Cancer and Metastasis Reviews

, Volume 31, Issue 1–2, pp 47–53 | Cite as

Gastroenteropancreatic neuroendocrine tumor cancer stem cells: do they exist?

  • Enrique Grande
  • Jaume Capdevila
  • Jorge Barriuso
  • Luis Antón-Aparicio
  • Daniel Castellano


Neuroendocrine tumors (NETs) comprise a broad range of neoplasms that share biological and embryological origin. A deeper knowledge in the underlying molecular biology that results in the development and spread of NETs has allowed the use of novel-targeted therapies against angiogenesis and intracellular pathways, key checkpoints that govern growth, and proliferation of these tumors. Unfortunately, the possibility of cure is still far for patients with advanced stages. Cancer stem cells (CSCs) are present in most solid tumors. Nevertheless, there is limited evidence for the presence of CSCs in NETs. In this review, we will discuss the embryonic origin and possible existence of a gastroenteropancreatic neuroendocrine cancer stem cell. Here, we summarize the body of evidence supporting the presence of active embryological pathways like Notch, Wnt-β-catenin, Hedgehog, or transforming growth factor-β in NETs. New therapeutic approaches in the field of CSCs seem to have a clear role in the treatment of medulloblastomas and basal cell carcinomas, but their future value in other solid tumor types including NETs remains unclear.


