Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 2–3, pp 641–655 | Cite as

Immunotherapy for prostate cancer: recent developments and future challenges

  • Michael T. Schweizer
  • Charles G. Drake
Article

Abstract

Since the approval of sipuleucel-T for men with metastatic castrate resistant prostate cancer in 2010, great strides in the development of anti-cancer immunotherapies have been made. Current drug development in this area has focused primarily on antigen-specific (i.e. cancer vaccines and antibody based therapies) or checkpoint inhibitor therapies, with the checkpoint inhibitors perhaps gaining the most attention as of late. Indeed, drugs blocking the inhibitory signal generated by the engagement of cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) found on T-cells has emerged as potent means to combat the immunosuppressive milieu. The anti-CTLA-4 monoclonal antibody ipilimumab has already been approved in advanced melanoma and two phase III trials evaluating ipilimumab in men with metastatic castrate-resistant prostate cancer are underway. A phase III trial evaluating ProstVac-VF, a poxvirus-based therapeutic prostate cancer vaccine, is also underway. While there has been reason for encouragement over the past few years, many questions regarding the use of immunotherapies remain. Namely, it is unclear what stage of disease is most likely to benefit from these approaches, how best to incorporate said treatments with each other and into our current treatment regimens and which therapy is most appropriate for which disease. Herein we review some of the recent advances in immunotherapy as related to the treatment of prostate cancer and outline some of the challenges that lie ahead.

Keywords

Immunotherapy Immune checkpoints Prostate cancer T-cell Vaccine 

References

  1. 1.
    Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA Cancer J Clin, 63(1), 11–30. doi: 10.3322/caac.21166.PubMedCrossRefGoogle Scholar
  2. 2.
    Huggins, C., & Hodges, C. V. (2002). Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol, 168(1), 9–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Schweizer, M. T., & Antonarakis, E. S. (2012). Abiraterone and other novel androgen-directed strategies for the treatment of prostate cancer: a new era of hormonal therapies is born. Ther Adv Urol, 4(4), 167–178. doi: 10.1177/1756287212452196.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Scher, H. I., Halabi, S., Tannock, I., Morris, M., Sternberg, C. N., Carducci, M. A., et al. (2008). Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol, 26(7), 1148–1159. doi: 10.1200/jco.2007.12.4487.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 351(15), 1502–1512. doi: 10.1056/NEJMoa040720.PubMedCrossRefGoogle Scholar
  6. 6.
    Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M. E., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med, 351(15), 1513–1520. doi: 10.1056/NEJMoa041318.PubMedCrossRefGoogle Scholar
  7. 7.
    Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F., et al. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 363(5), 411–422. doi: 10.1056/NEJMoa1001294.PubMedCrossRefGoogle Scholar
  8. 8.
    de Bono, J. S., Oudard, S., Ozguroglu, M., Hansen, S., Machiels, J. P., Kocak, I., et al. (2010). Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet, 376(9747), 1147–1154. doi: 10.1016/s0140-6736(10)61389-x.PubMedCrossRefGoogle Scholar
  9. 9.
    de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., et al. (2011). Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med, 364(21), 1995–2005. doi: 10.1056/NEJMoa1014618.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ryan, C. J., Smith, M. R., de Bono, J. S., Molina, A., Logothetis, C. J., de Souza, P., et al. (2013). Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med, 368(2), 138–148. doi: 10.1056/NEJMoa1209096.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Scher, H. I., Fizazi, K., Saad, F., Taplin, M. E., Sternberg, C. N., Miller, K., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med, 367(13), 1187–1197. doi: 10.1056/NEJMoa1207506.PubMedCrossRefGoogle Scholar
  12. 12.
    Parker, C., Nilsson, S., Heinrich, D., Helle, S. I., O’Sullivan, J. M., Fossa, S. D., et al. (2013). Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med, 369(3), 213–223. doi: 10.1056/NEJMoa1213755.PubMedCrossRefGoogle Scholar
  13. 13.
    Aragon-Ching, J. B., Williams, K. M., & Gulley, J. L. (2007). Impact of androgen-deprivation therapy on the immune system: implications for combination therapy of prostate cancer. Front Biosci, 12, 4957–4971.PubMedCrossRefGoogle Scholar
  14. 14.
