Skip to main content

Advertisement

Log in

Gastroenteropancreatic neuroendocrine tumor cancer stem cells: do they exist?

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Neuroendocrine tumors (NETs) comprise a broad range of neoplasms that share biological and embryological origin. A deeper knowledge in the underlying molecular biology that results in the development and spread of NETs has allowed the use of novel-targeted therapies against angiogenesis and intracellular pathways, key checkpoints that govern growth, and proliferation of these tumors. Unfortunately, the possibility of cure is still far for patients with advanced stages. Cancer stem cells (CSCs) are present in most solid tumors. Nevertheless, there is limited evidence for the presence of CSCs in NETs. In this review, we will discuss the embryonic origin and possible existence of a gastroenteropancreatic neuroendocrine cancer stem cell. Here, we summarize the body of evidence supporting the presence of active embryological pathways like Notch, Wnt-β-catenin, Hedgehog, or transforming growth factor-β in NETs. New therapeutic approaches in the field of CSCs seem to have a clear role in the treatment of medulloblastomas and basal cell carcinomas, but their future value in other solid tumor types including NETs remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrew, A., Kramer, B., & Rawdon, B. B. (1998). The origin of gut and pancreatic neuroendocrine (APUD) cells—the last word? The Journal of Pathology, 186(2), 117–118.

    Article  PubMed  CAS  Google Scholar 

  2. Modlin, I. M., Oberg, K., Chung, D. C., Jensen, R. T., de Herder, W. W., et al. (2008). Gastroenteropancreatic neuroendocrine tumours. The Lancet Oncology, 9(1), 61–72.

    Article  PubMed  CAS  Google Scholar 

  3. Hauso, O., Gustafsson, B. I., Kidd, M., Waldum, H. L., Drozdov, I., et al. (2008). Neuroendocrine tumor epidemiology: Contrasting Norway and North America. Cancer, 113(10), 2655–2664.

    Article  PubMed  Google Scholar 

  4. ESMO Guidelines Working Group, Oberg, K., Akerström, G., Rindi, G., & Jelic, S. (2010). Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 21(Suppl 5), v223–v227.

    Article  PubMed  Google Scholar 

  5. Oberg, K., Hellman, P., Kwekkeboom, D., Jelic, S; ESMO Guidelines Working Group. (2010). Neuroendocrine bronchial and thymic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 21(Suppl 5), v220–v222.

    Article  PubMed  Google Scholar 

  6. Raymond, E., Niccoli, P., Raoul, J., Bang, Y., Borbath, I., et al. (2010). Cox proportional hazard analysis of sunitinib (SU) efficacy across subgroups of patients (pts) with progressive pancreatic neuroendocrine tumors (NET). Journal of Clinical Oncology, 28, 7s (suppl; abstr 4031).

    Article  Google Scholar 

  7. Pavel, M., Hainsworth, J., Baudin, E., Peeters, M., Hoersch, D., Anthony, L., et al. (2010). Randomized, phase III trial of everolimus + octreotide LAR vs placebo + octreotide LAR in patients with advanced neuroendocrine tumours (NET) (RADIANT-2). Annals of Oncology, 21(Suppl 8), LBA8.

    Google Scholar 

  8. Yao, J., Shah, M., Ito, T., Lombard-Bohas, C., Wolin, E., et al. (2010). Phase III randomized trial of everolimus (RAD001) vs placebo in advanced pancreatic NET (RADIANT-3). Annals of Oncology, 21(Suppl 8), LBA9.

    Google Scholar 

  9. Hobday, T. J., Rubin, J., Holen, K., Picus, J., Donehower, R., et al. (2007). MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A phase II consortium (P2C) study. Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement):4504.

  10. Phan, A. T., Yao, J. C., Fogelman, D. R., Hess, K. R., Ng, C. S., et al. (2010). Pazopanib and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). Journal of Clinical Oncology, 28, 7. s(suppl; abstr 4001).

    Article  Google Scholar 

  11. Yao, J. C., Phan, A., Hoff, P. M., Chen, H. X., Charnsangavej, C., et al. (2008). Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. Journal of Clinical Oncology, 26(8), 1316–1323.

