Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 1, pp 183–215 | Cite as

Oxygen regulates molecular mechanisms of cancer progression and metastasis

  • Kartik Gupta
  • Esha Madan
  • Muzzammil Sayyid
  • Hugo Arias-Pulido
  • Eduardo Moreno
  • Periannan Kuppusamy
  • Rajan Gogna
NON-THEMATIC REVIEW

Abstract

Oxygen is the basic molecule which supports life and it truly is “god's gift to life.” Despite its immense importance, research on “oxygen biology” has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word “hypoxia.” Scientists have focused on hypoxia-induced transcriptomics and molecular–cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

Keywords

Oxygen biology Cancer Metastasis Replication Transcription Translation Protein folding Cell motility p53 Cancer therapeutics Oxygen therapy 

Notes

Acknowledgments

The manuscript is supported by Swiss Cancer league research grant to Rajan Gogna and Eduardo Moreno.

References

  1. 1.
    Sengupta, P. (2012). Health impacts of yoga and pranayama: a state-of-the-art review. Internation Journal of Preventive Medicine, 3(7), 444–458.Google Scholar
  2. 2.
    Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. [Review]. Nature Reviews Cancer, 2(1), 38–47. doi: 10.1038/nrc704.PubMedGoogle Scholar
  3. 3.
    Wijesinghe, M., Perrin, K., Ranchord, A., Simmonds, M., Weatherall, M., & Beasley, R. (2009). Routine use of oxygen in the treatment of myocardial infarction: systematic review. [Meta-Analysis Review]. Heart, 95(3), 198–202. doi: 10.1136/hrt.2008.148742.PubMedGoogle Scholar
  4. 4.
    Kallet, R. H., & Matthay, M. A. (2013). Hyperoxic acute lung injury. [Review]. Respiratory Care, 58(1), 123–141. doi: 10.4187/respcare.01963.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Gu, X., El-Remessy, A. B., Brooks, S. E., Al-Shabrawey, M., Tsai, N. T., & Caldwell, R. B. (2003). Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Cell Physiology, 285(3), C546–C554. doi: 10.1152/ajpcell.00424.2002.PubMedGoogle Scholar
  6. 6.
    Semenza, G. L. (2000). HIF-1 and human disease: one highly involved factor. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Genes and Development, 14(16), 1983–1991.PubMedGoogle Scholar
  7. 7.
    Kvietikova, I., Wenger, R. H., Marti, H. H., & Gassmann, M. (1997). The hypoxia-inducible factor-1 DNA recognition site is cAMP-responsive. [Research Support, Non-U.S. Gov't]. Kidney International, 51(2), 564–566.PubMedGoogle Scholar
  8. 8.
    Grimm, C., Wenzel, A., Groszer, M., Mayser, H., Seeliger, M., Samardzija, M., et al. (2002). HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. [Research Support, Non-U.S. Gov't]. Nature Medicine, 8(7), 718–724. doi: 10.1038/nm723.PubMedGoogle Scholar
  9. 9.
    Wenger, R. H., Stiehl, D. P., & Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. [Review]. Science's STKE, 2005(306), re12. doi: 10.1126/stke.3062005re12.PubMedGoogle Scholar
  10. 10.
    Benita, Y., Kikuchi, H., Smith, A. D., Zhang, M. Q., Chung, D. C., & Xavier, R. J. (2009). An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. [Research Support, N.I.H., Extramural]. Nucleic Acids Research, 37(14), 4587–4602. doi: 10.1093/nar/gkp425.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Lofstedt, T., Jogi, A., Sigvardsson, M., Gradin, K., Poellinger, L., Pahlman, S., et al. (2004). Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 279(38), 39223–39231. doi: 10.1074/jbc.M402904200.PubMedGoogle Scholar
  12. 12.
    Zhao, X. Y., Zhao, K. W., Jiang, Y., Zhao, M., & Chen, G. Q. (2011). Synergistic induction of galectin-1 by CCAAT/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute myeloid leukemic cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 286(42), 36808–36819. doi: 10.1074/jbc.M111.247262.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. [Research Support, Non-U.S. Gov't]. Cancer Research, 66(13), 6683–6691. doi: 10.1158/0008-5472.CAN-06-0425.PubMedGoogle Scholar
  14. 14.
    Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A., & Simon, M. C. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Cell, 11(4), 335–347. doi: 10.1016/j.ccr.2007.02.006.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Luo, D., Wang, J., Li, J., & Post, M. (2011). Mouse snail is a target gene for HIF. [Research Support, Non-U.S. Gov't]. Molecular Cancer Research, 9(2), 234–245. doi: 10.1158/1541-7786.MCR-10-0214.PubMedGoogle Scholar
  16. 16.
    Kihira, Y., Yamano, N., Izawa-Ishizawa, Y., Ishizawa, K., Ikeda, Y., Tsuchiya, K., et al. (2011). Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1alpha in adipocytes. [Research Support, Non-U.S. Gov't]. International Journal of Biochemistry and Cell Biology, 43(11), 1602–1611. doi: 10.1016/j.biocel.2011.07.009.PubMedGoogle Scholar
  17. 17.
    Baumann, M. U., Zamudio, S., & Illsley, N. P. (2007). Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Cell Physiology, 293(1), C477–C485. doi: 10.1152/ajpcell.00075.2007.PubMedGoogle Scholar
  18. 18.
    Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 281(14), 9030–9037. doi: 10.1074/jbc.M511397200.PubMedGoogle Scholar
  19. 19.
    Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 269(38), 23757–23763.PubMedGoogle Scholar
  20. 20.
    Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V., et al. (2002). Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 277(8), 6183–6187. doi: 10.1074/jbc.M110978200.PubMedGoogle Scholar
  21. 21.
    Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. [Research Support, N.I.H., Extramural]. Cell Metabolism, 3(3), 187–197. doi: 10.1016/j.cmet.2006.01.012.PubMedGoogle Scholar
  22. 22.
    Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. [Research Support, N.I.H., Extramural]. Cell Metabolism, 3(3), 177–185. doi: 10.1016/j.cmet.2006.02.002.PubMedGoogle Scholar
  23. 23.
    Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V., & Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1), 111–122. doi: 10.1016/j.cell.2007.01.047.PubMedGoogle Scholar
  24. 24.
    Dean, J. B., Mulkey, D. K., Henderson, R. A., 3rd, Potter, S. J., & Putnam, R. W. (2004). Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Journal of Applied Physiology, 96(2), 784–791. doi: 10.1152/japplphysiol.00892.2003.PubMedGoogle Scholar
  25. 25.
    Pepperl, S., Dorger, M., Ringel, F., Kupatt, C., & Krombach, F. (2001). Hyperoxia upregulates the NO pathway in alveolar macrophages in vitro: role of AP-1 and NF-kappaB. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280(5), L905–L913.PubMedGoogle Scholar
  26. 26.
    Haddad, J. J., Olver, R. E., & Land, S. C. (2000). Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 275(28), 21130–21139. doi: 10.1074/jbc.M000737200.PubMedGoogle Scholar
  27. 27.
    Michiels, C., Minet, E., Mottet, D., & Raes, M. (2002). Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. [Research Support, Non-U.S. Gov't Review]. Free Radical Biology and Medicine, 33(9), 1231–1242.PubMedGoogle Scholar
  28. 28.
    Wu, X., Bishopric, N. H., Discher, D. J., Murphy, B. J., & Webster, K. A. (1996). Physical and functional sensitivity of zinc finger transcription factors to redox change. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 16(3), 1035–1046.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Rainwater, R., Parks, D., Anderson, M. E., Tegtmeyer, P., & Mann, K. (1995). Role of cysteine residues in regulation of p53 function. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 15(7), 3892–3903.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Powis, G., & Montfort, W. R. (2001). Properties and biological activities of thioredoxins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Annual Review of Biophysics and Biomolecular Structure, 30, 421–455. doi: 10.1146/annurev.biophys.30.1.421.PubMedGoogle Scholar
  31. 31.
    Qu, Y., Wang, J., Ray, P. S., Guo, H., Huang, J., Shin-Sim, M., et al. (2011). Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kappaB signaling. [Research Support, Non-U.S. Gov't]. Journal of Clinical Investigation, 121(1), 212–225. doi: 10.1172/JCI43144.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Wood, Z. A., Schroder, E., Robin Harris, J., & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Trends in Biochemical Sciences, 28(1), 32–40.PubMedGoogle Scholar
  33. 33.
    Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., et al. (1999). Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. [Research Support, Non-U.S. Gov't]. EMBO Journal, 18(7), 1905–1914. doi: 10.1093/emboj/18.7.1905.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Matthews, J. R., Wakasugi, N., Virelizier, J. L., Yodoi, J., & Hay, R. T. (1992). Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. [Research Support, Non-U.S. Gov't]. Nucleic Acids Research, 20(15), 3821–3830.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Schreck, R., Meier, B., Mannel, D. N., Droge, W., & Baeuerle, P. A. (1992). Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. [Research Support, Non-U.S. Gov't]. Journal of Experimental Medicine, 175(5), 1181–1194.PubMedGoogle Scholar
  36. 36.
    Wu, W. S. (2006). The signaling mechanism of ROS in tumor progression. [Research Support, Non-U.S. Gov't Review]. Cancer Metastasis Reviews, 25(4), 695–705. doi: 10.1007/s10555-006-9037-8.PubMedGoogle Scholar
  37. 37.
    Melvin, A., & Rocha, S. (2012). Chromatin as an oxygen sensor and active player in the hypoxia response. [Research Support, Non-U.S. Gov't Review]. Cellular Signalling, 24(1), 35–43. doi: 10.1016/j.cellsig.2011.08.019.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Wang, F., Zhang, R., Beischlag, T. V., Muchardt, C., Yaniv, M., & Hankinson, O. (2004). Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(45), 46733–46741. doi: 10.1074/jbc.M409002200.PubMedGoogle Scholar
  39. 39.
    Kenneth, N. S., Mudie, S., van Uden, P., & Rocha, S. (2009). SWI/SNF regulates the cellular response to hypoxia. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(7), 4123–4131. doi: 10.1074/jbc.M808491200.PubMedGoogle Scholar
  40. 40.
    Jung, J. E., Lee, H. G., Cho, I. H., Chung, D. H., Yoon, S. H., Yang, Y. M., et al. (2005). STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. [Research Support, Non-U.S. Gov't]. FASEB Journal, 19(10), 1296–1298. doi: 10.1096/fj.04-3099fje.PubMedGoogle Scholar
  41. 41.