    Zitvogel, L., Apetoh, L., Ghiringhelli, F., & Kroemer, G. (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol, 8(1), 59–73. doi: 10.1038/nri2216.PubMedCrossRefGoogle Scholar
  15. 15.
    Drake, C. G. (2011). Radiation-induced immune modulation. In T. L. L. DeWeese & M. Laiho (Eds.), Molecular Determinants of Radiation Response (pp. 251–263). New York: Springer.CrossRefGoogle Scholar
  16. 16.
    Delves, P. J., & Roitt, I. M. (2000). The immune system. First of two parts. N Engl J Med, 343(1), 37–49. doi: 10.1056/nejm200007063430107.PubMedCrossRefGoogle Scholar
  17. 17.
    Delves, P. J., & Roitt, I. M. (2000). The immune system. Second of two parts. N Engl J Med, 343(2), 108–117. doi: 10.1056/nejm200007133430207.PubMedCrossRefGoogle Scholar
  18. 18.
    Simeone, E., & Ascierto, P. A. (2012). Immunomodulating antibodies in the treatment of metastatic melanoma: the experience with anti-CTLA-4, anti-CD137, and anti-PD1. J Immunotoxicol, 9(3), 241–247. doi: 10.3109/1547691x.2012.678021.PubMedCrossRefGoogle Scholar
  19. 19.
    Korman, A. J., Peggs, K. S., & Allison, J. P. (2006). Checkpoint blockade in cancer immunotherapy. Adv Immunol, 90, 297–339. doi: 10.1016/s0065-2776(06)90008-x.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kwek, S. S., Dao, V., Roy, R., Hou, Y., Alajajian, D., Simko, J. P., et al. (2012). Diversity of antigen-specific responses induced in vivo with CTLA-4 blockade in prostate cancer patients. J Immunol, 189(7), 3759–3766. doi: 10.4049/jimmunol.1201529.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kwek, S. S., Cha, E., & Fong, L. (2012). Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nat Rev Cancer, 12(4), 289–297. doi: 10.1038/nrc3223.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., et al. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science, 322(5899), 271–275. doi: 10.1126/science.1160062.PubMedCrossRefGoogle Scholar
  23. 23.
    Quezada, S. A., Peggs, K. S., Curran, M. A., & Allison, J. P. (2006). CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest, 116(7), 1935–1945. doi: 10.1172/jci27745.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Selby, M. J., Engelhardt, J. J., Quigley, M., Henning, K. A., Chen, T., Srinivasan, M., et al. (2013). Anti-CTLA-4 Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T Cells. Cancer Immunol Res, 1(1), 32–42. doi: 10.1158/2326-6066/CIR-13-0013.PubMedCrossRefGoogle Scholar
  25. 25.
    Simpson, T. R., Li, F., Montalvo-Ortiz, W., Sepulveda, M. A., Bergerhoff, K., Arce, F., et al. (2013). Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med, 210(9), 1695–1710. doi: 10.1084/jem.20130579.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Nemazee, D. (2006). Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol, 6(10), 728–740. doi: 10.1038/nri1939.PubMedCrossRefGoogle Scholar
  27. 27.
    Sheikh, N. A., Petrylak, D., Kantoff, P. W., Dela Rosa, C., Stewart, F. P., Kuan, L. Y., et al. (2013). Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother, 62(1), 137–147. doi: 10.1007/s00262-012-1317-2.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570. doi: 10.1126/science.1203486.PubMedCrossRefGoogle Scholar
  29. 29.
    Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J., et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410(6832), 1107–1111. doi: 10.1038/35074122.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacherio, D., et al. (2005). Autoantibody signatures in prostate cancer. N Engl J Med, 353(12), 1224–1235. doi: 10.1056/NEJMoa051931.PubMedCrossRefGoogle Scholar
  31. 31.
    Drake, C. G., Doody, A. D., Mihalyo, M. A., Huang, C. T., Kelleher, E., Ravi, S., et al. (2005). Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell, 7(3), 239–249. doi: 10.1016/j.ccr.2005.01.027.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Mercader, M., Bodner, B. K., Moser, M. T., Kwon, P. S., Park, E. S., Manecke, R. G., et al. (2001). T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci U S A, 98(25), 14565–14570. doi: 10.1073/pnas.251140998.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kovacs, W. J., & Olsen, N. J. (1987). Androgen receptors in human thymocytes. J Immunol, 139(2), 490–493.PubMedGoogle Scholar
  34. 34.