    Article  PubMed  CAS  Google Scholar 

  12. Duran, I., Kortmansky, J., Singh, D., Hirte, H., Kocha, W., et al. (2006). A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. British Journal of Cancer, 95(9), 1148–1154.

    Article  PubMed  CAS  Google Scholar 

  13. Lam, E. T., Ringel, M. D., Kloos, R. T., Prior, T. W., Knopp, M. V., et al. (2010). Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. Journal of Clinical Oncology, 28(14), 2323–2330.

    Article  PubMed  CAS  Google Scholar 

  14. Bible, K. C., Suman, V. J., Molina, J. R., Smallridge, R. C., Maples, W. J., et al. (2010). Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: Results of a phase 2 consortium study. The Lancet Oncology, 11(10), 962–972.

    Article  PubMed  CAS  Google Scholar 

  15. Carr, L. L., Mankoff, D. A., Goulart, B. H., Eaton, K. D., Capell, P. T., et al. (2010). Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clinical Cancer Research, 16(21), 5260–5268.

    Article  PubMed  CAS  Google Scholar 

  16. Houghton, J., Morozov, A., Smirnova, I., & Wang, T. C. (2007). Stem cells and cancer. Seminars in Cancer Biology, 17(3), 191–203.

    Article  PubMed  CAS  Google Scholar 

  17. Cobaleda, C., Gutiérrez-Cianca, N., Pérez-Losada, J., Flores, T., García-Sanz, R., et al. (2000). A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood, 95(3), 1007–1013.

    PubMed  CAS  Google Scholar 

  18. Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36(Suppl 1), 59–72.

    Article  PubMed  CAS  Google Scholar 

  19. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15178–15183.

    Article  PubMed  CAS  Google Scholar 

  20. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    Article  PubMed  Google Scholar 

  21. Fang, D., Nguyen, T. K., Leishear, K., Finko, R., Kulp, A. N., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65(20), 9328–9337.

    Article  PubMed  CAS  Google Scholar 

  22. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

    Article  PubMed  CAS  Google Scholar 

  23. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  24. Bapat, S. A., Mali, A. M., Koppikar, C. B., & Kurrey, N. K. (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Research, 65(8), 3025–3029.

    PubMed  CAS  Google Scholar 

  25. Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., et al. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 132(7), 2542–2556.

    Article  PubMed  CAS  Google Scholar 

  26. Ho, M. M., Ng, A. V., Lam, S., & Hung, J. Y. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827–4833.

    Article  PubMed  CAS  Google Scholar 

  27. Fukuda, K., Saikawa, Y., Ohashi, M., Kumagai, K., Kitajima, M., et al. (2009). Tumor initiating potential of side population cells in human gastric cancer. International Journal of Oncology, 34(5), 1201–1207.

    PubMed  CAS  Google Scholar 

  28. Todaro, M., Iovino, F., Eterno, V., Cammareri, P., Gambara, G., Espina, V., et al. (2010). Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Research, 70(21), 8874–8885.

    Article  PubMed  CAS  Google Scholar 

  29. Bomken, S., Fiser, K., Heidenreich, O., & Vormoor, J. (2010). Understanding the cancer stem cell. British Journal of Cancer, 103(4), 439–445.

    Article  PubMed  CAS  Google Scholar 

  30. Andrew, A., Kramer, B., & Rawdon, B. B. (1982). The embryonic origin of endocrine cells of the gastrointestinal tract. General and Comparative Endocrinology, 47(2), 249–265.

    Article  PubMed  CAS  Google Scholar 

  31. Waldum, H. L., Sandvik, A. K., Angelsen, A., Krokan, H., & Falkmer, S. (1999). Re: Editorial entitled ‘The origin of gut and pancreatic neuroendocrine (APUD) cells–the last word?’. The Journal of Pathology, 188(1), 113–114.

    Article  PubMed  CAS  Google Scholar 

  32. Kramer, B., & Andrew, A. (1981). Further investigation into the source of pancreatic endocrine cell types. General and Comparative Endocrinology, 44, 279–287.

