most of the early studies focused on their hormone-dependent functions. However, the accumulating evidence shows that the members of MTA family are deregulated in most, if not all, the cancers studied so far. Therefore, the levels as well as the activities of the MTA family members are widely accepted as potential biomarkers for diagnosis, prognosis, and predictors of overall survival. They function differently in different cancers with specific mechanisms. p53 and HIF-1α appear to be the respectively common upstream and downstream regulator of the MTA family in both development and metastasis of a wide spectrum of cancers. Here, we review the expression and clinical significance of the MTA family, focusing on hormone-independent cancers. To illustrate the molecular mechanisms, we analyze the MTA family-related signaling pathways in different cancers. Finally, targeting the MTA family directly or the pathways involved in the MTA family indirectly could be invaluable strategies in the development of cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CHD4:

Chromodomain helicase DNA-binding protein

CGB5:

Chorionic gonadotropin, beta polypeptide 5

c-myc:

v-myc avian myelocytomatosis viral oncogene homolog

DSB:

Double-strand break

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial–mesenchymal transition

H3:

Histone 3

HDAC:

Histone deacetylase

IHC:

Immunohistochemistry

MTA1:

Metastasis-associated protein family member 1

MTA2:

Metastasis-associated protein family member 2

MTA3:

Metastasis-associated protein family member 3

miRNA:

MicroRNA

NuRD:

Nucleosome remodeling and deacetylation

p21:

Cyclin-dependent kinase inhibitor 1A

p53:

Tumor protein p53

PRDM1:

PR domain containing 1, with ZNF domain

WB:

Western blot

Wnt:

Wingless-type MMTV integration site family

References

  1. Nguyen, D. X., Bos, P. D., & Massagué, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews Cancer, 9(4), 274–284.

    CAS  PubMed  Google Scholar 

  2. Kumar, R., Wang, R.-A., & Bagheri-Yarmand, R. Emerging roles of MTA family members in human cancers. In Seminars in oncology, 2003 (Vol. 30, pp. 30–37): Elsevier

  3. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.

    CAS  PubMed  Google Scholar 

  4. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.

    CAS  PubMed  Google Scholar 

  5. Simpson, A., Uitto, J., Rodeck, U., & Mahoney, M. G. (2001). Differential expression and subcellular distribution of the mouse metastasis-associated proteins Mta1 and Mta3. Gene, 273(1), 29–39.

    CAS  PubMed  Google Scholar 

  6. Kumar, R. (2003). Another tie that binds the MTA family to breast cancer. Cell, 113(2), 142–143.

    CAS  PubMed  Google Scholar 

  7. Kleene, R., Classen, B., Zdzieblo, J., & Schrader, M. (2000). SH3 binding sites of ZG29p mediate an interaction with amylase and are involved in condensation-sorting in the exocrine rat pancreas. Biochemistry, 39(32), 9893–9900.

    CAS  PubMed  Google Scholar 

  8. Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, e010.

    PubMed Central  PubMed  Google Scholar 

  9. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.

    CAS  PubMed  Google Scholar 

  10. Wu, M., Wang, L., Li, Q., Li, J., Qin, J., & Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Biosciences, 3(1), 1.

    Google Scholar 

  11. Manavathi, B., Peng, S., Rayala, S. K., Talukder, A. H., Wang, M. H., Wang, R. A., et al. (2007). Repression of Six3 by a corepressor regulates rhodopsin expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13128–13133.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.

    CAS  PubMed  Google Scholar 

  13. Li, D.-Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. (2012). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Research, 72(2), 387–394.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Qian, H., Lu, N., Xue, L., Liang, X., Zhang, X., Fu, M., et al. (2005). Reduced MTA1 expression by RNAi inhibits in vitro invasion and migration of esophageal squamous cell carcinoma cell line. Clinical & Experimental Metastasis, 22(8), 653–662.

    CAS  Google Scholar 

  15. Fujita, N., Kajita, M., Taysavang, P., & Wade, P. A. (2004). Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Molecular Endocrinology, 18(12), 2937–2949.

    CAS  PubMed  Google Scholar 

  16. Nicolson, G. L., Nawa, A., Toh, Y., Taniguchi, S., Nishimori, K., & Moustafa, A. (2003). Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clinical & Experimental Metastasis, 20(1), 19–24.

    CAS  Google Scholar 

  17. Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.