    Bouquet, F., Ousset, M., Biard, D., Fallone, F., Dauvillier, S., Frit, P., et al. (2011). A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 124(Pt 11), 1943–1951. doi: 10.1242/jcs.078030.PubMedGoogle Scholar
  42. 42.
    Lu, Y., Chu, A., Turker, M. S., & Glazer, P. M. (2011). Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Molecular and Cellular Biology, 31(16), 3339–3350. doi: 10.1128/MCB.01121-10.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Lee, S. H., Kim, J., Kim, W. H., & Lee, Y. M. (2009). Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. [Research Support, Non-U.S. Gov't]. Oncogene, 28(2), 184–194. doi: 10.1038/onc.2008.377.PubMedGoogle Scholar
  44. 44.
    Shahrzad, S., Bertrand, K., Minhas, K., & Coomber, B. L. (2007). Induction of DNA hypomethylation by tumor hypoxia. [Research Support, Non-U.S. Gov't]. Epigenetics, 2(2), 119–125.PubMedGoogle Scholar
  45. 45.
    Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., et al. (2008). Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. [Research Support, Non-U.S. Gov't]. Cancer Research, 68(14), 5540–5545. doi: 10.1158/0008-5472.CAN-07-6460.PubMedGoogle Scholar
  46. 46.
    Cha, S. T., Chen, P. S., Johansson, G., Chu, C. Y., Wang, M. Y., Jeng, Y. M., et al. (2010). MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. [Research Support, Non-U.S. Gov't]. Cancer Research, 70(7), 2675–2685. doi: 10.1158/0008-5472.CAN-09-2448.PubMedGoogle Scholar
  47. 47.
    Cascio, S., D'Andrea, A., Ferla, R., Surmacz, E., Gulotta, E., Amodeo, V., et al. (2010). miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. Journal of Cellular Physiology, 224(1), 242–249. doi: 10.1002/jcp.22126.PubMedGoogle Scholar
  48. 48.
    Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339. doi: 10.1073/pnas.0911082107.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Bruning, U., Cerone, L., Neufeld, Z., Fitzpatrick, S. F., Cheong, A., Scholz, C. C., et al. (2011). MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 31(19), 4087–4096. doi: 10.1128/MCB.01276-10.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Kulshreshtha, R., Davuluri, R. V., Calin, G. A., & Ivan, M. (2008). A microRNA component of the hypoxic response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cell Death and Differentiation, 15(4), 667–671. doi: 10.1038/sj.cdd.4402310.PubMedGoogle Scholar
  51. 51.
    Kulshreshtha, R., Ferracin, M., Wojcik, S. E., Garzon, R., Alder, H., Agosto-Perez, F. J., et al. (2007). A microRNA signature of hypoxia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 27(5), 1859–1867. doi: 10.1128/MCB.01395-06.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Devlin, C., Greco, S., Martelli, F., & Ivan, M. (2011). miR-210: more than a silent player in hypoxia. [Research Support, Non-U.S. Gov't Review]. IUBMB Life, 63(2), 94–100. doi: 10.1002/iub.427.PubMedGoogle Scholar
  53. 53.
    Audas, T. E., Jacob, M. D., & Lee, S. (2012). Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. [Research Support, Non-U.S. Gov't]. Molecular Cell, 45(2), 147–157. doi: 10.1016/j.molcel.2011.12.012.PubMedGoogle Scholar
  54. 54.
    Prasanth, K. V. (2012). Policing cells under stress: noncoding RNAs capture proteins in nucleolar detention centers. [Comment]. Molecular Cell, 45(2), 141–142. doi: 10.1016/j.molcel.2012.01.005.PubMedGoogle Scholar
  55. 55.
    Hirschfeld, M., zur Hausen, A., Bettendorf, H., Jager, M., & Stickeler, E. (2009). Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. [Research Support, Non-U.S. Gov't]. Cancer Research, 69(5), 2082–2090. doi: 10.1158/0008-5472.CAN-08-1997.PubMedGoogle Scholar
  56. 56.
    Elledge, S. J., Zhou, Z., & Allen, J. B. (1992). Ribonucleotide reductase: regulation, regulation, regulation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Trends in Biochemical Sciences, 17(3), 119–123.PubMedGoogle Scholar
  57. 57.
    Brischwein, K., Engelcke, M., Riedinger, H. J., & Probst, H. (1997). Role of ribonucleotide reductase and deoxynucleotide pools in the oxygen-dependent control of DNA replication in Ehrlich ascites cells. [Research Support, Non-U.S. Gov't]. European Journal of Biochemistry, 244(2), 286–293.PubMedGoogle Scholar
  58. 58.
    Madan, E., Gogna, R., & Pati, U. (2012). p53 Ser15 phosphorylation disrupts the p53-RPA70 complex and induces RPA70-mediated DNA repair in hypoxia. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 443(3), 811–820. doi: 10.1042/BJ20111627.PubMedGoogle Scholar
  59. 59.
    Park, J. S., Wang, M., Park, S. J., & Lee, S. H. (1999). Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 274(41), 29075–29080.PubMedGoogle Scholar
  60. 60.
    Ohshima, N., Takahashi, M., & Hirose, F. (2003). Identification of a human homologue of the DREF transcription factor with a potential role in regulation of the histone H1 gene. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(25), 22928–22938. doi: 10.1074/jbc.M303109200.PubMedGoogle Scholar
  61. 61.
    Choi, T. Y., Park, S. Y., Kang, H. S., Cheong, J. H., Kim, H. D., Lee, B. L., et al. (2004). Redox regulation of DNA binding activity of DREF (DNA replication-related element binding factor) in Drosophila. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 378(Pt 3), 833–838. doi: 10.1042/BJ20031601.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Helt, C. E., Rancourt, R. C., Staversky, R. J., & O'Reilly, M. A. (2001). p53-dependent induction of p21(Cip1/WAF1/Sdi1) protects against oxygen-induced toxicity. [Comparative Study Research Support, U.S. Gov't, P.H.S.]. Toxicological Sciences, 63(2), 214–222.PubMedGoogle Scholar
  63. 63.
    Montaner, B., O'Donovan, P., Reelfs, O., Perrett, C. M., Zhang, X., Xu, Y. Z., et al. (2007). Reactive oxygen-mediated damage to a human DNA replication and repair protein. [Research Support, Non-U.S. Gov't]. EMBO Reports, 8(11), 1074–1079. doi: 10.1038/sj.embor.7401084.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Riedinger, H. J., van Betteraey, M., & Probst, H. (1999). Hypoxia blocks in vivo initiation of simian virus 40 replication at a stage preceding origin unwinding. [Research Support, Non-U.S. Gov't]. Journal of Virology, 73(3), 2243–2252.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Riedinger, H. J., van Betteraey-Nikoleit, M., & Probst, H. (2002). Re-oxygenation of hypoxic simian virus 40 (SV40)-infected CV1 cells causes distinct changes of SV40 minichromosome-associated replication proteins. [Research Support, Non-U.S. Gov't]. European Journal of Biochemistry, 269(9), 2383–2393.PubMedGoogle Scholar
  66. 66.
    van Betteraey-Nikoleit, M., Eisele, K. H., Stabenow, D., & Probst, H. (2003). Analyzing changes of chromatin-bound replication proteins occurring in response to and after release from a hypoxic block of replicon initiation in T24 cells. European Journal of Biochemistry, 270(19), 3880–3890.PubMedGoogle Scholar
  67. 67.
    Riedinger, H. J., van Betteraey-Nikoleit, M., Hilfrich, U., Eisele, K. H., & Probst, H. (2001). Oxygen-dependent regulation of in vivo replication of simian virus 40 DNA is modulated by glucose. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 276(50), 47122–47130. doi: 10.1074/jbc.M106938200.PubMedGoogle Scholar
  68. 68.
    Blow, J. J., & Dutta, A. (2005). Preventing re-replication of chromosomal DNA. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Nature Reviews. Molecular Cell Biology, 6(6), 476–486. doi: 10.1038/nrm1663.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Martin, L. (2007). The replicon initiation burst released by reoxygenation of hypoxic T24 cells is accompanied by changes of MCM2 and Cdc7. Journal of Biochemistry and Molecular Biology, 40(5), 805–813.PubMedGoogle Scholar
  70. 70.
    Hubbi, M. E., Luo, W., Baek, J. H., & Semenza, G. L. (2011). MCM proteins are negative regulators of hypoxia-inducible factor 1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular Cell, 42(5), 700–712. doi: 10.1016/j.molcel.2011.03.029.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Pani, G., Galeotti, T., & Chiarugi, P. (2010). Metastasis: cancer cell's escape from oxidative stress. [Research Support, Non-U.S. Gov't Review]. Cancer Metastasis Reviews, 29(2), 351–378. doi: 10.1007/s10555-010-9225-4.PubMedGoogle Scholar
  72. 72.
    Xiong, W., Jiao, Y., Huang, W., Ma, M., Yu, M., Cui, Q., et al. (2012). Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. [Research Support, Non-U.S. Gov't]. Acta Biochim Biophys Sin (Shanghai), 44(4), 347–358. doi: 10.1093/abbs/gms006.Google Scholar
  73. 73.
    Padilla, P. A., Nystul, T. G., Zager, R. A., Johnson, A. C., & Roth, M. B. (2002). Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Molecular Biology of the Cell, 13(5), 1473–1483. doi: 10.1091/mbc.01-12-0594.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Biggar, K. K., & Storey, K. B. (2009). Perspectives in cell cycle regulation: lessons from an anoxic vertebrate. Current Genomics, 10(8), 573–584. doi: 10.2174/138920209789503905.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Foe, V. E., & Alberts, B. M. (1985). Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. [Research Support, U.S. Gov't, P.H.S.]. Journal of Cell Biology, 100(5), 1623–1636.PubMedGoogle Scholar
  76. 76.
    Biggar, K. K., & Storey, K. B. (2012). Evidence for cell cycle suppression and microRNA regulation of cyclin D1 during anoxia exposure in turtles. [Research Support, Non-U.S. Gov't]. Cell Cycle, 11(9), 1705–1713. doi: 10.4161/cc.19790.PubMedGoogle Scholar
  77. 77.
    Goda, N., Dozier, S. J., & Johnson, R. S. (2003). HIF-1 in cell cycle regulation, apoptosis, and tumor progression. [Research Support, Non-U.S. Gov't Review]. Antioxidants and Redox Signaling, 5(4), 467–473. doi: 10.1089/152308603768295212.PubMedGoogle Scholar
  78. 78.
