Advertisement

Cancer and Metastasis Reviews

, Volume 33, Issue 1, pp 143–160 | Cite as

The promise of sonodynamic therapy

  • Matthew Trendowski
NON-THEMATIC REVIEW

Abstract

Sonodynamic therapy is a potential cancer treatment modality that has been gaining support due to its effectiveness in both in vitro and in vivo studies. The therapeutic method combines ultrasonic irradiation with drugs known as sonosensitizers that amplify its ability to inflict preferential damage on malignant cells. This is based on the idea that ultrasonic waves have the ability to exhibit profound physical and chemical changes on cellular structure. The mechanisms by which ultrasound (US) disrupts cellular functioning can be further amplified when sonosensitizers are applied. Combining multiple sonosensitizers with US to create a substantial synergistic effect could be an effective method for destroying tumorigenic growths, while decreasing the likelihood of drug resistance.

Keywords

Sonodynamic therapy Ultrasound Sonosensitizers Inertial cavitation Reactive oxygen species Tumor vasculature 

Notes

Acknowledgments

The author would like to thank Dr. Thomas P. Fondy of Syracuse University for his assistance with the manuscript.

References

  1. 1.
    Kuroki, M., Hachimine, K., Abe, H., Shibaguchi, H., Kuroki, M., Maekawa, S., Yanagisawa, J., Kinugasa, T., Tanaka, T., & Yamashita, Y. (2007). Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Research, 27(6A), 3673–3677.PubMedGoogle Scholar
  2. 2.
    Meng, Q., Chen, B., Wu, W., Shao, Z., Gao, F., & Zhao, H. (2008). Enhanced antitumor effects of low-frequency ultrasound combined with adriamycin on human leukemia multidrug resistance cell line K562/A02. Chinese Journal of Cancer, 27(11), 436–439.Google Scholar
  3. 3.
    Miller, M. W., Luque, A. E., Battaglia, L. F., Mazza, S., & Everbach, E. C. (2003). Biological and environmental factors affecting ultrasound-induced hemolysis in vitro: 1. HIV macrocytosis. Ultrasound in Medicine and Biology, 29(1), 77–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao, Y., Lu, C., Zhou, Z., Jin, Z., Sun, C., Xu, Y., Gao, H., Tian, J., Gao, F., Tang, Q., Xiang, Q., Li, X., & Li, W. (2011). Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: An in vivo experiment. Journal of Drug Targeting, 19(2), 154–160.PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenthal, I., Sostaric, J. Z., & Riesz, P. (2004). Sonodynamic therapy—A review of the synergistic effects of drugs and ultrasound. Ultrasonics Sonochemistry, 11(6), 349–363.PubMedGoogle Scholar
  6. 6.
    Bai, W., Shen, E., & Hu, B. (2012). Induction of the apoptosis of cancer cell by sonodynamic therapy: A review. Chinese Journal of Cancer Research, 24(4), 368–373.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Masui, T., Ota, I., Kanno, M., Yane, K., & Hosoi, H. (2013). Low-intensity ultrasound enhances the anticancer activity of cetuximab in human head and neck cancer cells. Experimental and Therapeutic Medicine, 5(1), 11–16.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Wang, P., Wang, X., & Liu, Q. (2012). Cell damage of hepatoma-22 cells exposed to continuous wave ultrasound. Tumori, 98(4), 523–531.PubMedGoogle Scholar
  9. 9.
    Wang, X., Liu, Q., Wang, Z., Wang, P., Hao, Q., & Li, C. (2009). Bioeffects of low-energy continuous ultrasound on isolated sarcoma 180 cells. Chemotherapy, 55(4), 253–261.PubMedCrossRefGoogle Scholar
  10. 10.
    Schuster, A., Schwab, M., Bischof, M., Klotz, M., Lemor, R., Degel, C., & Schäfer, K. H. (2013). Cell specific ultrasound effects are dose and frequency dependent. Annals of Anatomy, 195, 57–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen, W., Brayman, A. A., Matula, T. J., Crum, L. A., & Miller, M. W. (2003). The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound in Medicine and Biology, 29(5), 739–748.PubMedCrossRefGoogle Scholar