    Viselli, S. M., Olsen, N. J., Shults, K., Steizer, G., & Kovacs, W. J. (1995). Immunochemical and flow cytometric analysis of androgen receptor expression in thymocytes. Mol Cell Endocrinol, 109(1), 19–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen, J. H., Danel, L., Cordier, G., Saez, S., & Revillard, J. P. (1983). Sex steroid receptors in peripheral T cells: absence of androgen receptors and restriction of estrogen receptors to OKT8-positive cells. J Immunol, 131(6), 2767–2771.PubMedGoogle Scholar
  36. 36.
    Benten, W. P., Lieberherr, M., Giese, G., Wrehlke, C., Stamm, O., Sekeris, C. E., et al. (1999). Functional testosterone receptors in plasma membranes of T cells. FASEB J, 13(1), 123–133.PubMedGoogle Scholar
  37. 37.
    Pearce, P., Khalid, B. A., & Funder, J. W. (1981). Androgens and the thymus. Endocrinology, 109(4), 1073–1077.PubMedCrossRefGoogle Scholar
  38. 38.
    Kumar, N., Shan, L. X., Hardy, M. P., Bardin, C. W., & Sundaram, K. (1995). Mechanism of androgen-induced thymolysis in rats. Endocrinology, 136(11), 4887–4893.PubMedGoogle Scholar
  39. 39.
    Brelinska, R. (2003). Thymic epithelial cells in age-dependent involution. Microsc Res Tech, 62(6), 488–500. doi: 10.1002/jemt.10410.PubMedCrossRefGoogle Scholar
  40. 40.
    Sutherland, J. S., Goldberg, G. L., Hammett, M. V., Uldrich, A. P., Berzins, S. P., Heng, T. S., et al. (2005). Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol, 175(4), 2741–2753.PubMedCrossRefGoogle Scholar
  41. 41.
    Olsen, N. J., Olson, G., Viselli, S. M., Gu, X., & Kovacs, W. J. (2001). Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology, 142(3), 1278–1283.PubMedGoogle Scholar
  42. 42.
    Dulos, G. J., & Bagchus, W. M. (2001). Androgens indirectly accelerate thymocyte apoptosis. Int Immunopharmacol, 1(2), 321–328.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilson, C. A., Mrose, S. A., & Thomas, D. W. (1995). Enhanced production of B lymphocytes after castration. Blood, 85(6), 1535–1539.PubMedGoogle Scholar
  44. 44.
    Viselli, S. M., Reese, K. R., Fan, J., Kovacs, W. J., & Olsen, N. J. (1997). Androgens alter B cell development in normal male mice. Cell Immunol, 182(2), 99–104. doi: 10.1006/cimm.1997.1227.PubMedCrossRefGoogle Scholar
  45. 45.
    Roden, A. C., Moser, M. T., Tri, S. D., Mercader, M., Kuntz, S. M., Dong, H., et al. (2004). Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol, 173(10), 6098–6108.PubMedCrossRefGoogle Scholar
  46. 46.
    Marzo, A. L., Kinnear, B. F., Lake, R. A., Frelinger, J. J., Collins, E. J., Robinson, B. W., et al. (2000). Tumor-specific CD4+ T cells have a major “post-licensing” role in CTL mediated anti-tumor immunity. J Immunol, 165(11), 6047–6055.PubMedCrossRefGoogle Scholar
  47. 47.
    Hung, K., Hayashi, R., Lafond-Walker, A., Lowenstein, C., Pardoll, D., & Levitsky, H. (1998). The central role of CD4(+) T cells in the antitumor immune response. J Exp Med, 188(12), 2357–2368.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Dobrzanski, M. J. (2013). Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front Oncol, 3, 63. doi: 10.3389/fonc.2013.00063.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Gannon, P. O., Poisson, A. O., Delvoye, N., Lapointe, R., Mes-Masson, A. M., & Saad, F. (2009). Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J Immunol Methods, 348(1–2), 9–17. doi: 10.1016/j.jim.2009.06.004.PubMedCrossRefGoogle Scholar
  50. 50.