    Goda, N., Ryan, H. E., Khadivi, B., McNulty, W., Rickert, R. C., & Johnson, R. S. (2003). Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Molecular and Cellular Biology, 23(1), 359–369.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Culver, C., Melvin, A., Mudie, S., & Rocha, S. (2011). HIF-1alpha depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. [Research Support, Non-U.S. Gov't]. Cell Cycle, 10(8), 1249–1260.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Hackenbeck, T., Knaup, K. X., Schietke, R., Schodel, J., Willam, C., Wu, X., et al. (2009). HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. [Research Support, Non-U.S. Gov't]. Cell Cycle, 8(9), 1386–1395.PubMedGoogle Scholar
  81. 81.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Cell, 100(1), 57–70.PubMedGoogle Scholar
  82. 82.
    Madan, E., Gogna, R., Kuppusamy, P., Bhatt, M., Pati, U., & Mahdi, A. A. (2012). TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. British Journal of Cancer, 107(3), 516–526. doi: 10.1038/bjc.2012.260.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Wen, W., Ding, J., Sun, W., Wu, K., Ning, B., Gong, W., et al. (2010). Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. [Research Support, Non-U.S. Gov't]. Cancer Research, 70(5), 2010–2019. doi: 10.1158/0008-5472.CAN-08-4910.PubMedGoogle Scholar
  84. 84.
    Sengupta, T., Abraham, G., Xu, Y., Clurman, B. E., & Minella, A. C. (2011). Hypoxia-inducible factor 1 is activated by dysregulated cyclin E during mammary epithelial morphogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 31(18), 3885–3895. doi: 10.1128/MCB.05089-11.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Jezek, P., & Hlavata, L. (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. [Research Support, Non-U.S. Gov't Review]. International Journal of Biochemistry and Cell Biology, 37(12), 2478–2503. doi: 10.1016/j.biocel.2005.05.013.PubMedGoogle Scholar
  86. 86.
    Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., & Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Science, 270(5234), 296–299.PubMedGoogle Scholar
  87. 87.
    Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B., et al. (1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. Journal of Biological Chemistry, 272(1), 217–221.PubMedGoogle Scholar
  88. 88.
    Havens, C. G., Ho, A., Yoshioka, N., & Dowdy, S. F. (2006). Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 26(12), 4701–4711. doi: 10.1128/MCB.00303-06.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kim, J. H., Song, S. Y., Park, S. G., Song, S. U., Xia, Y., & Sung, J. H. (2012). Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cells and Development, 21(12), 2212–2221. doi: 10.1089/scd.2011.0561.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Cave, A. C., Brewer, A. C., Narayanapanicker, A., Ray, R., Grieve, D. J., Walker, S., et al. (2006). NADPH oxidases in cardiovascular health and disease. [Research Support, Non-U.S. Gov't Review]. Antioxidants and Redox Signaling, 8(5–6), 691–728. doi: 10.1089/ars.2006.8.691.PubMedGoogle Scholar
  91. 91.
    Salmeen, A., Park, B. O., & Meyer, T. (2010). The NADPH oxidases NOX4 and DUOX2 regulate cell cycle entry via a p53-dependent pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Oncogene, 29(31), 4473–4484. doi: 10.1038/onc.2010.200.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Mesquita, F. S., Dyer, S. N., Heinrich, D. A., Bulun, S. E., Marsh, E. E., & Nowak, R. A. (2010). Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. [Research Support, N.I.H., Extramural]. Biology of Reproduction, 82(2), 341–351. doi: 10.1095/biolreprod.108.075887.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Menon, S. G., Sarsour, E. H., Spitz, D. R., Higashikubo, R., Sturm, M., Zhang, H., et al. (2003). Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. [Research Support, U.S. Gov't, P.H.S.]. Cancer Research, 63(9), 2109–2117.PubMedGoogle Scholar
  94. 94.
    Lu, Q., Jourd'Heuil, F. L., & Jourd'Heuil, D. (2007). Redox control of G(1)/S cell cycle regulators during nitric oxide-mediated cell cycle arrest. [Research Support, N.I.H., Extramural]. Journal of Cellular Physiology, 212(3), 827–839. doi: 10.1002/jcp.21079.PubMedGoogle Scholar
  95. 95.
    Kalns, J. E., & Piepmeier, E. H. (1999). Exposure to hyperbaric oxygen induces cell cycle perturbation in prostate cancer cells. In Vitro Cellular and Developmental Biology - Animal, 35(2), 98–101. doi: 10.1007/s11626-999-0008-6.PubMedGoogle Scholar
  96. 96.
    Shenberger, J. S., & Dixon, P. S. (1999). Oxygen induces S-phase growth arrest and increases p53 and p21(WAF1/CIP1) expression in human bronchial smooth-muscle cells. American Journal of Respiratory Cell and Molecular Biology, 21(3), 395–402.PubMedGoogle Scholar
  97. 97.
    Rancourt, R. C., Keng, P. C., Helt, C. E., & O'Reilly, M. A. (2001). The role of p21(CIP1/WAF1) in growth of epithelial cells exposed to hyperoxia. [Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280(4), L617–L626.PubMedGoogle Scholar
  98. 98.
    Helt, C. E., Staversky, R. J., Lee, Y. J., Bambara, R. A., Keng, P. C., & O'Reilly, M. A. (2004). The Cdk and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. [Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(3), L506–L513. doi: 10.1152/ajplung.00243.2003.PubMedGoogle Scholar
  99. 99.
    O'Reilly, M. A., Staversky, R. J., Watkins, R. H., Reed, C. K., de Mesy Jensen, K. L., Finkelstein, J. N., et al. (2001). The cyclin-dependent kinase inhibitor p21 protects the lung from oxidative stress. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Respiratory Cell and Molecular Biology, 24(6), 703–710.PubMedGoogle Scholar
  100. 100.
    Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y., & Wang, X. F. (1995). Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5545–5549.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Bellido, T., O'Brien, C. A., Roberson, P. K., & Manolagas, S. C. (1998). Transcriptional activation of the p21(WAF1, CIP1, SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 273(33), 21137–21144.PubMedGoogle Scholar
  102. 102.
    Cen, B., Deguchi, A., & Weinstein, I. B. (2008). Activation of protein kinase G Increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. [Research Support, Non-U.S. Gov't]. Cancer Research, 68(13), 5355–5362. doi: 10.1158/0008-5472.CAN-07-6869.PubMedGoogle Scholar
  103. 103.
    Austin, R. C. (2009). The unfolded protein response in health and disease. [Editorial Introductory Research Support, Non-U.S. Gov't]. Antioxidants and Redox Signaling, 11(9), 2279–2287. doi: 10.1089/ARS.2009.2686.PubMedGoogle Scholar
  104. 104.
    Gogna, R., Madan, E., Kuppusamy, P., & Pati, U. (2012). Re-oxygenation causes hypoxic tumor regression through restoration of p53 wild-type conformation and post-translational modifications. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cell Death Dis, 3, e286. doi: 10.1038/cddis.2012.15.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Gogna, R., Madan, E., Kuppusamy, P., & Pati, U. (2012). Chaperoning of mutant p53 protein by wild-type p53 protein causes hypoxic tumor regression. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 287(4), 2907–2914. doi: 10.1074/jbc.M111.317354.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Zhang, L. H., & Zhang, X. (2010). Roles of GRP78 in physiology and cancer. [Review]. Journal of Cellular Biochemistry, 110(6), 1299–1305. doi: 10.1002/jcb.22679.PubMedGoogle Scholar
  107. 107.
    Ostergaard, L., Simonsen, U., Eskildsen-Helmond, Y., Vorum, H., Uldbjerg, N., Honore, B., et al. (2009). Proteomics reveals lowering oxygen alters cytoskeletal and endoplasmatic stress proteins in human endothelial cells. [Research Support, Non-U.S. Gov't]. Proteomics, 9(19), 4457–4467. doi: 10.1002/pmic.200800130.PubMedGoogle Scholar
  108. 108.
    Inokuchi, Y., Nakajima, Y., Shimazawa, M., Kurita, T., Kubo, M., Saito, A., et al. (2009). Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. [Research Support, Non-U.S. Gov't]. Investigative Ophthalmology and Visual Science, 50(1), 334–344. doi: 10.1167/iovs.08-2123.PubMedGoogle Scholar
  109. 109.
    Frickel, E. M., Frei, P., Bouvier, M., Stafford, W. F., Helenius, A., Glockshuber, R., et al. (2004). ERp57 is a multifunctional thiol-disulfide oxidoreductase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(18), 18277–18287. doi: 10.1074/jbc.M314089200.PubMedGoogle Scholar
  110. 110.
    Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273(50), 33741–33749.PubMedGoogle Scholar
  111. 111.
    Doroudgar, S., Thuerauf, D. J., Marcinko, M. C., Belmont, P. J., & Glembotski, C. C. (2009). Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 284(43), 29735–29745. doi: 10.1074/jbc.M109.018036.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Kuwabara, K., Matsumoto, M., Ikeda, J., Hori, O., Ogawa, S., Maeda, Y., et al. (1996). Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 271(9), 5025–5032.PubMedGoogle Scholar
  113. 113.
    Bando, Y., Ogawa, S., Yamauchi, A., Kuwabara, K., Ozawa, K., Hori, O., et al. (2000). 150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells. American Journal of Physiology. Cell Physiology, 278(6), C1172–C1182.PubMedGoogle Scholar
  114. 114.
    Tamatani, M., Matsuyama, T., Yamaguchi, A., Mitsuda, N., Tsukamoto, Y., Taniguchi, M., et al. (2001). ORP150 protects against hypoxia/ischemia-induced neuronal death. [Research Support, Non-U.S. Gov't]. Nature Medicine, 7(3), 317–323. doi: 10.1038/85463.PubMedGoogle Scholar
  115. 115.
    Miyazaki, M., Ozawa, K., Hori, O., Kitao, Y., Matsushita, K., Ogawa, S., et al. (2002). Expression of 150-kd oxygen-regulated protein in the hippocampus suppresses delayed neuronal cell death. Journal of Cerebral Blood Flow and Metabolism, 22(8), 979–987. doi: 10.1097/00004647-200208000-00009.PubMedGoogle Scholar
  116. 116.