    CAS  PubMed  Google Scholar 

  18. Hamatsu, T., Rikimaru, T., Yamashita, Y., Aishima, S., Tanaka, S., Shirabe, K., et al. (2003). The role of MTA1 gene expression in human hepatocellular carcinoma. Oncology Reports, 10(3), 599–604.

    CAS  PubMed  Google Scholar 

  19. Moon, W. S., Chang, K., & Tarnawski, A. S. (2004). Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-alpha. Human Pathology, 35(4), 424–429.

    CAS  PubMed  Google Scholar 

  20. Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936.

    PubMed  Google Scholar 

  21. Lee, H., Ryu, S. H., Hong, S. S., Seo, D. D., Min, H. J., Jang, M. K., et al. (2009). Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation. Journal of Gastroenterology and Hepatology, 24(8), 1445–1450.

    PubMed  Google Scholar 

  22. Lee, D., Chung, Y. H., Kim, J. A., Park, W. H., Jin, Y. J., Shim, J. H., et al. (2013). Safety and efficacy of adjuvant pegylated interferon therapy for metastatic tumor antigen 1-positive hepatocellular carcinoma. Cancer, 119(12), 2239–2246.

    CAS  PubMed  Google Scholar 

  23. Xing, J., Stewart, D., Gu, J., Lu, C., Spitz, M., & Wu, X. (2008). Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer. British Journal of Cancer, 98(10), 1716–1722.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hanna, N., Shepherd, F. A., Fossella, F. V., Pereira, J. R., De Marinis, F., von Pawel, J., et al. (2004). Randomized phase III trial of pemetrexed versus docetaxel in patients with non–small-cell lung cancer previously treated with chemotherapy. Journal of Clinical Oncology, 22(9), 1589–1597.

    CAS  PubMed  Google Scholar 

  25. Sasaki, H., Moriyama, S., Nakashima, Y., Kobayashi, Y., Yukiue, H., Kaji, M., et al. (2002). Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 35(2), 149–154.

    PubMed  Google Scholar 

  26. Zhu, X., Guo, Y., Li, X., Ding, Y., & Chen, L. (2010). Metastasis-associated protein 1 nuclear expression is associated with tumor progression and clinical outcome in patients with non-small cell lung cancer. Journal of Thoracic Oncology, 5(8), 1159–1166.

    PubMed  Google Scholar 

  27. Xu, L., Mao, X. Y., Fan, C. F., & Zheng, H. C. (2011). MTA1 expression correlates significantly with cigarette smoke in non-small cell lung cancer. Virchows Archiv, 459(4), 415–422.

    CAS  PubMed  Google Scholar 

  28. Yu, Y., Wang, Z., Zhang, M. Y., Liu, X. Y., & Zhang, H. (2011). Relation between prognosis and expression of metastasis-associated protein 1 in stage I non-small cell lung cancer. Interactive Cardiovascular and Thoracic Surgery, 12(2), 166–169.

    PubMed  Google Scholar 

  29. Li, S. H., Tian, H., Yue, W. M., Li, L., Li, W. J., Chen, Z. T., et al. (2011). Overexpression of metastasis-associated protein 1 is significantly correlated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Annals of Surgical Oncology, 18(7), 2048–2056.

    PubMed  Google Scholar 

  30. Liu, S. L., Han, Y., Zhang, Y., Xie, C. Y., Wang, E. H., Miao, Y., et al. (2012). Expression of metastasis-associated protein 2 (MTA2) might predict proliferation in non-small cell lung cancer. Targeted Oncology, 7(2), 135–143.

    PubMed  Google Scholar 

  31. Dai, S. D., Wang, Y., Zhang, J. Y., Zhang, D., Zhang, P. X., Jiang, G. Y., et al. (2011). Upregulation of delta-catenin is associated with poor prognosis and enhances transcriptional activity through Kaiso in non-small-cell lung cancer. Cancer Science, 102(1), 95–103.

    CAS  PubMed  Google Scholar 

  32. Zheng, S., Du, Y., Chu, H., Chen, X., Li, P., Wang, Y., et al. (2013). Analysis of MAT3 gene expression in NSCLC. Diagnostic Pathology, 8(166), 1746–1596.

    Google Scholar 

  33. Li, H., Sun, L., Xu, Y., Li, Z., Luo, W., Tang, Z., et al. (2013). Overexpression of MTA3 correlates with tumor progression in Non-small cell lung cancer. PLoS One, 8(6).

  34. Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2013). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biol

  35. Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.

