Cancer and Metastasis Reviews

, Volume 30, Issue 3–4, pp 619–640 | Cite as

Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast, and lung carcinogenesis

  • Jeffrey M. Peters
  • Jennifer E. Foreman
  • Frank J. Gonzalez


Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a promising drug target since its agonists increase serum high-density lipoprotein; decrease low-density lipoprotein, triglycerides, and insulin associated with metabolic syndrome; improve insulin sensitivity; and decrease high fat diet-induced obesity. PPARβ/δ agonists also promote terminal differentiation and elicit anti-inflammatory activities in many cell types. However, it remains to be determined whether PPARβ/δ agonists can be developed as therapeutics because there are reports showing either pro- or anti-carcinogenic effects of PPARβ/δ in cancer models. This review examines studies reporting the role of PPARβ/δ in colon, breast, and lung cancers. The prevailing evidence would suggest that targeting PPARβ/δ is not only safe but could have anti-carcinogenic protective effects.


Peroxisome proliferator-activated receptor-β/δ PPARβ/δ Colon carcinogenesis Breast carcinogenesis Lung carcinogenesis 



Our research is supported by the National Institutes of Health (CA124533, CA126826, CA141029, CA140369, AA018863) J.M.P. and the National Cancer Institute Intramural Research Program (ZIABC005561, ZIABC005562, ZIABC005708) F.J.G.