    Kitano, H., Nishimura, H., Tachibana, H., Yoshikawa, H., & Matsuyama, T. (2004). ORP150 ameliorates ischemia/reperfusion injury from middle cerebral artery occlusion in mouse brain. [Comparative Study]. Brain Research, 1015(1–2), 122–128. doi: 10.1016/j.brainres.2004.04.058.PubMedGoogle Scholar
  117. 117.
    Ozawa, K., Kondo, T., Hori, O., Kitao, Y., Stern, D. M., Eisenmenger, W., et al. (2001). Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. Journal of Clinical Investigation, 108(1), 41–50. doi: 10.1172/JCI11772.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Ozawa, K., Tsukamoto, Y., Hori, O., Kitao, Y., Yanagi, H., Stern, D. M., et al. (2001). Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Research, 61(10), 4206–4213.PubMedGoogle Scholar
  119. 119.
    Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., & Gitlin, J. D. (1997). The copper chaperone for superoxide dismutase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 272(38), 23469–23472.PubMedGoogle Scholar
  120. 120.
    Schmidt, P. J., Kunst, C., & Culotta, V. C. (2000). Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein–protein interactions with the copper chaperone for SOD1. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 275(43), 33771–33776. doi: 10.1074/jbc.M006254200.PubMedGoogle Scholar
  121. 121.
    Wong, P. C., Waggoner, D., Subramaniam, J. R., Tessarollo, L., Bartnikas, T. B., Culotta, V. C., et al. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 97(6), 2886–2891. doi: 10.1073/pnas.040461197.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Kirby, K., Jensen, L. T., Binnington, J., Hilliker, A. J., Ulloa, J., Culotta, V. C., et al. (2008). Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 283(51), 35393–35401. doi: 10.1074/jbc.M807131200.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Leitch, J. M., Jensen, L. T., Bouldin, S. D., Outten, C. E., Hart, P. J., & Culotta, V. C. (2009). Activation of Cu, Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(33), 21863–21871. doi: 10.1074/jbc.M109.000489.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Shao, L., Perez, R. E., Gerthoffer, W. T., Truog, W. E., & Xu, D. (2009). Heat shock protein 27 protects lung epithelial cells from hyperoxia-induced apoptotic cell death. [Research Support, Non-U.S. Gov't]. Pediatric Research, 65(3), 328–333. doi: 10.1203/PDR.0b013e3181961a51.PubMedGoogle Scholar
  125. 125.
    Zeng, L., Tan, J., Hu, Z., Lu, W., & Yang, B. (2010). Hsp20 protects neuroblastoma cells from ischemia/reperfusion injury by inhibition of apoptosis via a mechanism that involves the mitochondrial pathways. [Research Support, Non-U.S. Gov't]. Current Neurovascular Research, 7(4), 281–287.PubMedGoogle Scholar
  126. 126.
    Zhang, L., Zhao, H., Blagg, B. S., & Dobrowsky, R. T. (2012). C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Proteome Research, 11(4), 2581–2593. doi: 10.1021/pr300056m.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Doeppner, T. R., Ewert, T. A., Tonges, L., Herz, J., Zechariah, A., ElAli, A., et al. (2012). Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells, 30(6), 1297–1310. doi: 10.1002/stem.1098.PubMedGoogle Scholar
  128. 128.
    Sreedhar, A. S., Mihaly, K., Pato, B., Schnaider, T., Stetak, A., Kis-Petik, K., et al. (2003). Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(37), 35231–35240. doi: 10.1074/jbc.M301371200.PubMedGoogle Scholar
  129. 129.
    Neckers, L., & Ivy, S. P. (2003). Heat shock protein 90. [Review]. Current Opinion in Oncology, 15(6), 419–424.PubMedGoogle Scholar
  130. 130.
    Katschinski, D. M., Le, L., Schindler, S. G., Thomas, T., Voss, A. K., & Wenger, R. H. (2004). Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization. [Research Support, Non-U.S. Gov't]. Cellular Physiology and Biochemistry, 14(4–6), 351–360. doi: 10.1159/000080345.PubMedGoogle Scholar
  131. 131.
    Zhou, J., Schmid, T., Frank, R., & Brune, B. (2004). PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 279(14), 13506–13513. doi: 10.1074/jbc.M310164200.PubMedGoogle Scholar
  132. 132.
    Zhang, D., Li, J., Costa, M., Gao, J., & Huang, C. (2010). JNK1 mediates degradation HIF-1alpha by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 70(2), 813–823. doi: 10.1158/0008-5472.CAN-09-0448.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Trisciuoglio, D., Gabellini, C., Desideri, M., Ziparo, E., Zupi, G., & Del Bufalo, D. (2010). Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90. [Research Support, Non-U.S. Gov't]. PLoS One, 5(7), e11772. doi: 10.1371/journal.pone.0011772.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. [Research Support, Non-U.S. Gov't Review]. Nature Reviews. Molecular Cell Biology, 5(5), 343–354. doi: 10.1038/nrm1366.PubMedGoogle Scholar
  135. 135.
    Liu, Y. V., Baek, J. H., Zhang, H., Diez, R., Cole, R. N., & Semenza, G. L. (2007). RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. [In Vitro Research Support, N.I.H., Extramural]. Molecular Cell, 25(2), 207–217. doi: 10.1016/j.molcel.2007.01.001.PubMedCentralPubMedGoogle Scholar
  136. 136.
    van de Sluis, B., Groot, A. J., Vermeulen, J., van der Wall, E., van Diest, P. J., Wijmenga, C., et al. (2009). COMMD1 promotes pVHL and O2-independent proteolysis of HIF-1alpha via HSP90/70. [Research Support, Non-U.S. Gov't]. PLoS One, 4(10), e7332. doi: 10.1371/journal.pone.0007332.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Kawanami, D., Mahabeleshwar, G. H., Lin, Z., Atkins, G. B., Hamik, A., Haldar, S. M., et al. (2009). Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(31), 20522–20530. doi: 10.1074/jbc.M109.025346.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Nandal, A., Ruiz, J. C., Subramanian, P., Ghimire-Rijal, S., Sinnamon, R. A., Stemmler, T. L., et al. (2011). Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't]. Cell Metabolism, 14(5), 647–657. doi: 10.1016/j.cmet.2011.08.015.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Chambellan, A., Cruickshank, P. J., McKenzie, P., Cannady, S. B., Szabo, K., Comhair, S. A., et al. (2006). Gene expression profile of human airway epithelium induced by hyperoxia in vivo. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. American Journal of Respiratory Cell and Molecular Biology, 35(4), 424–435. doi: 10.1165/rcmb.2005-0251OC.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Wong, H. R., Menendez, I. Y., Ryan, M. A., Denenberg, A. G., & Wispe, J. R. (1998). Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology, 275(4 Pt 1), L836–L841.PubMedGoogle Scholar
  141. 141.
    Malhotra, V., Kooy, N. W., Denenberg, A. G., Dunsmore, K. E., & Wong, H. R. (2002). Ablation of the heat shock factor-1 increases susceptibility to hyperoxia-mediated cellular injury. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Experimental Lung Research, 28(8), 609–622. doi: 10.1080/01902140260426724.PubMedGoogle Scholar
  142. 142.
    Xu, D., Perez, R. E., Rezaiekhaligh, M. H., Bourdi, M., & Truog, W. E. (2009). Knockdown of ERp57 increases BiP/GRP78 induction and protects against hyperoxia and tunicamycin-induced apoptosis. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(1), L44–L51. doi: 10.1152/ajplung.90626.2008.PubMedGoogle Scholar
  143. 143.
    Gewandter, J. S., Staversky, R. J., & O'Reilly, M. A. (2009). Hyperoxia augments ER-stress-induced cell death independent of BiP loss. [Research Support, N.I.H., Extramural]. Free Radical Biology and Medicine, 47(12), 1742–1752. doi: 10.1016/j.freeradbiomed.2009.09.022.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Nam, S. Y., Ko, Y. S., Jung, J., Yoon, J., Kim, Y. H., Choi, Y. J., et al. (2011). A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-kappaB promotes gastric tumour growth and angiogenesis. [Research Support, Non-U.S. Gov't]. British Journal of Cancer, 104(1), 166–174. doi: 10.1038/sj.bjc.6606020.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Mazumdar, J., O'Brien, W. T., Johnson, R. S., LaManna, J. C., Chavez, J. C., Klein, P. S., et al. (2010). O2 regulates stem cells through Wnt/beta-catenin signalling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nature Cell Biology, 12(10), 1007–1013. doi: 10.1038/ncb2102.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Eliasz, S., Liang, S., Chen, Y., De Marco, M. A., Machek, O., Skucha, S., et al. (2010). Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Oncogene, 29(17), 2488–2498. doi: 10.1038/onc.2010.7.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Song, H. P., Zhang, L., Dang, Y. M., Yan, H., Chu, Z. G., & Huang, Y. S. (2010). The phosphatidylinositol 3-kinase-Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function. [Research Support, Non-U.S. Gov't]. Clinical and Experimental Pharmacology and Physiology, 37(5–6), 598–604. doi: 10.1111/j.1440-1681.2010.05355.x.PubMedGoogle Scholar
  148. 148.
    Xenaki, G., Ontikatze, T., Rajendran, R., Stratford, I. J., Dive, C., Krstic-Demonacos, M., et al. (2008). PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. [Research Support, Non-U.S. Gov't]. Oncogene, 27(44), 5785–5796. doi: 10.1038/onc.2008.192.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Tan, C., Zhang, L. Y., Chen, H., Xiao, L., Liu, X. P., & Zhang, J. X. (2011). Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia–reoxygenation injury in pheochromocytoma (PC12) cells. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 416(3–4), 403–408. doi: 10.1016/j.bbrc.2011.11.054.PubMedGoogle Scholar
  150. 150.
    Delivoria-Papadopoulos, M., & Mishra, O. P. (2010). Mechanism of post-translational modification by tyrosine phosphorylation of apoptotic proteins during hypoxia in the cerebral cortex of newborn piglets. [Research Support, N.I.H., Extramural]. Neurochemical Research, 35(1), 76–84. doi: 10.1007/s11064-009-0032-7.PubMedGoogle Scholar
  151. 151.