    Article  PubMed  CAS  Google Scholar 

  33. Andrew, A. (1981). APUD cells and paraneurons: Embryonic origin. In S. FederoV & L. Hertz (Eds.), Advances in cellular neurobiology (Vol. 2, pp. 3–32). New York: Academic Press.

    Google Scholar 

  34. Dieterlen-Lièvre, F., & Beaupain, D. (1976). Immunocytological study of endocrine pancreas ontogeny in the chick embryo: Normal development and pancreatic potentialities in the early splanchnopleure. In T. A. I. Grillo, L. Liebson, & A. Epple (Eds.), The Evolution of Pancreatic Islets (pp. 37–50). Oxford: Pergamon Press.

    Google Scholar 

  35. Fontaine, J., Le Lièvre, C., & Le Douarin, N. M. (1977). What is the developmental fate of the neural crest cells which migrate into the pancreas in the avian embryo? General and Comparative Endocrinology, 33, 394–404.

    Article  PubMed  CAS  Google Scholar 

  36. Andrew, A., & Kramer, B. (1979). An experimental investigation into the possible origin of pancreatic islet cells from rhombencephalic neurectoderm. Journal of Embryology and Experimental Morphology, 52, 23–33.

    PubMed  CAS  Google Scholar 

  37. Fontaine-Pèrus, J., Le Lièvre, C., & Dubois, M. P. (1980). Do neural crest cells in the pancreas differentiate into somatostatin-containing cells? Cell and Tissue Research, 213, 293–299.

    Article  PubMed  Google Scholar 

  38. Le Douarin, N., & Teillet, M.-A. (1973). The migration of neural crest cells to the wall of the digestive tract in avian embryo. Journal of Embryology and Experimental Morphology, 30, 31–48.

    PubMed  Google Scholar 

  39. Fontaine, J., & Le Douarin, N. M. (1977). Analysis of endoderm formation in the avianblastoderm by the use of quail-chick chimaeras. The problem of the neuroectodermal origin of the cells of the APUD series. Journal of Embryology and Experimental Morphology, 41, 209–222.

    PubMed  CAS  Google Scholar 

  40. Gestblom, C., Hoehner, J. C., Hedborg, F., et al. (1997). In vivo spontaneous neuronal to neuroendocrine lineage conversion in a subset of neuroblastomas. American Journal of Pathology, 150, 107–117.

    PubMed  CAS  Google Scholar 

  41. van Eeden, S., & Offerhaus, G. J. (2006). Historical, current and future perspectives on gastrointestinal and pancreatic endocrine tumors. Virchows Archiv, 448(1), 1–6.

    Article  PubMed  Google Scholar 

  42. Schonhoff, S. E., Giel-Moloney, M., & Leiter, A. B. (2004). Minireview: Development and differentiation of gut endocrine cells. Endocrinology, 145(6), 2639–2644.

    Article  PubMed  CAS  Google Scholar 

  43. Schwitzgebel, V. M. (2001). Programming of the pancreas. Molecular and Cellular Endocrinology, 185(1–2), 99–108.

    Article  PubMed  CAS  Google Scholar 

  44. Dumortier, J., Ratineau, C., Scoazec, J. Y., Pourreyron, C., Anderson, W., et al. (2000). Site-specific epithelial-mesenchymal interactions in digestive neuroendocrine tumors. An experimental in vivo and in vitro study. American Journal of Pathology, 156(2), 671–683.

    Article  PubMed  CAS  Google Scholar 

  45. Pannuti, A., Foreman, K., Rizzo, P., Osipo, C., Golde, T., et al. (2010). Targeting Notch to target cancer stem cells. Clinical Cancer Research, 16(12), 3141–3152.

    Article  PubMed  CAS  Google Scholar 

  46. Darville, M. I., & Eizirik, D. L. (2006). Notch signaling: A mediator of beta-cell de-differentiation in diabetes? Biochemical and Biophysical Research Communications, 339(4), 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  47. Kunnimalaiyaan, M., & Chen, H. (2007). Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. The Oncologist, 12(5), 535–542.