    CAS  Google Scholar 

  36. Higashijima, J., Kurita, N., Miyatani, T., Yoshikawa, K., Morimoto, S., Nishioka, M., et al. (2011). Expression of histone deacetylase 1 and metastasis-associated protein 1 as prognostic factors in colon cancer. Oncology Reports, 26(2), 343–348.

    PubMed  Google Scholar 

  37. Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World Journal of Surgery, 37(4), 792–798.

    PubMed  Google Scholar 

  38. Giannini, R., & Cavallini, A. (2005). Expression analysis of a subset of coregulators and three nuclear receptors in human colorectal carcinoma. Anticancer Research, 25(6B), 4287–4292.

    CAS  PubMed  Google Scholar 

  39. Tuncay Cagatay, S., Cimen, I., Savas, B., & Banerjee, S. (2013). MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumour Biology, 34(2), 1189–1204.

    CAS  PubMed  Google Scholar 

  40. Dai, Y. C., Zhu, X. S., Nan, Q. Z., Chen, Z. X., Xie, J. P., Fu, Y. K., et al. (2012). Identification of differential gene expressions in colorectal cancer and polyp by cDNA microarray. World Journal of Gastroenterology, 18(6), 570–575.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Miyashita, T., Tajima, H., Munemoto, M., Shah, F. A., Harmon, J. W., Watanabe, T., et al. (2014). Impact of histone deacetylase 1 and metastasis-associated gene 1 expression in esophageal carcinogenesis. Oncology Letters, 8(2), 758–764.

    PubMed Central  PubMed  Google Scholar 

  42. Kidd, M., Modlin, I. M., Mane, S. M., Camp, R. L., Eick, G., & Latich, I. (2006). The role of genetic markers–NAP1L1, MAGE-D2, and MTA1–in defining small-intestinal carcinoid neoplasia. Annals of Surgical Oncology, 13(2), 253–262.

    PubMed  Google Scholar 

  43. Kidd, M., Modlin, I. M., Mane, S. M., Camp, R. L., Eick, G. N., Latich, I., et al. (2006). Utility of molecular genetic signatures in the delineation of gastric neoplasia. Cancer, 106(7), 1480–1488.

    CAS  PubMed  Google Scholar 

  44. Toh, Y., Kuwano, H., Mori, M., Nicolson, G. L., & Sugimachi, K. (1999). Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. British Journal of Cancer, 79(11–12), 1723–1726.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.

    CAS  Google Scholar 

  46. Li, S. H., Wang, Z., & Liu, X. Y. (2009). Metastasis-associated protein 1 (MTA1) overexpression is closely associated with shorter disease-free interval after complete resection of histologically node-negative esophageal cancer. World Journal of Surgery, 33(9), 1876–1881.

    PubMed  Google Scholar 

  47. Song, L., Wang, Z., & Liu, X. (2013). MTA1: a prognosis indicator of postoperative patients with esophageal carcinoma. The Thoracic and Cardiovascular Surgeon, 61(6), 479–485.

    PubMed  Google Scholar 

  48. Liu, Y. P., Shan, B. E., Wang, X. L., & Ma, L. (2012). Correlation between MTA2 overexpression and tumour progression in esophageal squamous cell carcinoma. Express Thermal Medicina, 3(4), 745–749.

    Google Scholar 

  49. Dong, H., Guo, H., Xie, L., Wang, G., Zhong, X., Khoury, T., et al. (2013). The metastasis-associated gene MTA3, a component of the Mi-2/NuRD transcriptional repression complex, predicts prognosis of gastroesophageal junction adenocarcinoma. PLoS One, 8(5).

  50. Zhou, C., Ji, J., Cai, Q., Shi, M., Chen, X., Yu, Y., et al. (2013). MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Molecular Cancer, 12(1), 102.

    PubMed Central  PubMed  Google Scholar 

  51. Iguchi, H., Imura, G., Toh, Y., & Ogata, Y. (2000). Expression of MTA1, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. International Journal of Oncology, 16(6), 1211–1214.

    CAS  PubMed  Google Scholar 

  52. Miyake, K., Yoshizumi, T., Imura, S., Sugimoto, K., Batmunkh, E., Kanemura, H., et al. (2008). Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas, 36(3), e1–9.