    Bhogal, R. H., Weston, C. J., Curbishley, S. M., Adams, D. H., & Afford, S. C. (2012). Activation of CD40 with platelet derived CD154 promotes reactive oxygen species dependent death of human hepatocytes during hypoxia and reoxygenation. [Research Support, Non-U.S. Gov't]. PLoS One, 7(1), e30867. doi: 10.1371/journal.pone.0030867.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Ling, Y. H., Liebes, L., Zou, Y., & Perez-Soler, R. (2003). Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 278(36), 33714–33723. doi: 10.1074/jbc.M302559200.PubMedGoogle Scholar
  153. 153.
    Chuang, C. Y., Chen, T. L., Cherng, Y. G., Tai, Y. T., Chen, T. G., & Chen, R. M. (2011). Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. [Evaluation Studies Research Support, Non-U.S. Gov't]. Archives of Toxicology, 85(3), 209–218. doi: 10.1007/s00204-010-0585-x.PubMedGoogle Scholar
  154. 154.
    Deng, S., Yang, Y., Han, Y., Li, X., Wang, X., Zhang, Z., et al. (2012). UCP2 inhibits ROS-mediated apoptosis in A549 under hypoxic conditions. [Research Support, Non-U.S. Gov't]. PLoS One, 7(1), e30714. doi: 10.1371/journal.pone.0030714.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Dong, X. B., Yang, C. T., Zheng, D. D., Mo, L. Q., Wang, X. Y., Lan, A. P., et al. (2012). Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biochemistry, 362(1–2), 149–157. doi: 10.1007/s11010-011-1137-2.PubMedGoogle Scholar
  156. 156.
    Holtz, W. A., Turetzky, J. M., Jong, Y. J., & O'Malley, K. L. (2006). Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Journal of Neurochemistry, 99(1), 54–69. doi: 10.1111/j.1471-4159.2006.04025.x.PubMedGoogle Scholar
  157. 157.
    Xue, X., Piao, J. H., Nakajima, A., Sakon-Komazawa, S., Kojima, Y., Mori, K., et al. (2005). Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 280(40), 33917–33925. doi: 10.1074/jbc.M505818200.PubMedGoogle Scholar
  158. 158.
    Elanchezhian, R., Palsamy, P., Madson, C. J., Mulhern, M. L., Lynch, D. W., Troia, A. M., et al. (2012). Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells. [Research Support, N.I.H., Extramural]. Cell Death Dis, 3, e301. doi: 10.1038/cddis.2012.40.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Zhang, Y. S., He, L., Liu, B., Li, N. S., Luo, X. J., Hu, C. P., et al. (2012). A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia–reperfusion. [Research Support, Non-U.S. Gov't]. Basic Research in Cardiology, 107(3), 266. doi: 10.1007/s00395-012-0266-4.PubMedGoogle Scholar
  160. 160.
    Amanso, A. M., & Griendling, K. K. (2012). Differential roles of NADPH oxidases in vascular physiology and pathophysiology. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Frontiers in Bioscience (Scholar Edition), 4, 1044–1064.Google Scholar
  161. 161.
    Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. [Research Support, Non-U.S. Gov't]. Cell, 122(2), 221–233. doi: 10.1016/j.cell.2005.05.011.PubMedGoogle Scholar
  162. 162.
    Ferber, E. C., Peck, B., Delpuech, O., Bell, G. P., East, P., & Schulze, A. (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. [Research Support, Non-U.S. Gov't]. Cell Death and Differentiation, 19(6), 968–979. doi: 10.1038/cdd.2011.179.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Kolamunne, R. T., Clare, M., & Griffiths, H. R. (2011). Mitochondrial superoxide anion radicals mediate induction of apoptosis in cardiac myoblasts exposed to chronic hypoxia. [Research Support, Non-U.S. Gov't]. Archives of Biochemistry and Biophysics, 505(2), 256–265. doi: 10.1016/j.abb.2010.10.015.PubMedGoogle Scholar
  164. 164.
    Daiber, A. (2010). Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. [In Vitro Research Support, Non-U.S. Gov't Review]. Biochimica et Biophysica Acta, 1797(6–7), 897–906. doi: 10.1016/j.bbabio.2010.01.032.PubMedGoogle Scholar
  165. 165.
    Heather, L. C., Cole, M. A., Tan, J. J., Ambrose, L. J., Pope, S., Abd-Jamil, A. H., et al. (2012). Metabolic adaptation to chronic hypoxia in cardiac mitochondria. [Research Support, Non-U.S. Gov't]. Basic Research in Cardiology, 107(3), 268. doi: 10.1007/s00395-012-0268-2.PubMedGoogle Scholar
  166. 166.
    Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., et al. (2008). Superoxide flashes in single mitochondria. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]. Cell, 134(2), 279–290. doi: 10.1016/j.cell.2008.06.017.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Ma, Q., Fang, H., Shang, W., Liu, L., Xu, Z., Ye, T., et al. (2011). Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 286(31), 27573–27581. doi: 10.1074/jbc.M111.241794.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Pasdois, P., Parker, J. E., Griffiths, E. J., & Halestrap, A. P. (2011). The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. [Comparative Study Research Support, Non-U.S. Gov't]. Biochemical Journal, 436(2), 493–505. doi: 10.1042/BJ20101957.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Kim, C. H., Ko, A. R., Lee, S. Y., Jeon, H. M., Kim, S. M., Park, H. G., et al. (2010). Hypoxia switches glucose depletion-induced necrosis to phosphoinositide 3-kinase/Akt-dependent apoptosis in A549 lung adenocarcinoma cells. [Research Support, Non-U.S. Gov't]. International Journal of Oncology, 36(1), 117–124.PubMedGoogle Scholar
  170. 170.
    Cai, Y., Martens, G. A., Hinke, S. A., Heimberg, H., Pipeleers, D., & Van de Casteele, M. (2007). Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 42(1), 64–78. doi: 10.1016/j.freeradbiomed.2006.09.018.PubMedGoogle Scholar
  171. 171.
    Semenza, G. L. (2004). O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. [Review]. Journal of Applied Physiology, 96(3), 1173–1177. doi: 10.1152/japplphysiol.00770.2003. discussion 1170-1172.PubMedGoogle Scholar
  172. 172.
    Wei, H., Bedja, D., Koitabashi, N., Xing, D., Chen, J., Fox-Talbot, K., et al. (2012). Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-beta signaling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 109(14), E841–E850. doi: 10.1073/pnas.1202081109.PubMedCentralPubMedGoogle Scholar
  173. 173.
    Xu, Z., Liu, E., Peng, C., Li, Y., He, Z., Zhao, C., et al. (2012). Role of hypoxia-inducible-1alpha in hepatocellular carcinoma cells using a Tet-on inducible system to regulate its expression in vitro. [Research Support, Non-U.S. Gov't]. Oncology Reports, 27(2), 573–578. doi: 10.3892/or.2011.1533.PubMedGoogle Scholar
  174. 174.
    Nardinocchi, L., Puca, R., Sacchi, A., & D'Orazi, G. (2009). Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. [Research Support, Non-U.S. Gov't]. Molecular Cancer, 8, 1. doi: 10.1186/1476-4598-8-1.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Chen, H., Xiong, T., Qu, Y., Zhao, F., Ferriero, D., & Mu, D. (2012). mTOR activates hypoxia-inducible factor-1alpha and inhibits neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia. [Research Support, Non-U.S. Gov't]. Neuroscience Letters, 507(2), 118–123. doi: 10.1016/j.neulet.2011.11.058.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Hindryckx, P., De Vos, M., Jacques, P., Ferdinande, L., Peeters, H., Olievier, K., et al. (2010). Hydroxylase inhibition abrogates TNF-alpha-induced intestinal epithelial damage by hypoxia-inducible factor-1-dependent repression of FADD. [Research Support, Non-U.S. Gov't]. Journal of Immunology, 185(10), 6306–6316. doi: 10.4049/jimmunol.1002541.Google Scholar
  177. 177.
    Mayes, P. A., Dolloff, N. G., Daniel, C. J., Liu, J. J., Hart, L. S., Kuribayashi, K., et al. (2011). Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3beta and CDK1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 71(15), 5265–5275. doi: 10.1158/0008-5472.CAN-11-1383.PubMedCentralPubMedGoogle Scholar
  178. 178.
    Semenza, G. L. (2011). Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. [Research Support, N.I.H., Extramural Review]. Biochimica et Biophysica Acta, 1813(7), 1263–1268. doi: 10.1016/j.bbamcr.2010.08.006.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Huang, Y., Yu, J., Yan, C., Hou, J., Pu, J., Zhang, G., et al. (2012). Effect of small interfering RNA targeting hypoxia-inducible factor-1alpha on radiosensitivity of PC3 cell line. Urology, 79(3), 744 e–724. doi: 10.1016/j.urology.2011.10.024.Google Scholar
  180. 180.
    Robador, P. A., San Jose, G., Rodriguez, C., Guadall, A., Moreno, M. U., Beaumont, J., et al. (2011). HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia. [Research Support, Non-U.S. Gov't]. Cardiovascular Research, 92(2), 247–255. doi: 10.1093/cvr/cvr202.PubMedGoogle Scholar
  181. 181.
    Zhang, X. L., Yan, Z. W., Sheng, W. W., Xiao, J., Zhang, Z. X., & Ye, Z. B. (2011). Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biochemistry, 358(1–2), 287–295. doi: 10.1007/s11010-011-0979-y.PubMedGoogle Scholar
  182. 182.
    Du, F., Zhu, L., Qian, Z. M., Wu, X. M., Yung, W. H., & Ke, Y. (2010). Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. [Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta, 1802(11), 1048–1053. doi: 10.1016/j.bbadis.2010.06.013.PubMedGoogle Scholar
  183. 183.
    Ao, J. E., Kuang, L. H., Zhou, Y., Zhao, R., & Yang, C. M. (2012). Hypoxia-inducible factor 1 regulated ARC expression mediated hypoxia induced inactivation of the intrinsic death pathway in p53 deficient human colon cancer cells. Biochemical and Biophysical Research Communications, 420(4), 913–917. doi: 10.1016/j.bbrc.2012.03.101.PubMedGoogle Scholar
  184. 184.
    Sasabe, E., Yang, Z., Ohno, S., & Yamamoto, T. (2010). Reactive oxygen species produced by the knockdown of manganese-superoxide dismutase up-regulate hypoxia-inducible factor-1alpha expression in oral squamous cell carcinoma cells. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 48(10), 1321–1329. doi: 10.1016/j.freeradbiomed.2010.02.013.PubMedGoogle Scholar
  185. 185.