  1. 1.
    Peraza, M. A., Burdick, A. D., Marin, H. E., Gonzalez, F. J., & Peters, J. M. (2006). The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicological Sciences, 90(2), 269–295.PubMedGoogle Scholar
  2. 2.
    Peters, J. M., Cheung, C., & Gonzalez, F. J. (2005). Peroxisome proliferator-activated receptor-α and liver cancer: Where do we stand? Journal of Molecular Medicine, 83(10), 774–785.PubMedGoogle Scholar
  3. 3.
    Klaunig, J. E., Babich, M. A., Baetcke, K. P., Cook, J. C., Corton, J. C., David, R. M., et al. (2003). PPARα agonist-induced rodent tumors: Modes of action and human relevance. Critical Reviews in Toxicology, 33(6), 655–780.PubMedGoogle Scholar
  4. 4.
    Thompson, E. A. (2007). PPARγ physiology and pathology in gastrointestinal epithelial cells. Molecules and Cells, 24(2), 167–176.PubMedGoogle Scholar
  5. 5.
    Choi, I. K., Kim, Y. H., Kim, J. S., & Seo, J. H. (2008). PPAR-γ ligand promotes the growth of APC-mutated HT-29 human colon cancer cells in vitro and in vivo. Investigational New Drugs, 26(3), 283–288.PubMedGoogle Scholar
  6. 6.
    Ptak-Belowska, A., Pawlik, M. W., Krzysiek-Maczka, G., Brzozowski, T., & Pawlik, W. W. (2007). Transcriptional upregulation of gastrin in response to peroxisome proliferator-activated receptor γ agonist triggers cell survival pathways. Journal of Physiology and Pharmacology, 58(4), 793–801.PubMedGoogle Scholar
  7. 7.
    Rohrl, C., Kaindl, U., Koneczny, I., Hudec, X., Baron, D. M., Konig, J. S., et al. (2011). Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells. Journal of Cancer Research and Clinical Oncology, 137(1), 29–39.PubMedGoogle Scholar
  8. 8.
    Girroir, E. E., Hollingshead, H. E., He, P., Zhu, B., Perdew, G. H., & Peters, J. M. (2008). Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice. Biochemical and Biophysical Research Communications, 371(3), 456–461.PubMedGoogle Scholar
  9. 9.
    Hall, J. M., & McDonnell, D. P. (2005). Coregulators in nuclear estrogen receptor action: From concept to therapeutic targeting. Molecular Interventions, 5(6), 343–357.PubMedGoogle Scholar
  10. 10.
    Alvarez-Guardia, D., Palomer, X., Coll, T., Serrano, L., Rodriguez-Calvo, R., Davidson, M. M., et al. (2011). PPARβ/δ activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochimica et Biophysica Acta, 1811(2), 59–67.PubMedGoogle Scholar
  11. 11.
    Barroso, E., Eyre, E., Palomer, X., & Vazquez-Carrera, M. (2011). The peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 prevents TNF-α-induced NF-κB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochemical Pharmacology, 81(4), 534–543.PubMedGoogle Scholar
  12. 12.
    Coll, T., Alvarez-Guardia, D., Barroso, E., Gomez-Foix, A. M., Palomer, X., Laguna, J. C., et al. (2010). Activation of peroxisome proliferator-activated receptor-δ by GW501516 prevents fatty acid-induced nuclear factor-kB activation and insulin resistance in skeletal muscle cells. Endocrinology, 151(4), 1560–1569.PubMedGoogle Scholar
  13. 13.
    Planavila, A., Rodriguez-Calvo, R., Jove, M., Michalik, L., Wahli, W., Laguna, J. C., et al. (2005). Peroxisome proliferator-activated receptor β/δ activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovascular Research, 65(4), 832–841.PubMedGoogle Scholar
  14. 14.
    Rodriguez-Calvo, R., Serrano, L., Coll, T., Moullan, N., Sanchez, R. M., Merlos, M., et al. (2008). Activation of peroxisome proliferator-activated receptor β/δ (pparβ/δ) inhibits LPS-induced cytokine production in adipocytes by lowering NF-κB activity via ERK1/2. Diabetes, 57(8), 2149–2157.PubMedGoogle Scholar
  15. 15.
    Shi, Y., Hon, M., & Evans, R. M. (2002). The peroxisome proliferator-activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling. Proceedings of the National Academy of Science of the United States of America, 99(5), 2613–2618.Google Scholar
  16. 16.
    Berger, J., Leibowitz, M. D., Doebber, T. W., Elbrecht, A., Zhang, B., Zhou, G., et al. (1999). Novel peroxisome proliferator-activated receptor (PPAR) γ and PPARδ ligands produce distinct biological effects. Journal of Biological Chemistry, 274(10), 6718–6725.PubMedGoogle Scholar
  17. 17.
    Leibowitz, M. D., Fievet, C., Hennuyer, N., Peinado-Onsurbe, J., Duez, H., Bergera, J., et al. (2000). Activation of PPARδ alters lipid metabolism in db/db mice. FEBS Letters, 473(3), 333–336.PubMedGoogle Scholar
  18. 18.
    Oliver, W. R., Jr., Shenk, J. L., Snaith, M. R., Russell, C. S., Plunket, K. D., Bodkin, N. L., et al. (2001). A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Science of the United States of America, 98(9), 5306–5311.Google Scholar
  19. 19.
    Sprecher, D. L., Massien, C., Pearce, G., Billin, A. N., Perlstein, I., Willson, T. M., et al. (2007). Triglyceride: High-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor δ agonist. Arteriosclerosis, Thrombrosis and Vascular Biology, 27(2), 359–365.Google Scholar
  20. 20.
    Tanaka, T., Yamamoto, J., Iwasaki, S., Asaba, H., Hamura, H., Ikeda, Y., et al. (2003). Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proceedings of the National Academy of Science of the United States of America, 100(26), 15924–15929.Google Scholar
  21. 21.
    Wang, Y. X., Lee, C. H., Tiep, S., Yu, R. T., Ham, J., Kang, H., et al. (2003). Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell, 113(2), 159–170.PubMedGoogle Scholar
  22. 22.
    Wang, Y. X., Zhang, C. L., Yu, R. T., Cho, H. K., Nelson, M. C., Bayuga-Ocampo, C. R., et al. (2004). Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biology, 2(10), e294.PubMedGoogle Scholar
  23. 23.