Cancer stem cell Catenin Hedgehog Neuroendocrine tumor Notch TGF-β Wnt 


  1. 1.
    Andrew, A., Kramer, B., & Rawdon, B. B. (1998). The origin of gut and pancreatic neuroendocrine (APUD) cells—the last word? The Journal of Pathology, 186(2), 117–118.PubMedCrossRefGoogle Scholar
  2. 2.
    Modlin, I. M., Oberg, K., Chung, D. C., Jensen, R. T., de Herder, W. W., et al. (2008). Gastroenteropancreatic neuroendocrine tumours. The Lancet Oncology, 9(1), 61–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Hauso, O., Gustafsson, B. I., Kidd, M., Waldum, H. L., Drozdov, I., et al. (2008). Neuroendocrine tumor epidemiology: Contrasting Norway and North America. Cancer, 113(10), 2655–2664.PubMedCrossRefGoogle Scholar
  4. 4.
    ESMO Guidelines Working Group, Oberg, K., Akerström, G., Rindi, G., & Jelic, S. (2010). Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 21(Suppl 5), v223–v227.PubMedCrossRefGoogle Scholar
  5. 5.
    Oberg, K., Hellman, P., Kwekkeboom, D., Jelic, S; ESMO Guidelines Working Group. (2010). Neuroendocrine bronchial and thymic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 21(Suppl 5), v220–v222.PubMedCrossRefGoogle Scholar
  6. 6.
    Raymond, E., Niccoli, P., Raoul, J., Bang, Y., Borbath, I., et al. (2010). Cox proportional hazard analysis of sunitinib (SU) efficacy across subgroups of patients (pts) with progressive pancreatic neuroendocrine tumors (NET). Journal of Clinical Oncology, 28, 7s (suppl; abstr 4031).CrossRefGoogle Scholar
  7. 7.
    Pavel, M., Hainsworth, J., Baudin, E., Peeters, M., Hoersch, D., Anthony, L., et al. (2010). Randomized, phase III trial of everolimus + octreotide LAR vs placebo + octreotide LAR in patients with advanced neuroendocrine tumours (NET) (RADIANT-2). Annals of Oncology, 21(Suppl 8), LBA8.Google Scholar
  8. 8.
    Yao, J., Shah, M., Ito, T., Lombard-Bohas, C., Wolin, E., et al. (2010). Phase III randomized trial of everolimus (RAD001) vs placebo in advanced pancreatic NET (RADIANT-3). Annals of Oncology, 21(Suppl 8), LBA9.Google Scholar
  9. 9.
    Hobday, T. J., Rubin, J., Holen, K., Picus, J., Donehower, R., et al. (2007). MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A phase II consortium (P2C) study. Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement):4504.Google Scholar
  10. 10.
    Phan, A. T., Yao, J. C., Fogelman, D. R., Hess, K. R., Ng, C. S., et al. (2010). Pazopanib and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). Journal of Clinical Oncology, 28, 7. s(suppl; abstr 4001).CrossRefGoogle Scholar
  11. 11.
    Yao, J. C., Phan, A., Hoff, P. M., Chen, H. X., Charnsangavej, C., et al. (2008). Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. Journal of Clinical Oncology, 26(8), 1316–1323.PubMedCrossRefGoogle Scholar
  12. 12.
    Duran, I., Kortmansky, J., Singh, D., Hirte, H., Kocha, W., et al. (2006). A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. British Journal of Cancer, 95(9), 1148–1154.PubMedCrossRefGoogle Scholar
  13. 13.
    Lam, E. T., Ringel, M. D., Kloos, R. T., Prior, T. W., Knopp, M. V., et al. (2010). Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. Journal of Clinical Oncology, 28(14), 2323–2330.PubMedCrossRefGoogle Scholar
  14. 14.
    Bible, K. C., Suman, V. J., Molina, J. R., Smallridge, R. C., Maples, W. J., et al. (2010). Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: Results of a phase 2 consortium study. The Lancet Oncology, 11(10), 962–972.PubMedCrossRefGoogle Scholar
  15. 15.
    Carr, L. L., Mankoff, D. A., Goulart, B. H., Eaton, K. D., Capell, P. T., et al. (2010). Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clinical Cancer Research, 16(21), 5260–5268.PubMedCrossRefGoogle Scholar
  16. 16.
    Houghton, J., Morozov, A., Smirnova, I., & Wang, T. C. (2007). Stem cells and cancer. Seminars in Cancer Biology, 17(3), 191–203.PubMedCrossRefGoogle Scholar
  17. 17.
    Cobaleda, C., Gutiérrez-Cianca, N., Pérez-Losada, J., Flores, T., García-Sanz, R., et al. (2000). A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood, 95(3), 1007–1013.PubMedGoogle Scholar
  18. 18.
    Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36(Suppl 1), 59–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15178–15183.PubMedCrossRefGoogle Scholar
  20. 20.
    O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMedCrossRefGoogle Scholar
  21. 21.
    Fang, D., Nguyen, T. K., Leishear, K., Finko, R., Kulp, A. N., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65(20), 9328–9337.PubMedCrossRefGoogle Scholar
  22. 22.
    Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRefGoogle Scholar
  23. 23.
    Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951.PubMedCrossRefGoogle Scholar
  24. 24.
    Bapat, S. A., Mali, A. M., Koppikar, C. B., & Kurrey, N. K. (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Research, 65(8), 3025–3029.PubMedGoogle Scholar
  25. 25.
    Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., et al. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 132(7), 2542–2556.PubMedCrossRefGoogle Scholar
  26. 26.
    Ho, M. M., Ng, A. V., Lam, S., & Hung, J. Y. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827–4833.PubMedCrossRefGoogle Scholar
  27. 27.
    Fukuda, K., Saikawa, Y., Ohashi, M., Kumagai, K., Kitajima, M., et al. (2009). Tumor initiating potential of side population cells in human gastric cancer. International Journal of Oncology, 34(5), 1201–1207.PubMedGoogle Scholar
  28. 28.
    Todaro, M., Iovino, F., Eterno, V., Cammareri, P., Gambara, G., Espina, V., et al. (2010). Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Research, 70(21), 8874–8885.PubMedCrossRefGoogle Scholar
  29. 29.
    Bomken, S., Fiser, K., Heidenreich, O., & Vormoor, J. (2010). Understanding the cancer stem cell. British Journal of Cancer, 103(4), 439–445.PubMedCrossRefGoogle Scholar
  30. 30.
    Andrew, A., Kramer, B., & Rawdon, B. B. (1982). The embryonic origin of endocrine cells of the gastrointestinal tract. General and Comparative Endocrinology, 47(2), 249–265.PubMedCrossRefGoogle Scholar
  31. 31.
    Waldum, H. L., Sandvik, A. K., Angelsen, A., Krokan, H., & Falkmer, S. (1999). Re: Editorial entitled ‘The origin of gut and pancreatic neuroendocrine (APUD) cells–the last word?’. The Journal of Pathology, 188(1), 113–114.PubMedCrossRefGoogle Scholar
  32. 32.
    Kramer, B., & Andrew, A. (1981). Further investigation into the source of pancreatic endocrine cell types. General and Comparative Endocrinology, 44, 279–287.PubMedCrossRefGoogle Scholar
  33. 33.
    Andrew, A. (1981). APUD cells and paraneurons: Embryonic origin. In S. FederoV & L. Hertz (Eds.), Advances in cellular neurobiology (Vol. 2, pp. 3–32). New York: Academic Press.Google Scholar
  34. 34.
    Dieterlen-Lièvre, F., & Beaupain, D. (1976). Immunocytological study of endocrine pancreas ontogeny in the chick embryo: Normal development and pancreatic potentialities in the early splanchnopleure. In T. A. I. Grillo, L. Liebson, & A. Epple (Eds.), The Evolution of Pancreatic Islets (pp. 37–50). Oxford: Pergamon Press.Google Scholar
  35. 35.
    Fontaine, J., Le Lièvre, C., & Le Douarin, N. M. (1977). What is the developmental fate of the neural crest cells which migrate into the pancreas in the avian embryo? General and Comparative Endocrinology, 33, 394–404.PubMedCrossRefGoogle Scholar
  36. 36.
    Andrew, A., & Kramer, B. (1979). An experimental investigation into the possible origin of pancreatic islet cells from rhombencephalic neurectoderm. Journal of Embryology and Experimental Morphology, 52, 23–33.PubMedGoogle Scholar
  37. 37.
    Fontaine-Pèrus, J., Le Lièvre, C., & Dubois, M. P. (1980). Do neural crest cells in the pancreas differentiate into somatostatin-containing cells? Cell and Tissue Research, 213, 293–299.PubMedCrossRefGoogle Scholar
  38. 38.
    Le Douarin, N., & Teillet, M.-A. (1973). The migration of neural crest cells to the wall of the digestive tract in avian embryo. Journal of Embryology and Experimental Morphology, 30, 31–48.PubMedGoogle Scholar
  39. 39.
    Fontaine, J., & Le Douarin, N. M. (1977). Analysis of endoderm formation in the avianblastoderm by the use of quail-chick chimaeras. The problem of the neuroectodermal origin of the cells of the APUD series. Journal of Embryology and Experimental Morphology, 41, 209–222.PubMedGoogle Scholar
  40. 40.
    Gestblom, C., Hoehner, J. C., Hedborg, F., et al. (1997). In vivo spontaneous neuronal to neuroendocrine lineage conversion in a subset of neuroblastomas. American Journal of Pathology, 150, 107–117.PubMedGoogle Scholar
  41. 41.
    van Eeden, S., & Offerhaus, G. J. (2006). Historical, current and future perspectives on gastrointestinal and pancreatic endocrine tumors. Virchows Archiv, 448(1), 1–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Schonhoff, S. E., Giel-Moloney, M., & Leiter, A. B. (2004). Minireview: Development and differentiation of gut endocrine cells. Endocrinology, 145(6), 2639–2644.PubMedCrossRefGoogle Scholar
  43. 43.
    Schwitzgebel, V. M. (2001). Programming of the pancreas. Molecular and Cellular Endocrinology, 185(1–2), 99–108.PubMedCrossRefGoogle Scholar
  44. 44.