    Cadenas, S., Aragones, J., & Landazuri, M. O. (2010). Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. [Research Support, Non-U.S. Gov't Review]. Cardiovascular Research, 88(2), 219–228. doi: 10.1093/cvr/cvq256.PubMedGoogle Scholar
  186. 186.
    Rezvani, H. R., Dedieu, S., North, S., Belloc, F., Rossignol, R., Letellier, T., et al. (2007). Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 282(22), 16413–16422. doi: 10.1074/jbc.M611397200.PubMedGoogle Scholar
  187. 187.
    Zhao, Y., Wu, S., Wu, J., Jia, P., Gao, S., Yan, X., et al. (2011). Introduction of hypoxia-targeting p53 fusion protein for the selective therapy of non-small cell lung cancer. [Research Support, Non-U.S. Gov't]. Cancer Biology and Therapy, 11(1), 95–107. doi: 10.4161/cbt.11.1.13960.PubMedGoogle Scholar
  188. 188.
    Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. [Research Support, Non-U.S. Gov't]. Oncogene, 21(24), 3872–3878. doi: 10.1038/sj.onc.1205513.PubMedGoogle Scholar
  189. 189.
    Singaravelu, K., Devalaraja-Narashimha, K., Lastovica, B., & Padanilam, B. J. (2009). PERP, a p53 proapoptotic target, mediates apoptotic cell death in renal ischemia. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Renal Physiology, 296(4), F847–F858. doi: 10.1152/ajprenal.90438.2008.PubMedGoogle Scholar
  190. 190.
    Nijboer, C. H., Heijnen, C. J., van der Kooij, M. A., Zijlstra, J., van Velthoven, C. T., Culmsee, C., et al. (2011). Targeting the p53 pathway to protect the neonatal ischemic brain. [Research Support, Non-U.S. Gov't]. Annals of Neurology, 70(2), 255–264. doi: 10.1002/ana.22413.PubMedGoogle Scholar
  191. 191.
    Stenger, C., Naves, T., Verdier, M., & Ratinaud, M. H. (2011). The cell death response to the ROS inducer, cobalt chloride, in neuroblastoma cell lines according to p53 status. [Research Support, Non-U.S. Gov't]. International Journal of Oncology, 39(3), 601–609. doi: 10.3892/ijo.2011.1083.PubMedGoogle Scholar
  192. 192.
    Seth, R., Yang, C., Kaushal, V., Shah, S. V., & Kaushal, G. P. (2005). p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 280(35), 31230–31239. doi: 10.1074/jbc.M503305200.PubMedGoogle Scholar
  193. 193.
    Singaravelu, K., & Padanilam, B. J. (2011). p53 target Siva regulates apoptosis in ischemic kidneys. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. American Journal of Physiology. Renal Physiology, 300(5), F1130–F1141. doi: 10.1152/ajprenal.00591.2010.PubMedCentralPubMedGoogle Scholar
  194. 194.
    Budinger, G. R., Tso, M., McClintock, D. S., Dean, D. A., Sznajder, J. I., & Chandel, N. S. (2002). Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 277(18), 15654–15660. doi: 10.1074/jbc.M109317200.PubMedGoogle Scholar
  195. 195.
    Husari, A. W., Dbaibo, G. S., Bitar, H., Khayat, A., Panjarian, S., Nasser, M., et al. (2006). Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia. [Comparative Study]. Respiratory Research, 7, 100. doi: 10.1186/1465-9921-7-100.PubMedCentralPubMedGoogle Scholar
  196. 196.
    Gill, M. B., Bockhorst, K., Narayana, P., & Perez-Polo, J. R. (2008). Bax shuttling after neonatal hypoxia–ischemia: hyperoxia effects. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Neuroscience Research, 86(16), 3584–3604. doi: 10.1002/jnr.21795.PubMedCentralPubMedGoogle Scholar
  197. 197.
    Brutus, N. A., Hanley, S., Ashraf, Q. M., Mishra, O. P., & Delivoria-Papadopoulos, M. (2009). Effect of hyperoxia on serine phosphorylation of apoptotic proteins in mitochondrial membranes of the cerebral cortex of newborn piglets. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neurochemical Research, 34(7), 1219–1225. doi: 10.1007/s11064-008-9898-z.PubMedGoogle Scholar
  198. 198.
    Buccellato, L. J., Tso, M., Akinci, O. I., Chandel, N. S., & Budinger, G. R. (2004). Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(8), 6753–6760. doi: 10.1074/jbc.M310145200.PubMedGoogle Scholar
  199. 199.
    Kim, M. N., Lee, K. E., Hong, J. Y., Heo, W. I., Kim, K. W., Kim, K. E., et al. (2012). Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 421(4), 790–796. doi: 10.1016/j.bbrc.2012.04.085.PubMedGoogle Scholar
  200. 200.
    Metrailler-Ruchonnet, I., Pagano, A., Carnesecchi, S., Ody, C., Donati, Y., & Barazzone Argiroffo, C. (2007). Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 42(7), 1062–1074. doi: 10.1016/j.freeradbiomed.2007.01.008.PubMedGoogle Scholar
  201. 201.
    Chang, E., Hornick, K., Fritz, K. I., Mishra, O. P., & Delivoria-Papadopoulos, M. (2007). Effect of hyperoxia on cortical neuronal nuclear function and programmed cell death mechanisms. [Research Support, N.I.H., Extramural]. Neurochemical Research, 32(7), 1142–1149. doi: 10.1007/s11064-007-9282-4.PubMedGoogle Scholar
  202. 202.
    Kolliputi, N., & Waxman, A. B. (2009). IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(1), L6–L16. doi: 10.1152/ajplung.90381.2008.PubMedCentralPubMedGoogle Scholar
  203. 203.
    Wang, X., Wang, Y., Kim, H. P., Nakahira, K., Ryter, S. W., & Choi, A. M. (2007). Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 282(3), 1718–1726. doi: 10.1074/jbc.M607610200.PubMedGoogle Scholar
  204. 204.
    Fu, Y. Q., Fang, F., Lu, Z. Y., Kuang, F. W., & Xu, F. (2010). N-acetylcysteine protects alveolar epithelial cells from hydrogen peroxide-induced apoptosis through scavenging reactive oxygen species and suppressing c-Jun N-terminal kinase. [Research Support, Non-U.S. Gov't]. Experimental Lung Research, 36(6), 352–361. doi: 10.3109/01902141003678582.PubMedGoogle Scholar
  205. 205.
    Yamada, T., Iwasaki, Y., Nagata, K., Fushiki, S., Nakamura, H., Marunaka, Y., et al. (2007). Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. Pulmonary Pharmacology & Therapeutics, 20(6), 650–659. doi: 10.1016/j.pupt.2006.07.004.Google Scholar
  206. 206.
    Vitiello, P. F., Wu, Y. C., Staversky, R. J., & O'Reilly, M. A. (2009). p21(Cip1) protects against oxidative stress by suppressing ER-dependent activation of mitochondrial death pathways. [Research Support, N.I.H., Extramural]. Free Radical Biology and Medicine, 46(1), 33–41. doi: 10.1016/j.freeradbiomed.2008.09.022.PubMedCentralPubMedGoogle Scholar
  207. 207.
    Wu, Y. C., & O'Reilly, M. A. (2011). Bcl-X(L) is the primary mediator of p21 protection against hyperoxia-induced cell death. [Research Support, N.I.H., Extramural]. Experimental Lung Research, 37(2), 82–91. doi: 10.3109/01902148.2010.521617.PubMedCentralPubMedGoogle Scholar
  208. 208.
    Lee, A. C., Fenster, B. E., Ito, H., Takeda, K., Bae, N. S., Hirai, T., et al. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 274(12), 7936–7940.PubMedGoogle Scholar
  209. 209.
    Leikam, C., Hufnagel, A., Schartl, M., & Meierjohann, S. (2008). Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. [Research Support, Non-U.S. Gov't]. Oncogene, 27(56), 7070–7082. doi: 10.1038/onc.2008.323.PubMedGoogle Scholar
  210. 210.
    Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X., & Ferbeyre, G. (2009). Mitochondrial dysfunction contributes to oncogene-induced senescence. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 29(16), 4495–4507. doi: 10.1128/MCB.01868-08.PubMedCentralPubMedGoogle Scholar
  211. 211.
    Weyemi, U., Lagente-Chevallier, O., Boufraqech, M., Prenois, F., Courtin, F., Caillou, B., et al. (2012). ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. [Research Support, Non-U.S. Gov't]. Oncogene, 31(9), 1117–1129. doi: 10.1038/onc.2011.327.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Bai, X. Y., Ma, Y., Ding, R., Fu, B., Shi, S., & Chen, X. M. (2011). miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. [Research Support, Non-U.S. Gov't]. Journal of the American Society of Nephrology, 22(7), 1252–1261. doi: 10.1681/ASN.2010040367.PubMedCentralPubMedGoogle Scholar
  213. 213.
    Briganti, S., Wlaschek, M., Hinrichs, C., Bellei, B., Flori, E., Treiber, N., et al. (2008). Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 45(5), 636–644. doi: 10.1016/j.freeradbiomed.2008.05.006.PubMedGoogle Scholar
  214. 214.
    Ham, S. A., Hwang, J. S., Yoo, T., Lee, H., Kang, E. S., Park, C., et al. (2012). Ligand-activated PPARdelta inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 444(1), 27–38. doi: 10.1042/BJ20111832.PubMedGoogle Scholar
  215. 215.
    Jang, Y. Y., & Sharkis, S. J. (2007). A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. [Research Support, N.I.H., Extramural]. Blood, 110(8), 3056–3063. doi: 10.1182/blood-2007-05-087759.PubMedCentralPubMedGoogle Scholar
  216. 216.
    Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. [Comparative Study Research Support, Non-U.S. Gov't]. Nature Medicine, 12(4), 446–451. doi: 10.1038/nm1388.PubMedGoogle Scholar
  217. 217.
    Hole, P. S., Pearn, L., Tonks, A. J., James, P. E., Burnett, A. K., Darley, R. L., et al. (2010). Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. [Research Support, Non-U.S. Gov't]. Blood, 115(6), 1238–1246. doi: 10.1182/blood-2009-06-222869.PubMedGoogle Scholar
  218. 218.
    Macip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S. W., & Aaronson, S. A. (2003). Influence of induced reactive oxygen species in p53-mediated cell fate decisions. [Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 23(23), 8576–8585.PubMedCentralPubMedGoogle Scholar
  219. 219.