    CAS  PubMed  Google Scholar 

  53. Hofer, M. D., Menke, A., Genze, F., Gierschik, P., & Giehl, K. (2004). Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. British Journal of Cancer, 90(2), 455–462.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hofer, M. D., Chang, M. C., Hirko, K. A., Rubin, M. A., & Nose, V. (2009). Immunohistochemical and clinicopathological correlation of the metastasis-associated gene 1 (MTA1) expression in benign and malignant pancreatic endocrine tumors. Modern Pathology, 22(7), 933–939.

    CAS  PubMed  Google Scholar 

  55. Chen, D. W., Fan, Y. F., Li, J., & Jiang, X. X. (2013). MTA2 expression is a novel prognostic marker for pancreatic ductal adenocarcinoma. Tumour Biology, 34(3), 1553–1557.

    CAS  PubMed  Google Scholar 

  56. Deng, Y. F., Zhou, D. N., Ye, C. S., Zeng, L., & Yin, P. (2012). Aberrant expression levels of MTA1 and RECK in nasopharyngeal carcinoma: association with metastasis, recurrence, and prognosis. The Annals of Otology, Rhinology, and Laryngology, 121(7), 457–465.

    PubMed  Google Scholar 

  57. Song, Q., Li, Y., Zheng, X., Fang, Y., Chao, Y., Yao, K., et al. (2013). MTA1 contributes to actin cytoskeleton reorganization and metastasis of nasopharyngeal carcinoma by modulating Rho GTPases and hedgehog signaling. International Journal of Biochemistry and Cell Biology, 45(7), 1439–1446.

    CAS  PubMed  Google Scholar 

  58. Li, W. F., Liu, N., Cui, R. X., He, Q. M., Chen, M., Jiang, N., et al. (2012). Nuclear overexpression of metastasis-associated protein 1 correlates significantly with poor survival in nasopharyngeal carcinoma. Journal of Translational Medicine, 10, 78.

    PubMed Central  PubMed  Google Scholar 

  59. Lin, Z., Wan, X., Jiang, R., Deng, L., Gao, Y., Tang, J., et al. (2014). EBV-encoded LMP2A promotes EMT in nasopharyngeal carcinoma via MTA1 and mTOR signaling induction. Journal of Virology, 6, 01867–01814.

    Google Scholar 

  60. Vlashi, E., Lagadec, C., Vergnes, L., Matsutani, T., Masui, K., Poulou, M., et al. (2011). Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences, 108(38), 16062–16067.

    CAS  Google Scholar 

  61. Huang, Q., Zhang, Q. B., Dong, J., Wu, Y. Y., Shen, Y. T., Zhao, Y. D., et al. (2008). Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer, 8, 304.

    PubMed Central  PubMed  Google Scholar 

  62. Berger, M. F., Hodis, E., Heffernan, T. P., Deribe, Y. L., Lawrence, M. S., Protopopov, A., et al. (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485(7399), 502–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Qian, H., Yu, J., Li, Y., Wang, H., Song, C., Zhang, X., et al. (2007). RNA interference of metastasis-associated gene 1 inhibits metastasis of B16F10 melanoma cells in a C57BL/6 mouse model. Biology of the Cell, 99(10), 573–581.

    CAS  PubMed  Google Scholar 

  64. Zhang, J., Grubor, V., Love, C. L., Banerjee, A., Richards, K. L., Mieczkowski, P. A., et al. (2013). Genetic heterogeneity of diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences, 110(4), 1398–1403.

    CAS  Google Scholar 

  65. Bagheri-Yarmand, R., Balasenthil, S., Gururaj, A. E., Talukder, A. H., Wang, Y. H., Lee, J. H., et al. (2007). Metastasis-associated protein 1 transgenic mice: a new model of spontaneous B-cell lymphomas. Cancer Research, 67(15), 7062–7067.

    CAS  PubMed  Google Scholar 

  66. Balasenthil, S., Gururaj, A. E., Talukder, A. H., Bagheri-Yarmand, R., Arrington, T., Haas, B. J., et al. (2007). Identification of Pax5 as a target of MTA1 in B-cell lymphomas. Cancer Research, 67(15), 7132–7138.

    CAS  PubMed  Google Scholar 

  67. Parekh, S., Polo, J. M., Shaknovich, R., Juszczynski, P., Lev, P., Ranuncolo, S. M., et al. (2007). BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood, 110(6), 2067–2074.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Jaye, D. L., Iqbal, J., Fujita, N., Geigerman, C. M., Li, S., Karanam, S., et al. (2007). The BCL6-associated transcriptional co-repressor, MTA3, is selectively expressed by germinal centre B cells and lymphomas of putative germinal centre derivation. The Journal of Pathology, 213(1), 106–115.