    Antonarakis, E. S., Kibel, A., Tyler, R. C., McCoy, C., Wang, Y., Sheikh, N. A., et al. (2013). Randomized phase II trial evaluating the optimal sequencing of sipuleucel-T and androgen-deprivation therapy (ADT) in patients (pts) with biochemically recurrent prostate cancer (BRPC) [abstract]. J Clin Oncol, 31, (suppl 6; abstr 34).Google Scholar
  51. 51.
    Drake, C. G., Jaffee, E., & Pardoll, D. M. (2006). Mechanisms of immune evasion by tumors. Adv Immunol, 90, 51–81. doi: 10.1016/s0065-2776(06)90002-9.PubMedCrossRefGoogle Scholar
  52. 52.
    Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med, 363(8), 711–723. doi: 10.1056/NEJMoa1003466.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Robert, C., Thomas, L., Bondarenko, I., O’Day, S. M. D. J., Garbe, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med, 364(26), 2517–2526. doi: 10.1056/NEJMoa1104621.PubMedCrossRefGoogle Scholar
  54. 54.
    Kwon, E. D., Hurwitz, A. A., Foster, B. A., Madias, C., Feldhaus, A. L., Greenberg, N. M., et al. (1997). Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A, 94(15), 8099–8103.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Hurwitz, A. A., Foster, B. A., Kwon, E. D., Truong, T., Choi, E. M., Greenberg, N. M., et al. (2000). Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res, 60(9), 2444–2448.PubMedGoogle Scholar
  56. 56.
    Demaria, S., Kawashima, N., Yang, A. M., Devitt, M. L., Babb, J. S., Allison, J. P., et al. (2005). Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res, 11(2 Pt 1), 728–734.PubMedGoogle Scholar
  57. 57.
    Slovin, S. F., Higano, C. S., Hamid, O., Tejwani, S., Harzstark, A., Alumkal, J. J., et al. (2013). Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. doi: 10.1093/annonc/mdt107.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Gerritsen, W. R., Kwon, E. D., Fizazi, K., Bossi, A., Van den Eertwegh, A., Logothetis, C., et al. (2013). CA184-043: A randomized, multicenter, double-blind phase 3 trial comparing overall survival (OS) in patients (pts) with post-docetaxel castration-resistant prostate cancer (CRPC) and bone metastases treated with ipilimumab (ipi) vs placebo (pbo), each following single-dose radiotherapy (RT) [abstract]. European Cancer Congress, abstr 2850.Google Scholar
  59. 59.
    Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 8(8), 793–800. doi: 10.1038/nm730.PubMedGoogle Scholar
  60. 60.
    Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., & Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A, 99(19), 12293–12297. doi: 10.1073/pnas.192461099.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Taube, J. M., Anders, R. A., Young, G. D., Xu, H., Sharma, R., McMiller, T. L., et al. (2012). Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med, 4(127), 127ra–137ra. doi: 10.1126/scitranslmed.3003689.CrossRefGoogle Scholar
  62. 62.
    Hino, R., Kabashima, K., Kato, Y., Yagi, H., Nakamura, M., Honjo, T., et al. (2010). Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer, 116(7), 1757–1766. doi: 10.1002/cncr.24899.PubMedCrossRefGoogle Scholar
  63. 63.
    Barach, Y. S., Lee, J. S., & Zang, X. (2010). T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol Med. doi: 10.1016/j.molmed.2010.09.006.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Sfanos, K. S., Bruno, T. C., Meeker, A. K., De Marzo, A. M., Isaacs, W. B., & Drake, C. G. (2009). Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate, 69(15), 1694–1703. doi: 10.1002/pros.21020.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med, 366(26), 2443–2454. doi: 10.1056/NEJMoa1200690.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med, 366(26), 2455–2465. doi: 10.1056/NEJMoa1200694.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Weiner, L. M., Surana, R., & Wang, S. (2010). Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol, 10(5), 317–327. doi: 10.1038/nri2744.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Topalian, S. L., Weiner, G. J., & Pardoll, D. M. (2011). Cancer immunotherapy comes of age. J Clin Oncol, 29(36), 4828–4836. doi: 10.1200/jco.2011.38.0899.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Mellman, I., Coukos, G., & Dranoff, G. (2011). Cancer immunotherapy comes of age. Nature, 480(7378), 480–489. doi: 10.1038/nature10673.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Drake, C. G. (2010). Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol, 10(8), 580–593. doi: 10.1038/nri2817.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245–252. doi: 10.1038/32588.PubMedCrossRefGoogle Scholar
  72. 72.