    Ferbeyre, G., de Stanchina, E., Lin, A. W., Querido, E., McCurrach, M. E., Hannon, G. J., et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 22(10), 3497–3508.PubMedCentralPubMedGoogle Scholar
  220. 220.
    Heiss, E. H., Schilder, Y. D., & Dirsch, V. M. (2007). Chronic treatment with resveratrol induces redox stress- and ataxia telangiectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. Journal of Biological Chemistry, 282(37), 26759–26766. doi: 10.1074/jbc.M703229200.PubMedGoogle Scholar
  221. 221.
    Zhang, X., Li, J., Sejas, D. P., & Pang, Q. (2005). The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. [In Vitro Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 280(20), 19635–19640. doi: 10.1074/jbc.M502262200.PubMedGoogle Scholar
  222. 222.
    Sasaki, M., Ikeda, H., Sato, Y., & Nakanuma, Y. (2008). Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. [Research Support, Non-U.S. Gov't]. Free Radical Research, 42(7), 625–632. doi: 10.1080/10715760802244768.PubMedGoogle Scholar
  223. 223.
    Deng, Y., Chan, S. S., & Chang, S. (2008). Telomere dysfunction and tumour suppression: the senescence connection. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Nature Reviews Cancer, 8(6), 450–458. doi: 10.1038/nrc2393.PubMedCentralPubMedGoogle Scholar
  224. 224.
    Alcorta, D. A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., & Barrett, J. C. (1996). Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13742–13747.PubMedCentralPubMedGoogle Scholar
  225. 225.
    Jeanblanc, M., Ragu, S., Gey, C., Contrepois, K., Courbeyrette, R., Thuret, J. Y., et al. (2012). Parallel pathways in RAF-induced senescence and conditions for its reversion. Oncogene, 31(25), 3072–3085. doi: 10.1038/onc.2011.481.PubMedGoogle Scholar
  226. 226.
    Sherr, C. J., & McCormick, F. (2002). The RB and p53 pathways in cancer. [Review]. Cancer Cell, 2(2), 103–112.PubMedGoogle Scholar
  227. 227.
    Bell, E. L., Klimova, T. A., Eisenbart, J., Schumacker, P. T., & Chandel, N. S. (2007). Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 27(16), 5737–5745. doi: 10.1128/MCB.02265-06.PubMedCentralPubMedGoogle Scholar
  228. 228.
    Davy, P., & Allsopp, R. (2011). Hypoxia: are stem cells in it for the long run? Cell Cycle, 10(2), 206–211.PubMedGoogle Scholar
  229. 229.
    Coussens, M., Davy, P., Brown, L., Foster, C., Andrews, W. H., Nagata, M., et al. (2010). RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1alpha as critical for telomerase function in murine embryonic stem cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13842–13847. doi: 10.1073/pnas.0913834107.PubMedCentralPubMedGoogle Scholar
  230. 230.
    Li, M., & Kim, W. Y. (2011). Two sides to every story: the HIF-dependent and HIF-independent functions of pVHL. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Journal of Cellular and Molecular Medicine, 15(2), 187–195. doi: 10.1111/j.1582-4934.2010.01238.x.PubMedCentralPubMedGoogle Scholar
  231. 231.
    Young, A. P., Schlisio, S., Minamishima, Y. A., Zhang, Q., Li, L., Grisanzio, C., et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nature Cell Biology, 10(3), 361–369. doi: 10.1038/ncb1699.PubMedGoogle Scholar
  232. 232.
    Kim, W. Y., & Sharpless, N. E. (2008). VHL inactivation: a new road to senescence. Cancer Cell, 13(4), 295–297. doi: 10.1016/j.ccr.2008.03.012.PubMedGoogle Scholar
  233. 233.
    Oh, S., Lee, E., Lee, J., Lim, Y., Kim, J., & Woo, S. (2008). Comparison of the effects of 40 % oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts. [Comparative Study Research Support, Non-U.S. Gov't]. Cell Stress & Chaperones, 13(4), 447–458. doi: 10.1007/s12192-008-0041-5.Google Scholar
  234. 234.
    Napier, C. E., Veas, L. A., Kan, C. Y., Taylor, L. M., Yuan, J., Wen, V. W., et al. (2010). Mild hyperoxia limits hTR levels, telomerase activity, and telomere length maintenance in hTERT-transduced bone marrow endothelial cells. [Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta, 1803(10), 1142–1153. doi: 10.1016/j.bbamcr.2010.06.010.PubMedGoogle Scholar
  235. 235.
    Londhe, V. A., Sundar, I. K., Lopez, B., Maisonet, T. M., Yu, Y., Aghai, Z. H., et al. (2011). Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Pediatric Research, 69(5 Pt 1), 371–377. doi: 10.1203/PDR.0b013e318211c917.PubMedCentralPubMedGoogle Scholar
  236. 236.
    Klimova, T. A., Bell, E. L., Shroff, E. H., Weinberg, F. D., Snyder, C. M., Dimri, G. P., et al. (2009). Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. FASEB Journal, 23(3), 783–794. doi: 10.1096/fj.08-114256.PubMedCentralPubMedGoogle Scholar
  237. 237.
    Wu, W. S., Wu, J. R., & Hu, C. T. (2008). Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. [Research Support, Non-U.S. Gov't Review]. Cancer Metastasis Reviews, 27(2), 303–314. doi: 10.1007/s10555-008-9112-4.PubMedGoogle Scholar
  238. 238.
    Schelter, F., Gerg, M., Halbgewachs, B., Schaten, S., Gorlach, A., Schrotzlmair, F., et al. (2010). Identification of a survival-independent metastasis-enhancing role of hypoxia-inducible factor-1alpha with a hypoxia-tolerant tumor cell line. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(34), 26182–26189. doi: 10.1074/jbc.M110.140608.PubMedCentralPubMedGoogle Scholar
  239. 239.
    Nishida, C., Kusubata, K., Tashiro, Y., Gritli, I., Sato, A., Ohki-Koizumi, M., et al. (2012). MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood, 119(23), 5405–5416. doi: 10.1182/blood-2011-11-390849.PubMedGoogle Scholar
  240. 240.
    Choi, J. Y., Jang, Y. S., Min, S. Y., & Song, J. Y. (2011). Overexpression of MMP-9 and HIF-1alpha in breast cancer cells under hypoxic conditions. J Breast Cancer, 14(2), 88–95. doi: 10.4048/jbc.2011.14.2.88.PubMedCentralPubMedGoogle Scholar
  241. 241.
    Incorvaia, L., Badalamenti, G., Rini, G., Arcara, C., Fricano, S., Sferrazza, C., et al. (2007). MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. [Research Support, Non-U.S. Gov't]. Anticancer Research, 27(3B), 1519–1525.PubMedGoogle Scholar
  242. 242.
    Zhu, S., Zhou, Y., Wang, L., Zhang, J., Wu, H., Xiong, J., et al. (2011). Transcriptional upregulation of MT2-MMP in response to hypoxia is promoted by HIF-1alpha in cancer cells. Molecular Carcinogenesis, 50(10), 770–780. doi: 10.1002/mc.20678.PubMedGoogle Scholar
  243. 243.
    Canning, M. T., Postovit, L. M., Clarke, S. H., & Graham, C. H. (2001). Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. [Research Support, Non-U.S. Gov't]. Experimental Cell Research, 267(1), 88–94. doi: 10.1006/excr.2001.5243.PubMedGoogle Scholar
  244. 244.
    Moen, I., Oyan, A. M., Kalland, K. H., Tronstad, K. J., Akslen, L. A., Chekenya, M., et al. (2009). Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. [Research Support, Non-U.S. Gov't]. PLoS One, 4(7), e6381. doi: 10.1371/journal.pone.0006381.PubMedCentralPubMedGoogle Scholar
  245. 245.
    Zhao, J. H., Luo, Y., Jiang, Y. G., He, D. L., & Wu, C. T. (2011). Knockdown of beta-catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1alpha. [Research Support, Non-U.S. Gov't]. Cancer Investigation, 29(6), 377–382. doi: 10.3109/07357907.2010.512595.PubMedGoogle Scholar
  246. 246.
    Schietke, R., Warnecke, C., Wacker, I., Schodel, J., Mole, D. R., Campean, V., et al. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(9), 6658–6669. doi: 10.1074/jbc.M109.042424.PubMedCentralPubMedGoogle Scholar
  247. 247.
    Chang, L. H., Chen, C. H., Huang, D. Y., Pai, H. C., Pan, S. L., & Teng, C. M. (2011). Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1alpha translational pathway in colorectal cancer cells. [Research Support, Non-U.S. Gov't]. Journal of Cellular Physiology, 226(4), 1060–1068. doi: 10.1002/jcp.22428.PubMedGoogle Scholar
  248. 248.
    Binker, M. G., Binker-Cosen, A. A., Richards, D., Gaisano, H. Y., de Cosen, R. H., & Cosen-Binker, L. I. (2010). Hypoxia–reoxygenation increase invasiveness of PANC-1 cells through Rac1/MMP-2. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 393(3), 371–376. doi: 10.1016/j.bbrc.2010.01.125.PubMedGoogle Scholar
  249. 249.
    Kokura, S., Yoshida, N., Imamoto, E., Ueda, M., Ishikawa, T., Uchiyama, K., et al. (2004). Anoxia/reoxygenation down-regulates the expression of E-cadherin in human colon cancer cell lines. Cancer Letters, 211(1), 79–87. doi: 10.1016/j.canlet.2004.01.030.PubMedGoogle Scholar
  250. 250.
    Crandall, D. L., Busler, D. E., McHendry-Rinde, B., Groeling, T. M., & Kral, J. G. (2000). Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. Journal of Clinical Endocrinology and Metabolism, 85(7), 2609–2614.PubMedGoogle Scholar
  251. 251.
    Sprague, L. D., Mengele, K., Schilling, D., Geurts-Moespot, A., Sweep, F. C., Stadler, P., et al. (2006). Effect of reoxygenation on the hypoxia-induced up-regulation of serine protease inhibitor PAI-1 in head and neck cancer cells. [Research Support, Non-U.S. Gov't]. Oncology, 71(3–4), 282–291. doi: 10.1159/000106789.PubMedGoogle Scholar
  252. 252.
    Postovit, L. M., Abbott, D. E., Payne, S. L., Wheaton, W. W., Margaryan, N. V., Sullivan, R., et al. (2008). Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cellular Biochemistry, 103(5), 1369–1378. doi: 10.1002/jcb.21517.PubMedGoogle Scholar
  253. 253.