    CAS  PubMed  Google Scholar 

  69. Ding, B. B., Yu, J. J., Yu, R. Y., Mendez, L. M., Shaknovich, R., Zhang, Y., et al. (2008). Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood, 111(3), 1515–1523.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Bilban, M., Heintel, D., Scharl, T., Woelfel, T., Auer, M. M., Porpaczy, E., et al. (2006). Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia, 20(6), 1080–1088.

    CAS  PubMed  Google Scholar 

  71. Park, H. R., Jung, W. W., Kim, H. S., Bacchini, P., Bertoni, F., & Park, Y. K. (2005). Overexpression of metastatic tumor antigen in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma. Cancer Research and Treatment, 37(6), 360–364.

    PubMed Central  PubMed  Google Scholar 

  72. Yan, C., Wang, H., Toh, Y., & Boyd, D. D. (2003). Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. The Journal of Biological Chemistry, 278(4), 2309–2316.

    CAS  PubMed  Google Scholar 

  73. Park, J. O., Jung, C. K., Sun, D. I., Joo, Y. H., & Kim, M. S. (2011). Relationships between metastasis-associated protein (MTA) 1 and lymphatic metastasis in tonsil cancer. European Archives of Oto-Rhino-Laryngology, 268(9), 1329–1334.

    PubMed  Google Scholar 

  74. Sasaki, H., Yukiue, H., Kobayashi, Y., Nakashima, Y., Kaji, M., Fukai, I., et al. (2001). Expression of the MTA1 mRNA in thymoma patients. Cancer Letters, 174(2), 159–163.

    CAS  PubMed  Google Scholar 

  75. Wang, Y., Li, L., Li, Q., Xie, C., & Wang, E. (2012). Expression of P120 catenin, Kaiso, and metastasis tumor antigen-2 in thymomas. Tumour Biology, 33(6), 1871–1879.

    CAS  PubMed  Google Scholar 

  76. Modlin, I. M., Kidd, M., Latich, I., Zikusoka, M. N., Eick, G. N., Mane, S. M., et al. (2006). Genetic differentiation of appendiceal tumor malignancy: a guide for the perplexed. Annals of Surgery, 244(1), 52–60.

    PubMed Central  PubMed  Google Scholar 

  77. Xin, H., Zhang, C., Herrmann, A., Du, Y., Figlin, R., & Yu, H. (2009). Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Research, 69(6), 2506–2513.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. (2013). MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Research, 73(12), 3761–3770.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Lee, M. H., Na, H., Kim, E. J., Lee, H. W., & Lee, M. O. (2012). Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1. Oncogene, 31(49), 5099–5107.

    CAS  PubMed  Google Scholar 

  80. Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Reports, 11(9), 691–697.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhang, X. Y., DeSalle, L. M., & McMahon, S. B. (2006). Identification of novel targets of MYC whose transcription requires the essential MbII domain. Cell Cycle, 5(3), 238–241.

    CAS  PubMed  Google Scholar 

  83. Alqarni, S. S., Murthy, A., Zhang, W., Przewloka, M. R., Silva, A. P., Watson, A. A., et al. (2014). Insight into the Architecture of the nurd Complex: STRUCTURE OF THE rbap48-MTA1 SUBCOMPLEX. The Journal of Biological Chemistry, 289(32), 21844–21855.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, D. R., Martin, E., Murad, F., & Kumar, R. (2010). Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. The Journal of Biological Chemistry, 285(10), 6980–6986.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, R. D., Xia, W., Hung, M. C., Sarin, S. K., et al. (2010). NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene, 29(8), 1179–1189.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lee, M. H., Na, H., Na, T. Y., Shin, Y. K., Seong, J. K., & Lee, M. O. (2012). Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis, 1, e25.

    PubMed Central  PubMed  Google Scholar 

  87. Lee, M. H., Na, H., Na, T. Y., Shin, Y. K., Seong, J. K., & Lee, M. O. (2012). Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis, 3(1), 26.

    Google Scholar 

  88. Dornan, D., Wertz, I., Shimizu, H., Arnott, D., Frantz, G. D., Dowd, P., et al. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature, 429(6987), 86–92.