    Dumortier, J., Ratineau, C., Scoazec, J. Y., Pourreyron, C., Anderson, W., et al. (2000). Site-specific epithelial-mesenchymal interactions in digestive neuroendocrine tumors. An experimental in vivo and in vitro study. American Journal of Pathology, 156(2), 671–683.PubMedCrossRefGoogle Scholar
  45. 45.
    Pannuti, A., Foreman, K., Rizzo, P., Osipo, C., Golde, T., et al. (2010). Targeting Notch to target cancer stem cells. Clinical Cancer Research, 16(12), 3141–3152.PubMedCrossRefGoogle Scholar
  46. 46.
    Darville, M. I., & Eizirik, D. L. (2006). Notch signaling: A mediator of beta-cell de-differentiation in diabetes? Biochemical and Biophysical Research Communications, 339(4), 1063–1068.PubMedCrossRefGoogle Scholar
  47. 47.
    Kunnimalaiyaan, M., & Chen, H. (2007). Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. The Oncologist, 12(5), 535–542.PubMedCrossRefGoogle Scholar
  48. 48.
    Nakakura, E. K., Sriuranpong, V. R., Kunnimalaiyaan, M., Hsiao, E. C., Schuebel, K. E., et al. (2005). Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. Journal of Clinical Endocrinology and Metabolism, 90(7), 4350–4356.PubMedCrossRefGoogle Scholar
  49. 49.
    Merchant, A. A., & Matsui, W. (2010). Targeting Hedgehog—a cancer stem cell pathway. Clinical Cancer Research, 16(12), 3130–3140.PubMedCrossRefGoogle Scholar
  50. 50.
    Fendrich, V., Waldmann, J., Esni, F., Ramaswamy, A., Mullendore, M., et al. (2007). Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocrine-Related Cancer, 14(3), 865–874.PubMedCrossRefGoogle Scholar
  51. 51.
    Shida, T., Furuya, M., Nikaido, T., Hasegawa, M., Koda, K., et al. (2006). Sonic Hedgehog-Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas. Cancer Biology & Therapy, 5(11), 1530–1538.CrossRefGoogle Scholar
  52. 52.
    Takebe, N., & Ivy, S. P. (2010). Controversies in cancer stem cells: Targeting embryonic signaling pathways. Clinical Cancer Research, 16(12), 3106–3112.PubMedCrossRefGoogle Scholar
  53. 53.
    Takahashi-Yanaga, F., & Kahn, M. (2010). Targeting Wnt signaling: Can we safely eradicate cancer stem cells? Clinical Cancer Research, 16(12), 3153–3162.PubMedCrossRefGoogle Scholar
  54. 54.
    Su, M. C., Wang, C. C., Chen, C. C., Hu, R. H., Wang, T. H., et al. (2006). Nuclear translocation of beta-catenin protein but absence of beta-catenin and APC mutation in gastrointestinal carcinoid tumor. Annals of Surgical Oncology, 13(12), 1604–1609.PubMedCrossRefGoogle Scholar
  55. 55.
    Chen, G., A, J., Wang, M., Farley, S., Lee, L. Y., Lee, L. C., et al. (2008). Menin promotes the Wnt signaling pathway in pancreatic endocrine cells. Molecular Cancer Research, 6(12), 1894–1907.PubMedGoogle Scholar
  56. 56.
    Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., et al. (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Science, 101(2), 293–299.PubMedCrossRefGoogle Scholar
  57. 57.
    Bierie, B., & Moses, H. L. (2006). Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nature Reviews. Cancer, 6(7), 506–520.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang, P. J., Furth, E. E., Cai, X., Goldblum, J. R., Pasha, T. L., & Min, K. W. (2004). The role of beta-catenin, TGF beta 3, NGF2, FGF2, IGFR2, and BMP4 in the pathogenesis of mesenteric sclerosis and angiopathy in midgut carcinoids. Human Pathology, 35(6), 670–674.PubMedCrossRefGoogle Scholar
  59. 59.
    Zuetenhorst, J. M., Bonfrer, J. M., Korse, C. M., Bakker, R., van Tinteren, H., & Taal, B. G. (2003). Carcinoid heart disease: The role of urinary 5-hydroxyindoleacetic acid excretion and plasma levels of atrial natriuretic peptide, transforming growth factor-beta and fibroblast growth factor. Cancer, 97(7), 1609–1615.PubMedCrossRefGoogle Scholar
  60. 60.
    Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8(8), 592–603.PubMedCrossRefGoogle Scholar
  61. 61.
    Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMedCrossRefGoogle Scholar
  62. 62.
    Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Reviews Clinical Oncology, 8, 97–106.PubMedCrossRefGoogle Scholar
  63. 63.
    Bautch, V. L. (2010). Cancer: Tumour stem cells switch sides. Nature, 468(7325), 770–771.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Enrique Grande
    • 1
  • Jaume Capdevila
    • 2
  • Jorge Barriuso
    • 3
  • Luis Antón-Aparicio
    • 4
  • Daniel Castellano
    • 5
  1. 1.Servicio de Oncología MédicaHospital Universitario Ramón y Cajal de MadridMadridSpain
  2. 2.Medical Oncology DepartmentVall D’Hebrón University HospitalBarcelonaSpain
  3. 3.Medical Oncology DepartmentLa Paz University HospitalMadridSpain
  4. 4.Medical Oncology DepartmentA Coruña Universitary Hospital ComplexLa CoruñaSpain
  5. 5.Medical Oncology DepartmentDoce de Octubre University HospitalMadridSpain

Personalised recommendations