    Article  PubMed  CAS  Google Scholar 

  48. Nakakura, E. K., Sriuranpong, V. R., Kunnimalaiyaan, M., Hsiao, E. C., Schuebel, K. E., et al. (2005). Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. Journal of Clinical Endocrinology and Metabolism, 90(7), 4350–4356.

    Article  PubMed  CAS  Google Scholar 

  49. Merchant, A. A., & Matsui, W. (2010). Targeting Hedgehog—a cancer stem cell pathway. Clinical Cancer Research, 16(12), 3130–3140.

    Article  PubMed  CAS  Google Scholar 

  50. Fendrich, V., Waldmann, J., Esni, F., Ramaswamy, A., Mullendore, M., et al. (2007). Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocrine-Related Cancer, 14(3), 865–874.

    Article  PubMed  CAS  Google Scholar 

  51. Shida, T., Furuya, M., Nikaido, T., Hasegawa, M., Koda, K., et al. (2006). Sonic Hedgehog-Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas. Cancer Biology & Therapy, 5(11), 1530–1538.

    Article  CAS  Google Scholar 

  52. Takebe, N., & Ivy, S. P. (2010). Controversies in cancer stem cells: Targeting embryonic signaling pathways. Clinical Cancer Research, 16(12), 3106–3112.

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi-Yanaga, F., & Kahn, M. (2010). Targeting Wnt signaling: Can we safely eradicate cancer stem cells? Clinical Cancer Research, 16(12), 3153–3162.

    Article  PubMed  CAS  Google Scholar 

  54. Su, M. C., Wang, C. C., Chen, C. C., Hu, R. H., Wang, T. H., et al. (2006). Nuclear translocation of beta-catenin protein but absence of beta-catenin and APC mutation in gastrointestinal carcinoid tumor. Annals of Surgical Oncology, 13(12), 1604–1609.

    Article  PubMed  Google Scholar 

  55. Chen, G., A, J., Wang, M., Farley, S., Lee, L. Y., Lee, L. C., et al. (2008). Menin promotes the Wnt signaling pathway in pancreatic endocrine cells. Molecular Cancer Research, 6(12), 1894–1907.

    PubMed  CAS  Google Scholar 

  56. Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., et al. (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Science, 101(2), 293–299.

    Article  PubMed  CAS  Google Scholar 

  57. Bierie, B., & Moses, H. L. (2006). Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nature Reviews. Cancer, 6(7), 506–520.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang, P. J., Furth, E. E., Cai, X., Goldblum, J. R., Pasha, T. L., & Min, K. W. (2004). The role of beta-catenin, TGF beta 3, NGF2, FGF2, IGFR2, and BMP4 in the pathogenesis of mesenteric sclerosis and angiopathy in midgut carcinoids. Human Pathology, 35(6), 670–674.

    Article  PubMed  CAS  Google Scholar 

  59. Zuetenhorst, J. M., Bonfrer, J. M., Korse, C. M., Bakker, R., van Tinteren, H., & Taal, B. G. (2003). Carcinoid heart disease: The role of urinary 5-hydroxyindoleacetic acid excretion and plasma levels of atrial natriuretic peptide, transforming growth factor-beta and fibroblast growth factor. Cancer, 97(7), 1609–1615.

    Article  PubMed  CAS  Google Scholar 

  60. Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8(8), 592–603.

    Article  PubMed  CAS  Google Scholar 

  61. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.

    Article  PubMed  CAS  Google Scholar 

  62. Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Reviews Clinical Oncology, 8, 97–106.

    Article  PubMed  CAS  Google Scholar 

  63. Bautch, V. L. (2010). Cancer: Tumour stem cells switch sides. Nature, 468(7325), 770–771.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Grande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grande, E., Capdevila, J., Barriuso, J. et al. Gastroenteropancreatic neuroendocrine tumor cancer stem cells: do they exist?. Cancer Metastasis Rev 31, 47–53 (2012). https://doi.org/10.1007/s10555-011-9328-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9328-6

Keywords

Navigation