    CAS  PubMed  Google Scholar 

  89. Dornan, D., Shimizu, H., Mah, A., Dudhela, T., Eby, M., O’Rourke, K., et al. (2006). ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science, 313(5790), 1122–1126.

    CAS  PubMed  Google Scholar 

  90. Bianchi, E., Denti, S., Catena, R., Rossetti, G., Polo, S., Gasparian, S., et al. (2003). Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity. The Journal of Biological Chemistry, 278(22), 19682–19690.

    CAS  PubMed  Google Scholar 

  91. von Arnim, A. G., & Schwechheimer, C. (2006). Life is degrading–thanks to some zomes. Molecular Cell, 23(5), 621–629.

    Google Scholar 

  92. Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17493–17498.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Goparaju, C. M., Blasberg, J. D., Volinia, S., Palatini, J., Ivanov, S., Donington, J. S., et al. (2011). Onconase mediated NFKbeta downregulation in malignant pleural mesothelioma. Oncogene, 30(24), 2767–2777.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476–485.

    CAS  PubMed  Google Scholar 

  95. Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncology Reports, 27(3), 807–812.

    CAS  PubMed  Google Scholar 

  96. Qian, Y., Wang, Y., Zhang, X., Zhou, L., Zhang, Z., Xu, J., et al. (2013). Quantitative analysis of serum IgG Galactosylation assists differential diagnosis of ovarian cancer. Journal of Proteome Research, 12(9), 4046–4055.

    CAS  PubMed  Google Scholar 

  97. Liu, Y., Chen, Z., Niu, N., Chang, Q., Deng, R., Korteweg, C., et al. (2012). IgG gene expression and its possible significance in prostate cancers. The Prostate, 72(6), 690–701.

    CAS  PubMed  Google Scholar 

  98. Qiu, Y., Korteweg, C., Chen, Z., Li, J., Luo, J., Huang, G., et al. (2011). Immunoglobulin G expression and its colocalization with complement proteins in papillary thyroid cancer. Modern Pathology, 25(1), 36–45.

    PubMed  Google Scholar 

  99. Ma, C., Wang, Y., Zhang, G., Chen, Z., Qiu, Y., Li, J., et al. (2013). Immunoglobulin G expression and its potential role in primary and metastatic breast cancers. Current Molecular Medicine, 13(3), 429–437.

    CAS  PubMed  Google Scholar 

  100. Jiang, C., Huang, T., Wang, Y., Huang, G., Wan, X., & Gu, J. (2014). Immunoglobulin G expression in lung cancer and its effects on metastasis. PLoS One, 9(5), e97359.

    PubMed Central  PubMed  Google Scholar 

  101. Xie, D., Ma, N. F., Pan, Z. Z., Wu, H. X., Liu, Y. D., Wu, G. Q., et al. (2008). Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. Human Pathology, 39(1), 80–86.

    CAS  PubMed  Google Scholar 

  102. Tang, D. J., Dong, S. S., Ma, N. F., Xie, D., Chen, L., Fu, L., et al. (2010). Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology, 51(4), 1255–1263.

    CAS  PubMed  Google Scholar 

  103. Zhu, W., Cai, M. Y., Tong, Z. T., Dong, S. S., Mai, S. J., Liao, Y. J., et al. (2012). Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymaltransition. Gut, 61(4), 562–575.

    CAS  PubMed  Google Scholar 

  104. Prokhortchouk, A., Hendrich, B., Jorgensen, H., Ruzov, A., Wilm, M., Georgiev, G., et al. (2001). The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes and Development, 15(13), 1613–1618.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Daniel, J. M., Spring, C. M., Crawford, H. C., Reynolds, A. B., & Baig, A. (2002). The p120 (ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Research, 30(13), 2911–2919.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Maret, D., Gruzglin, E., Sadr, M. S., Siu, V., Shan, W., Koch, A. W., et al. (2010). Surface expression of precursor N-cadherin promotes tumor cell invasion. Neoplasia, 12(12), 1066–1080.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Rokavec, M., Oner, M. G., Li, H., Jackstadt, R., Jiang, L., Lodygin, D., et al. (2014). IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. The Journal of Clinical Investigation, 124(4), 1853–1867.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Zhou, J., Zhan, S., Tan, W., Cheng, R., Gong, H., & Zhu, Q. (2014). P300 binds to and acetylates MTA2 to promote colorectal cancer cells growth. Biochemical and Biophysical Research Communications, 444(3), 387–390.