    An, W. G., Kanekal, M., Simon, M. C., Maltepe, E., Blagosklonny, M. V., & Neckers, L. M. (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature, 392(6674), 405–408. doi: 10.1038/32925.PubMedGoogle Scholar
  254. 254.
    Wenger, R. H., Camenisch, G., Desbaillets, I., Chilov, D., & Gassmann, M. (1998). Up-regulation of hypoxia-inducible factor-1alpha is not sufficient for hypoxic/anoxic p53 induction. [Research Support, Non-U.S. Gov't]. Cancer Research, 58(24), 5678–5680.PubMedGoogle Scholar
  255. 255.
    Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Genes and Development, 14(1), 34–44.PubMedCentralPubMedGoogle Scholar
  256. 256.
    Feig, D. I., & Loeb, L. A. (1993). Mechanisms of mutation by oxidative DNA damage: reduced fidelity of mammalian DNA polymerase beta. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Biochemistry, 32(16), 4466–4473.PubMedGoogle Scholar
  257. 257.
    Martinet, W., de Meyer, G. R., Herman, A. G., & Kockx, M. M. (2004). Reactive oxygen species induce RNA damage in human atherosclerosis. [Research Support, Non-U.S. Gov't]. European Journal of Clinical Investigation, 34(5), 323–327. doi: 10.1111/j.1365-2362.2004.01343.x.PubMedGoogle Scholar
  258. 258.
    Bindra, R. S., Schaffer, P. J., Meng, A., Woo, J., Maseide, K., Roth, M. E., et al. (2005). Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Annals of the New York Academy of Sciences, 1059, 184–195. doi: 10.1196/annals.1339.049.PubMedGoogle Scholar
  259. 259.
    Kumareswaran, R., Ludkovski, O., Meng, A., Sykes, J., Pintilie, M., & Bristow, R. G. (2012). Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 125(Pt 1), 189–199. doi: 10.1242/jcs.092262.PubMedGoogle Scholar
  260. 260.
    Hammond, E. M., & Giaccia, A. J. (2004). The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. [Research Support, U.S. Gov't, P.H.S. Review]. DNA Repair (Amst), 3(8–9), 1117–1122. doi: 10.1016/j.dnarep.2004.03.035.Google Scholar
  261. 261.
    Bristow, R. G., & Hill, R. P. (2008). Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. [Research Support, Non-U.S. Gov't Review]. Nature Reviews Cancer, 8(3), 180–192. doi: 10.1038/nrc2344.PubMedGoogle Scholar
  262. 262.
    Das, K. C., & Dashnamoorthy, R. (2004). Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(1), L87–L97. doi: 10.1152/ajplung.00203.2002.PubMedGoogle Scholar
  263. 263.
    Kulkarni, A., & Das, K. C. (2008). Differential roles of ATR and ATM in p53, Chk1, and histone H2AX phosphorylation in response to hyperoxia: ATR-dependent ATM activation. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294(5), L998–L1006. doi: 10.1152/ajplung.00004.2008.PubMedGoogle Scholar
  264. 264.
    Gewandter, J. S., Bambara, R. A., & O'Reilly, M. A. (2011). The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA. [Research Support, N.I.H., Extramural]. Cell Cycle, 10(15), 2561–2567.PubMedCentralPubMedGoogle Scholar
  265. 265.
    Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Nature, 389(6648), 300–305. doi: 10.1038/38525.PubMedGoogle Scholar
  266. 266.
    Rivera, A., & Maxwell, S. A. (2005). The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. Journal of Biological Chemistry, 280(32), 29346–29354. doi: 10.1074/jbc.M504852200.PubMedGoogle Scholar
  267. 267.
    Liu, Z., Lu, H., Shi, H., Du, Y., Yu, J., Gu, S., et al. (2005). PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. [Research Support, Non-U.S. Gov't]. Cancer Research, 65(5), 1647–1654. doi: 10.1158/0008-5472.CAN-04-1754.PubMedGoogle Scholar
  268. 268.
    Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. [Research Support, N.I.H., Intramural]. Science, 312(5780), 1650–1653. doi: 10.1126/science.1126863.PubMedGoogle Scholar
  269. 269.
    Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. [Research Support, Non-U.S. Gov't]. Cell, 126(1), 107–120. doi: 10.1016/j.cell.2006.05.036.PubMedGoogle Scholar
  270. 270.
    Brand, K. A., & Hermfisse, U. (1997). Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. [Comparative Study Research Support, Non-U.S. Gov't]. FASEB Journal, 11(5), 388–395.PubMedGoogle Scholar
  271. 271.
    Madan, E., Gogna, R., Kuppusamy, P., Bhatt, M., Pati, U., & Mahdi, A. A. (2012). TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. British Journal of Cancer. doi: 10.1038/bjc.2012.260.PubMedCentralPubMedGoogle Scholar
  272. 272.
    Hainaut, P., & Mann, K. (2001). Zinc binding and redox control of p53 structure and function. [Comparative Study Review]. Antioxidants and Redox Signaling, 3(4), 611–623. doi: 10.1089/15230860152542961.PubMedGoogle Scholar
  273. 273.
    Naito, A. T., Okada, S., Minamino, T., Iwanaga, K., Liu, M. L., Sumida, T., et al. (2010). Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. [Research Support, Non-U.S. Gov't]. Circulation Research, 106(11), 1692–1702. doi: 10.1161/CIRCRESAHA.109.214346.PubMedGoogle Scholar
  274. 274.
    Vousden, K. H., & Lu, X. (2002). Live or let die: the cell's response to p53. [Review]. Nature Reviews Cancer, 2(8), 594–604. doi: 10.1038/nrc864.PubMedGoogle Scholar
  275. 275.
    Kruse, J. P., & Gu, W. (2009). Modes of p53 regulation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cell, 137(4), 609–622. doi: 10.1016/j.cell.2009.04.050.PubMedCentralPubMedGoogle Scholar
  276. 276.
    Brooks, C. L., & Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Current Opinion in Cell Biology, 15(2), 164–171.PubMedGoogle Scholar
  277. 277.
    Lee, S. J., Lim, C. J., Min, J. K., Lee, J. K., Kim, Y. M., Lee, J. Y., et al. (2007). Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2. [Research Support, N.I.H., Extramural]. Cell Death and Differentiation, 14(6), 1106–1116. doi: 10.1038/sj.cdd.4402111.PubMedGoogle Scholar
  278. 278.
    Carter, S., & Vousden, K. H. (2009). Modifications of p53: competing for the lysines. [Research Support, Non-U.S. Gov't Review]. Current Opinion in Genetics and Development, 19(1), 18–24. doi: 10.1016/j.gde.2008.11.010.PubMedGoogle Scholar
  279. 279.
    Brooks, C. L., Li, M., & Gu, W. (2007). Mechanistic studies of MDM2-mediated ubiquitination in p53 regulation. Journal of Biological Chemistry, 282(31), 22804–22815. doi: 10.1074/jbc.M700961200.PubMedCentralPubMedGoogle Scholar
  280. 280.
    Ruas, J. L., Berchner-Pfannschmidt, U., Malik, S., Gradin, K., Fandrey, J., Roeder, R. G., et al. (2010). Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(4), 2601–2609. doi: 10.1074/jbc.M109.021824.PubMedCentralPubMedGoogle Scholar
  281. 281.
    Sermeus, A., & Michiels, C. (2011). Reciprocal influence of the p53 and the hypoxic pathways. [Review]. Cell Death Dis, 2, e164. doi: 10.1038/cddis.2011.48.PubMedCentralPubMedGoogle Scholar
  282. 282.
    MacLaine, N. J., & Hupp, T. R. (2011). How phosphorylation controls p53. Cell Cycle, 10(6), 916–921.PubMedGoogle Scholar
  283. 283.
    van Leeuwen, I., & Lain, S. (2009). Sirtuins and p53. [Research Support, Non-U.S. Gov't Review]. Advances in Cancer Research, 102, 171–195. doi: 10.1016/S0065-230X(09)02005-3.PubMedGoogle Scholar
  284. 284.
    Peck, B., Chen, C. Y., Ho, K. K., Di Fruscia, P., Myatt, S. S., Coombes, R. C., et al. (2010). SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. [Research Support, Non-U.S. Gov't]. Molecular Cancer Therapeutics, 9(4), 844–855. doi: 10.1158/1535-7163.MCT-09-0971.PubMedGoogle Scholar
  285. 285.
    Cao, C., Lu, S., Kivlin, R., Wallin, B., Card, E., Bagdasarian, A., et al. (2009). SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cellular and Molecular Medicine, 13(9B), 3632–3643. doi: 10.1111/j.1582-4934.2008.00453.x.PubMedGoogle Scholar
  286. 286.
    Braidy, N., Guillemin, G. J., Mansour, H., Chan-Ling, T., Poljak, A., & Grant, R. (2011). Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats. [Research Support, Non-U.S. Gov't]. PLoS One, 6(4), e19194. doi: 10.1371/journal.pone.0019194.PubMedCentralPubMedGoogle Scholar
  287. 287.
    Brooks, C. L., & Gu, W. (2011). The impact of acetylation and deacetylation on the p53 pathway. [Review]. Protein & Cell, 2(6), 456–462. doi: 10.1007/s13238-011-1063-9.Google Scholar
  288. 288.
    Scoumanne, A., & Chen, X. (2008). Protein methylation: a new mechanism of p53 tumor suppressor regulation. [Review]. Histology and Histopathology, 23(9), 1143–1149.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kartik Gupta
    • 2
  • Esha Madan
    • 1
  • Muzzammil Sayyid
    • 3
  • Hugo Arias-Pulido
    • 4
    • 5
  • Eduardo Moreno
    • 1
  • Periannan Kuppusamy
    • 6
  • Rajan Gogna
    • 1
  1. 1.Institute of Cell BiologyUniversity of BernBernSwitzerland
  2. 2.Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the Technical University MunichMunichGermany
  3. 3.School of Veterinary MedicineSt. George’s UniversitySt. George’sGrenada-WI
  4. 4.Clinical Research and Translational Therapeutics LabUniversity of New Mexico Cancer CenterAlbuquerqueUSA
  5. 5.Complex Biological Systems AllianceNorth AndoverUSA
  6. 6.Norris Cotton Cancer CenterGeisel School of Medicine, Dartmouth CollegeLebanonUSA

Personalised recommendations