  12. 12.
    Lagneaux, L., Cordemans de Meulenaer, E., Delforge, A., Dejeneffe, M., Massy, M., Moerman, C., Hannecart, B., Canivet, Y., Lepeltier, M., & Bron, D. (2002). Ultrasonic low-energy treatment: A novel approach to induce apoptosis in human leukemic cells. Experimental Hematology, 30, 1293–1301.PubMedCrossRefGoogle Scholar
  13. 13.
    Shibaguchi, H., Tsuru, H., Kuroki, M., & Kuroki, M. (2011). Sonodynamic cancer therapy: A non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. Anticancer Research, 31(7), 2425–2459.PubMedGoogle Scholar
  14. 14.
    Goertz, D. E., Todorova, M., Mortazavi, O., Agache, V., Chen, B., Karshafian, R., & Hynynen, K. (2012). Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One, 7(12), 1–11.CrossRefGoogle Scholar
  15. 15.
    Lee, N. G., Berry, J. L., Lee, T. C., Wang, A. T., Honowitz, S., Murphree, A. L., Varshney, N., Hinton, D. R., & Fawzi, A. A. (2011). Sonoporation enhances chemotherapeutic efficacy in retinoblastoma cells in vitro. Investigative Ophthalmology & Visual Science, 52(6), 3868–3873.CrossRefGoogle Scholar
  16. 16.
    Tinkov, S., Coester, C., Serba, S., Geis, N. A., Katus, H. A., Winter, G., & Bekeredjian, R. (2010). New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization. Journal of Controlled Release, 148(3), 368–372.PubMedCrossRefGoogle Scholar
  17. 17.
    Gao, Z., Zheng, J., Yang, B., Wang, Z., Fan, H., Lv, Y., Li, H., Jia, L., & Cao, W. (2013). Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Letters, 335(1), 93–99.PubMedCrossRefGoogle Scholar
  18. 18.
    Mizrahi, N., Zhou, E. H., Lenormand, G., Krishnan, R., Weihs, D., Butler, J. P., Weitz, D. A., Fredberg, J. J., & Kimmel, E. (2012). Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter, 8(8), 2438–2443.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Honda, H., Kondo, T., Zhao, Q., Feril, L. B., Jr., & Kitatgawa, H. (2004). Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound in Medicine and Biology, 30(5), 683–692.PubMedCrossRefGoogle Scholar
  20. 20.
    Feng, Y., Tian, Z., & Wan, M. (2010). Bioeffects of low-intensity ultrasound in vitro: Apoptosis, protein profile alteration, and potential molecular mechanism. Journal of Ultrasound in Medicine, 29(6), 963–974.PubMedGoogle Scholar
  21. 21.
    Feng, Y., Tian, Z. M., Wan, M. X., & Zheng, Z. B. (2008). Low intensity ultrasound-induced apoptosis in human gastric carcinoma cells. World Journal of Gastroenterology, 14(31), 4873–4879.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hassan, M. A., Campbell, P., & Kondo, T. (2010). The role of Ca(2+) in ultrasound-elicited bioeffects: Progress, perspectives and prospects. Drug Discovery Today, 15(21-22), 892–906.PubMedCrossRefGoogle Scholar
  23. 23.
    Ashush, H., Rozenszajn, L. A., Blass, M., Barda-Saad, M., Azimov, D., Radnay, J., Zipori, D., & Rosenschein, U. (2000). Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Research, 60(4), 1014–1020.PubMedGoogle Scholar
  24. 24.
    Firestein, F., Rozenszajn, L. A., Shemesh-Darvish, L., Elimelech, R., Radnay, J., & Rosenschein, U. (2003). Induction of apoptosis by ultrasound application in human malignant lymphoid cells: Role of mitochondria–caspase pathway activation. Annals of the New York Academy of Sciences, 1010, 163–166.PubMedCrossRefGoogle Scholar
  25. 25.