    CAS  PubMed  Google Scholar 

  109. Qiu, T., Zhou, X., Wang, J., Du, Y., Xu, J., Huang, Z., et al. (2014). MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Letters, 588(7), 1168–1177.

    CAS  PubMed  Google Scholar 

  110. Zhou, C., Ji, J., Cai, Q., Shi, M., Chen, X., Yu, Y., et al. (2013). MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Molecular Cancer, 12(1), 1476–4598.

    Google Scholar 

  111. Song, L., Li, Y., Li, W., Wu, S., & Li, Z. (2014). miR-495 enhances the sensitivity of non-small cell lung cancer cells to platinum by modulation of copper-transporting P-type adenosine triphosphatase A (ATP7A). Journal of Cellular Biochemistry, 115(7), 1234–1242.

    CAS  PubMed  Google Scholar 

  112. Xu, Y., Ohms, S. J., Li, Z., Wang, Q., Gong, G., Hu, Y., et al. (2013). Changes in the expression of miR-381 and miR-495 are inversely associated with the expression of the MDR1 gene and development of multi-drug resistance. PLoS One, 8(11).

  113. Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2014). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biology, 35(4), 3487–3494.

    CAS  PubMed  Google Scholar 

  114. Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. The Journal of Biological Chemistry, 286(9), 7132–7138.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. The Journal of Biological Chemistry, 285(43), 32787–32792.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Brash, A. R., Boeglin, W. E., & Chang, M. S. (1997). Discovery of a second 15S-lipoxygenase in humans. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6148–6152.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Heslin, M. J., Hawkins, A., Boedefeld, W., Arnoletti, J. P., Frolov, A., Soong, R., et al. (2005). Tumor-associated down-regulation of 15-lipoxygenase-1 is reversed by celecoxib in colorectal cancer. Annals of Surgery, 241(6), 941–946. discussion 946–947.

    PubMed Central  PubMed  Google Scholar 

  118. Shureiqi, I., Xu, X., Chen, D., Lotan, R., Morris, J. S., Fischer, S. M., et al. (2001). Nonsteroidal anti-inflammatory drugs induce apoptosis in esophageal cancer cells by restoring 15-lipoxygenase-1 expression. Cancer Research, 61(12), 4879–4884.

    CAS  PubMed  Google Scholar 

  119. Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74(4), 235–245.

    CAS  PubMed  Google Scholar 

  120. Hennig, R., Kehl, T., Noor, S., Ding, X. Z., Rao, S. M., Bergmann, F., et al. (2007). 15-lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia, 9(11), 917–926.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Deguchi, A., Xing, S. W., Shureiqi, I., Yang, P., Newman, R. A., Lippman, S. M., et al. (2005). Activation of protein kinase G up-regulates expression of 15-lipoxygenase-1 in human colon cancer cells. Cancer Research, 65(18), 8442–8447.

    CAS  PubMed  Google Scholar 

  122. Wu, Y., Fang, B., Yang, X. Q., Wang, L., Chen, D., Krasnykh, V., et al. (2008). Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Molecular Therapy, 16(5), 886–892.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Zuo, X., Wu, Y., Morris, J. S., Stimmel, J. B., Leesnitzer, L. M., Fischer, S. M., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25(8), 1225–1241.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Zuo, X., Morris, J. S., Broaddus, R., & Shureiqi, I. (2009). 15-LOX-1 transcription suppression through the NuRD complex in colon cancer cells. Oncogene, 28(12), 1496–1505.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Li, D. Q., Ohshiro, K., Khan, M. N., & Kumar, R. (2010). Requirement of MTA1 in ATR-mediated DNA damage checkpoint function. The Journal of Biological Chemistry, 285(26), 19802–19812.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. Oncology Reports, 28(1), 218.

    CAS  PubMed  Google Scholar 

  127. Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. Journal of Experimental & Clinical Cancer Research, 32, 33.

    CAS  Google Scholar 

  128. Liao, D., & Johnson, R. S. (2007). Hypoxia: a key regulator of angiogenesis in cancer. Cancer and Metastasis Reviews, 26(2), 281–290.

    CAS  PubMed  Google Scholar 

  129. Jaakkola, P., Mole, D. R., Tian, Y.-M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468–472.

    CAS  PubMed  Google Scholar 

  130. Ohh, M., Park, C. W., Ivan, M., Hoffman, M. A., Kim, T.-Y., Huang, L. E., et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nature Cell Biology, 2(7), 423–427.