    Shurin, M. R. (1996). Dendritic cells presenting tumor antigen. Cancer Immunol Immunother, 43(3), 158–164.PubMedCrossRefGoogle Scholar
  73. 73.
    Small, E. J., Fratesi, P., Reese, D. M., Strang, G., Laus, R., Peshwa, M. V., et al. (2000). Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol, 18(23), 3894–3903.PubMedGoogle Scholar
  74. 74.
    Madan, R. A., Gulley, J. L., & Kantoff, P. W. (2013). Demystifying immunotherapy in prostate cancer: understanding current and future treatment strategies. Cancer J, 19(1), 50–58. doi: 10.1097/PPO.0b013e31828160a9.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Huber, M. L., Haynes, L., Parker, C., & Iversen, P. (2012). Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst, 104(4), 273–279. doi: 10.1093/jnci/djr514.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Mackall, C. L., Hakim, F. T., & Gress, R. E. (1997). Restoration of T-cell homeostasis after T-cell depletion. Semin Immunol, 9(6), 339–346. doi: 10.1006/smim.1997.0091.PubMedCrossRefGoogle Scholar
  77. 77.
    Drake, C. G. (2012). Re: interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst, 104(18), 1422. doi: 10.1093/jnci/djs340. author reply 1422-1423.PubMedCrossRefGoogle Scholar
  78. 78.
    Gulley, J. L., Leitman, S. F., Dahut, W., & Schlom, J. (2012). Re: interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst, 104(14), 1106. doi: 10.1093/jnci/djs280. author reply 1109-1112.PubMedCrossRefGoogle Scholar
  79. 79.
    Simons, J. W., Carducci, M. A., Mikhak, B., Lim, M., Biedrzycki, B., Borellini, F., et al. (2006). Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin Cancer Res, 12(11 Pt 1), 3394–3401. doi: 10.1158/1078-0432.ccr-06-0145.PubMedCrossRefGoogle Scholar
  80. 80.
    Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993). Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A, 90(8), 3539–3543.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Small, E. J., Tchekmedyian, N. S., Rini, B. I., Fong, L., Lowy, I., & Allison, J. P. (2007). A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res, 13(6), 1810–1815. doi: 10.1158/1078-0432.ccr-06-2318.PubMedCrossRefGoogle Scholar
  82. 82.
    Small, E. J., Demkow, T., Gerritson, W. R., Rolland, F., Hoskin, P., Smith, D. C., et al. (2009). A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel vs. docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC) [Abstract]. American Society of Clinical Oncology Genitourinary Cancers Symposium, (Abstr 9).Google Scholar
  83. 83.
    Wada, S., Yoshimura, K., Hipkiss, E. L., Harris, T. J., Yen, H. R., Goldberg, M. V., et al. (2009). Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res, 69(10), 4309–4318. doi: 10.1158/0008-5472.can-08-4102.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Arlen, P. M., Gulley, J. L., Madan, R. A., Hodge, J. W., & Schlom, J. (2007). Preclinical and clinical studies of recombinant poxvirus vaccines for carcinoma therapy. Crit Rev Immunol, 27(5), 451–462.PubMedCrossRefGoogle Scholar
  85. 85.
    Harrington, L. E., Most Rv, R., Whitton, J. L., & Ahmed, R. (2002). Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J Virol, 76(7), 3329–3337.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Madan, R. A., Arlen, P. M., Mohebtash, M., Hodge, J. W., & Gulley, J. L. (2009). Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs, 18(7), 1001–1011. doi: 10.1517/13543780902997928.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Kaufman, H. L., Wang, W., Manola, J., DiPaola, R. S., Ko, Y. J., Sweeney, C., et al. (2004). Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J Clin Oncol, 22(11), 2122–2132. doi: 10.1200/jco.2004.08.083.PubMedCrossRefGoogle Scholar
  88. 88.
    Kaufman, H. L., Wang, W., Manola, J., DiPaola, R. S., Ko, Y. J., Sweeney, C. J., et al. (2005). Phase II prime/boost vaccination using poxviruses expressing PSA in hormone-dependent prostate cancer: follow-up clinical results from ECOG 7897 [abstract]. J Clin Oncol, 23(16S), 4501.Google Scholar
  89. 89.