    Su, X., Wang, P., Wang, X., Cao, B., Li, L., & Liu, Q. (2013). Apoptosis of U937 cells induced by hematoporphyrin monomethyl ether-mediated sonodynamic action. Cancer Biotherapy and Radiopharmaceuticals, 28, 207–217.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wang, X., Wang, P., Zhang, K., Su, X., Hou, J., & Liu, Q. (2013). Initiation of autophagy and apoptosis by sonodynamic therapy in murine leukemia L1210 cells. Toxicology In Vitro, 27(4), 1247–1259.PubMedCrossRefGoogle Scholar
  27. 27.
    Takeuchi, S., Udagawa, Y., Oku, Y., Fujii, T., Nishimura, H., & Kawashima, N. (2006). Basic study on apoptosis induction into cancer cells U-937 and EL-4 by ultrasound exposure. Ultrasonics, 44, 345–348.CrossRefGoogle Scholar
  28. 28.
    Ozben, T. (2007). Oxidative stress and apoptosis: Impact on cancer therapy. Journal of Pharmaceutical Sciences, 96(9), 2181–2196.PubMedCrossRefGoogle Scholar
  29. 29.
    Davis, W., Jr., Ronai, Z., & Tew, K. (2001). Cellular thiols and reactive oxygen species in drug-induced apoptosis. Journal of Pharmacology and Experimental Therapeutics, 296(1), 1–6.PubMedGoogle Scholar
  30. 30.
    Hassan, M. A., Furusawa, Y., Minemura, M., Rapoport, N., Sugiyama, T., & Kondo, T. (2012). Ultrasound-induced new cellular mechanism involved in drug resistance. PLoS One, 7(12), e48291.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Yoshida, T., Kondo, T., Ogawa, R., Feril, L. B., Jr., Zhao, Q. L., Watanabe, A., & Tsukada, K. (2008). Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemotherapy and Pharmacology, 61(4), 559–567.PubMedCrossRefGoogle Scholar
  32. 32.
    Tsuru, H., Shibaguchi, H., Kuroki, M., Yamashita, Y., & Kuroki, M. (2012). Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radical Biology and Medicine, 53(3), 464–472.PubMedCrossRefGoogle Scholar
  33. 33.
    Yumita, N., Iwase, Y., Nishi, K., Komatsu, H., Takeda, K., Onodera, K., Fukai, T., Ikeda, T., Umemura, S., Okudaira, K., & Momose, Y. (2012). Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics, 2(9), 880–888.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Dai, S., Hu, S., & Wu, C. (2009). Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro. Acta Neurochirurgica, 151(12), 1655–1661.PubMedCrossRefGoogle Scholar
  35. 35.
    Liang, L., Xie, S., Jiang, L., Jin, H., Li, S., & Liu, J. (2013). The combined effects of hematoporphyrin monomethyl ether–SDT and doxorubicin on the proliferation of QBC939 cell lines. Ultrasound in Medicine and Biology, 39(1), 146–160.PubMedCrossRefGoogle Scholar
  36. 36.
    Yumita, N., Iwase, Y., Nishi, K., Ikeda, T., Umemura, S., Sakata, I., & Momose, Y. (2010). Sonodynamically induced cell damage and membrane lipid peroxidation by novel porphyrin derivative, DCPH-P-Na(I). Anticancer Research, 30(6), 2241–2246.PubMedGoogle Scholar
  37. 37.
    Hao, Q., Liu, Q., Wang, X., Wang, P., Li, T., & Tong, W. Y. (2009). Membrane damage effect of therapeutic ultrasound on Ehrlich ascitic tumor cells. Cancer Biotherapy and Radiopharmaceuticals, 24(1), 41–48.PubMedCrossRefGoogle Scholar
  38. 38.
    Torres, C. (2007). Effects in cell viability of probe sonication cytochalasin-B treated U937 human leukemia cells. Syracuse University ARISE Program, pp. 1–12.Google Scholar
  39. 39.
    Skorpíková, J., Dolníková, M., Hrazdira, I., & Janisch, R. (2001). Changes in microtubules and microfilaments due to a combined effect of ultrasound and cytostatics in HeLa cells. Folia Biologica, 47(4), 143–147.PubMedGoogle Scholar
  40. 40.
    Todorova, M., Agache, V., Mortazavi, O., Chen, B., Karshafian, R., Hynynen, K., Man, S., Kerbel, R. S., & Goertz, D. E. (2013). Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulates microbubbles. International Journal of Cancer, 132(12), 2956–2966.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiologySyracuse UniversitySyracuseUSA

Personalised recommendations