    CAS  PubMed  Google Scholar 

  131. Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncology Reports, 16(4), 929–935.

    CAS  PubMed  Google Scholar 

  132. Miyake, K., Yoshizumi, T., Imura, S., Sugimoto, K., Batmunkh, E., Kanemura, H., et al. (2008). Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas, 36(3).

  133. Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Science, 97(5), 374–379.

    CAS  PubMed  Google Scholar 

  134. Bagheri-Yarmand, R., Talukder, A. H., Wang, R. A., Vadlamudi, R. K., & Kumar, R. (2004). Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development, 131(14), 3469–3479.

    CAS  PubMed  Google Scholar 

  135. Iwahashi, S., Shimada, M., Utsunomiya, T., Morine, Y., Imura, S., Ikemoto, T., et al. (2011). Histone deacetylase inhibitor augments anti-tumor effect of gemcitabine and pegylated interferon-alpha on pancreatic cancer cells. International Journal of Clinical Oncology, 16(6), 671–678.

    CAS  PubMed  Google Scholar 

  136. Lents, N. H., Irintcheva, V., Goel, R., Wheeler, L. W., & Baldassare, J. J. (2009). The rapid activation of N-Ras by alpha-thrombin in fibroblasts is mediated by the specific G-protein Galphai2-Gbeta1-Ggamma5 and occurs in lipid rafts. Cellular Signalling, 21(6), 1007–1014.

    CAS  PubMed  Google Scholar 

  137. Liu, J., Xu, D., Wang, H., Zhang, Y., Chang, Y., Zhang, J., et al. (2014). The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13), 5153–5164.

    PubMed Central  PubMed  Google Scholar 

  138. Li, W., Ma, L., Zhao, J., Liu, X., Li, Z., & Zhang, Y. (2009). Expression profile of MTA1 in adult mouse tissues. Tissue and Cell, 41(6), 390–399.

    CAS  PubMed  Google Scholar 

  139. Song, Q., Zhang, H., Wang, M., Song, W., Ying, M., Fang, Y., et al. (2013). MTA1 promotes nasopharyngeal carcinoma growth in vitro and in vivo. Journal of Experimental & Clinical Cancer Research, 32(1), 54.

    CAS  Google Scholar 

  140. Weng, W., Yin, J., Zhang, Y., Qiu, J., & Wang, X. (2014). Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. International Journal of Oncology, 44(3), 812–818.

    CAS  PubMed  Google Scholar 

  141. Moon, H. E., Cheon, H., & Lee, M. S. (2007). Metastasis-associated protein 1 inhibits p53-induced apoptosis. Oncology Reports, 18(5), 1311–1314.

    CAS  PubMed  Google Scholar 

  142. Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.

    CAS  PubMed  Google Scholar 

  143. Drozdov, I., Kidd, M., Nadler, B., Camp, R. L., Mane, S. M., Hauso, O., et al. (2009). Predicting neuroendocrine tumor (carcinoid) neoplasia using gene expression profiling and supervised machine learning. Cancer, 115(8), 1638–1650.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Roepman, P., de Jager, A., Groot Koerkamp, M. J., Kummer, J. A., Slootweg, P. J., & Holstege, F. C. (2006). Maintenance of head and neck tumor gene expression profiles upon lymph node metastasis. Cancer Research, 66(23), 11110–11114.

    CAS  PubMed  Google Scholar 

  145. Luo, H., Li, H., Yao, N., Hu, L., & He, T. (2014). Metastasis-associated protein 1 as a new prognostic marker for solid tumors: a meta-analysis of cohort studies. Tumour Biology, 35(6), 5823–5832.

    CAS  PubMed  Google Scholar 

  146. Kawasaki, G., Yanamoto, S., Yoshitomi, I., Yamada, S., & Mizuno, A. (2008). Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. International Journal of Oral and Maxillofacial Surgery, 37(11), 1039–1046.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (81071736 and 30973508), Clinical Research Enhancement Initiative of Shantou University Medical College (201412), and Guangdong Provincial Key Lab for Breast Cancer Diagnosis & Treatment. We would like to thank Dr. Stanley Lin for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Z., Gan, J., Chen, C. et al. Molecular functions and significance of the MTA family in hormone-independent cancer. Cancer Metastasis Rev 33, 901–919 (2014). https://doi.org/10.1007/s10555-014-9517-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9517-1

Keywords

Navigation