    Alam, S., & McNeel, D. G. (2010). DNA vaccines for the treatment of prostate cancer. Expert Rev Vaccines, 9(7), 731–745. doi: 10.1586/erv.10.64.PubMedCrossRefGoogle Scholar
  90. 90.
    Becker, J. T., Olson, B. M., Johnson, L. E., Davies, J. G., Dunphy, E. J., & McNeel, D. G. (2010). DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother, 33(6), 639–647. doi: 10.1097/CJI.0b013e3181dda23e.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    McNeel, D. G., Dunphy, E. J., Davies, J. G., Frye, T. P., Johnson, L. E., Staab, M. J., et al. (2009). Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol, 27(25), 4047–4054. doi: 10.1200/jco.2008.19.9968.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Li, S., Schmitz, K. R., Jeffrey, P. D., Wiltzius, J. J., Kussie, P., & Ferguson, K. M. (2005). Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell, 7(4), 301–311. doi: 10.1016/j.ccr.2005.03.003.PubMedCrossRefGoogle Scholar
  93. 93.
    Clynes, R. A., Towers, T. L., Presta, L. G., & Ravetch, J. V. (2000). Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med, 6(4), 443–446. doi: 10.1038/74704.PubMedCrossRefGoogle Scholar
  94. 94.
    Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., Baselga, J., et al. (2012). Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med, 367(19), 1783–1791. doi: 10.1056/NEJMoa1209124.PubMedCrossRefGoogle Scholar
  95. 95.
    Akhtar, N. H., Pail, O., Saran, A., Tyrell, L., & Tagawa, S. T. (2012). Prostate-specific membrane antigen-based therapeutics. Adv Urol, 2012, 973820. doi: 10.1155/2012/973820.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Morris, M. J., Divgi, C. R., Pandit-Taskar, N., Batraki, M., Warren, N., Nacca, A., et al. (2005). Pilot trial of unlabeled and indium-111-labeled anti-prostate-specific membrane antigen antibody J591 for castrate metastatic prostate cancer. Clin Cancer Res, 11(20), 7454–7461. doi: 10.1158/1078-0432.ccr-05-0826.PubMedCrossRefGoogle Scholar
  97. 97.
    Bander, N. H., Milowsky, M. I., Nanus, D. M., Kostakoglu, L., Vallabhajosula, S., & Goldsmith, S. J. (2005). Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol, 23(21), 4591–4601. doi: 10.1200/jco.2005.05.160.PubMedCrossRefGoogle Scholar
  98. 98.
    Hurwitz, A. A., Yu, T. F., Leach, D. R., & Allison, J. P. (1998). CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci U S A, 95(17), 10067–10071.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    van Elsas, A., Hurwitz, A. A., & Allison, J. P. (1999). Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med, 190(3), 355–366.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Woo, S. R., Turnis, M. E., Goldberg, M. V., Bankoti, J., Selby, M., Nirschl, C. J., et al. (2012). Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res, 72(4), 917–927. doi: 10.1158/0008-5472.can-11-1620.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Fong, L., Kwek, S. S., O’Brien, S., Kavanagh, B., McNeel, D. G., Weinberg, V., et al. (2009). Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res, 69(2), 609–615. doi: 10.1158/0008-5472.can-08-3529.PubMedCrossRefGoogle Scholar
  102. 102.
    van den Eertwegh, A. J., Versluis, J., van den Berg, H. P., Santegoets, S. J., van Moorselaar, R. J., van der Sluis, T. M., et al. (2012). Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol, 13(5), 509–517. doi: 10.1016/s1470-2045(12)70007-4.PubMedCrossRefGoogle Scholar
  103. 103.
    Harzstark, A. L., Fong, L., Weinberg, V. K., Ryan, C. J., Lin, A. M., Sun, J., et al. (2010). Final results of a phase I study of CTLA-4 blockade in combination with GM-CSF for metastatic castration resistant prostate cancer (mCRPC) [Abstract]. J Clin Oncol 28:15s, 2010 (suppl; abstr 4689)Google Scholar
  104. 104.
    Gerritsen, W. R., van den Eertwegh, A. J., de Gruijl, T. D., Giaccone, G., Scheper, R. J., Sacks, N., et al. (2007). Biochemical and immunologic correlates of clinical response in a combination trial of the GM-CSF-gene transduced allogeneic prostate cancer immunotherapy and ipilimumab in patients with metastatic hormone-refractory prostate cancer (mHRPC) [Abstract]. J Clin Oncol 25:18s (suppl; abstr 5120).Google Scholar
  105. 105.
    Zitvogel, L., Apetoh, L., Ghiringhelli, F., Andre, F., Tesniere, A., & Kroemer, G. (2008). The anticancer immune response: indispensable for therapeutic success? J Clin Invest, 118(6), 1991–2001. doi: 10.1172/jci35180.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Ma, Y., Kepp, O., Ghiringhelli, F., Apetoh, L., Aymeric, L., Locher, C., et al. (2010). Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol, 22(3), 113–124. doi: 10.1016/j.smim.2010.03.001.PubMedCrossRefGoogle Scholar
  107. 107.
    Tanaka, H., Matsushima, H., Mizumoto, N., & Takashima, A. (2009). Classification of chemotherapeutic agents based on their differential in vitro effects on dendritic cells. Cancer Res, 69(17), 6978–6986. doi: 10.1158/0008-5472.can-09-1101.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Formenti, S. C., & Demaria, S. (2013). Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst, 105(4), 256–265. doi: 10.1093/jnci/djs629.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    den Boer, A. T., van Mierlo, G. J., Fransen, M. F., Melief, C. J., Offringa, R., & Toes, R. E. (2004). The tumoricidal activity of memory CD8+ T cells is hampered by persistent systemic antigen, but full functional capacity is regained in an antigen-free environment. J Immunol, 172(10), 6074–6079.CrossRefGoogle Scholar
  110. 110.
    Finn, O. J. (2003). Cancer vaccines: between the idea and the reality. Nat Rev Immunol, 3(8), 630–641. doi: 10.1038/nri1150.PubMedCrossRefGoogle Scholar
  111. 111.
    Gulley, J. L., Arlen, P. M., Madan, R. A., Tsang, K. Y., Pazdur, M. P., Skarupa, L., et al. (2010). Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother, 59(5), 663–674. doi: 10.1007/s00262-009-0782-8.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Motoyoshi, Y., Kaminoda, K., Saitoh, O., Hamasaki, K., Nakao, K., Ishii, N., et al. (2006). Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol Rep, 16(1), 141–146.PubMedGoogle Scholar
  113. 113.
    Mole, R. H. (1953). Whole body irradiation; radiobiology or medicine? Br J Radiol, 26(305), 234–241.PubMedCrossRefGoogle Scholar
  114. 114.
    Demaria, S., Ng, B., Devitt, M. L., Babb, J. S., Kawashima, N., Liebes, L., et al. (2004). Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys, 58(3), 862–870. doi: 10.1016/j.ijrobp.2003.09.012.PubMedCrossRefGoogle Scholar
  115. 115.
    Chi, K. H., Liu, S. J., Li, C. P., Kuo, H. P., Wang, Y. S., Chao, Y., et al. (2005). Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother, 28(2), 129–135.PubMedCrossRefGoogle Scholar
  116. 116.
    Finkelstein, S. E., Iclozan, C., Bui, M. M., Cotter, M. J., Ramakrishnan, R., Ahmed, J., et al. (2012). Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients. Int J Radiat Oncol Biol Phys, 82(2), 924–932. doi: 10.1016/j.ijrobp.2010.12.068.PubMedCrossRefGoogle Scholar
  117. 117.
    Brody, J. D., Ai, W. Z., Czerwinski, D. K., Torchia, J. A., Levy, M., Advani, R. H., et al. (2010). In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol, 28(28), 4324–4332. doi: 10.1200/jco.2010.28.9793.PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. doi: 10.1056/NEJMoa1302369.Google Scholar
  119. 119.
    Hamid, O., Robert, C., Daud, A., Hodi, F. S., Hwu, W. J., Kefford, R., et al. (2013). Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. doi: 10.1056/NEJMoa1305133.PubMedGoogle Scholar
  120. 120.
    Wolchok, J. D., Hoos, A., O’Day, S., Weber, J. S., Hamid, O., Lebbe, C., et al. (2009). Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res, 15(23), 7412–7420. doi: 10.1158/1078-0432.ccr-09-1624.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Medical OncologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreUSA

Personalised recommendations