    Lee, C. H., Olson, P., Hevener, A., Mehl, I., Chong, L. W., Olefsky, J. M., et al. (2006). PPARδ regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Science of the United States of America, 103(9), 3444–3449.Google Scholar
  24. 24.
    de la Monte, S. M., Tong, M., Lester-Coll, N., Jr Plater, M., & Wands, J. R. (2006). Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: Relevance to Alzheimer's disease. Journal of Alzheimers Disease, 10(1), 89–109.Google Scholar
  25. 25.
    de la Monte, S. M., & Wands, J. R. (2008). Alzheimer's disease is type 3 diabetes—Evidence reviewed. Journal of Diabetes Science and Technology, 2(6), 1101–1113.PubMedGoogle Scholar
  26. 26.
    Kino, T., Rice, K. C., & Chrousos, G. P. (2007). The PPARδ agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition. European Journal of Clinical Invest, 37(5), 425–433.Google Scholar
  27. 27.
    Lim, H. J., Park, J. H., Lee, S., Choi, H. E., Lee, K. S., & Park, H. Y. (2009). PPARδ ligand L-165041 ameliorates Western diet-induced hepatic lipid accumulation and inflammation in LDLR−/− mice. European Journal on Pharmacology, 622(1–3), 45–51.Google Scholar
  28. 28.
    Liu, S., Hatano, B., Zhao, M., Yen, C. C., Kang, K., Reilly, S. M., et al. (2011). Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation. Journal of Biological Chemistry, 286(2), 1237–1247.PubMedGoogle Scholar
  29. 29.
    Nagasawa, T., Inada, Y., Nakano, S., Tamura, T., Takahashi, T., Maruyama, K., et al. (2006). Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. European Journal in Pharmacology, 536(1–2), 182–191.Google Scholar
  30. 30.
    Shan, W., Nicol, C. J., Ito, S., Bility, M. T., Kennett, M. J., Ward, J. M., et al. (2008). Peroxisome proliferator-activated receptor-β/δ protects against chemically induced liver toxicity in mice. Hepatology, 47(1), 225–235.PubMedGoogle Scholar
  31. 31.
    Shan, W., Palkar, P. S., Murray, I. A., McDevitt, E. I., Kennett, M. J., Kang, B. H., et al. (2008). Ligand activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression. Toxicological Sciences, 105(2), 418–428.PubMedGoogle Scholar
  32. 32.
    Gross, B., Hennuyer, N., Bouchaert, E., Rommens, C., Grillot, D., Mezdour, H., et al. (2011). Generation and characterization of a humanized PPARδ mouse model. British Journal of Pharmacology, 164(1), 192–208.Google Scholar
  33. 33.
    Barish, G. D., Atkins, A. R., Downes, M., Olson, P., Chong, L. W., Nelson, M., et al. (2008). PPARδ regulates multiple proinflammatory pathways to suppress atherosclerosis. Proceedings of the National Academy of Science of the United States of America, 105(11), 4271–4276.Google Scholar
  34. 34.
    Defaux, A., Zurich, M. G., Braissant, O., Honegger, P., & Monnet-Tschudi, F. (2009). Effects of the PPAR-β agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination. Journal of Neuroinflammation, 6(1), 15.PubMedGoogle Scholar
  35. 35.
    Di Paola, R., Crisafulli, C., Mazzon, E., Esposito, E., Paterniti, I., Galuppo, M., et al. (2010). GW0742, a high-affinity PPAR-β/δ agonist, inhibits acute lung injury in mice. Shock, 33(4), 426–435.PubMedGoogle Scholar
  36. 36.
    Di Paola, R., Esposito, E., Mazzon, E., Paterniti, I., Galuppo, M., & Cuzzocrea, S. (2010). GW0742, a selective PPAR-β/δ agonist, contributes to the resolution of inflammation after gut ischemia/reperfusion injury. Journal of Leukocyte Biology, 88(2), 291–301.PubMedGoogle Scholar
  37. 37.
    Ding, G., Cheng, L., Qin, Q., Frontin, S., & Yang, Q. (2006). PPARδ modulates lipopolysaccharide-induced TNFα inflammation signaling in cultured cardiomyocytes. Journal of Molecular and Cellular Cardiology, 40(6), 821–828.PubMedGoogle Scholar
  38. 38.
    Dunn, S. E., Bhat, R., Straus, D. S., Sobel, R. A., Axtell, R., Johnson, A., et al. (2010). Peroxisome proliferator-activated receptor δ limits the expansion of pathogenic Th cells during central nervous system autoimmunity. Journal of Experimental Medicine, 207(8), 1599–1608.PubMedGoogle Scholar
  39. 39.
    Galuppo, M., Di Paola, R., Mazzon, E., Esposito, E., Paterniti, I., Kapoor, A., et al. (2011). GW0742, a high affinity PPAR-β/δ agonist reduces lung inflammation induced by bleomycin instillation in mice. International Journal of Immunopathology and Pharmacology, 23(4), 1033–1046.Google Scholar
  40. 40.
    Galuppo, M., di Paola, R., Mazzon, E., Genovese, T., Crisafulli, C., Paterniti, I., et al. (2010). Role of PPAR-δ in the development of zymosan-induced multiple organ failure: An experiment mice study. Journal of Inflammation (London), 7(1), 12.Google Scholar
  41. 41.
    Haskova, Z., Hoang, B., Luo, G., Morgan, L. A., Billin, A. N., Barone, F. C., et al. (2008). Modulation of LPS-induced pulmonary neutrophil infiltration and cytokine production by the selective PPARβ/δ ligand GW0742. Inflammatory Research, 57(7), 314–321.Google Scholar
  42. 42.
    Hollingshead, H. E., Morimura, K., Adachi, M., Kennett, M. J., Billin, A. N., Willson, T. M., et al. (2007). PPARβ/δ protects against experimental colitis through a ligand-independent mechanism. Digestive Diseases and Sciences, 52(11), 2912–2919.PubMedGoogle Scholar
  43. 43.
    Kanakasabai, S., Chearwae, W., Walline, C. C., Iams, W., Adams, S. M., & Bright, J. J. (2010). Peroxisome proliferator-activated receptor δ agonists inhibit T helper type 1 (Th1) and Th17 responses in experimental allergic encephalomyelitis. Immunology, 130(4), 572–588.PubMedGoogle Scholar
  44. 44.
    Kanakasabai, S., Walline, C. C., Chakraborty, S., & Bright, J. J. (2011). PPARδ deficient mice develop elevated Th1/Th17 responses and prolonged experimental autoimmune encephalomyelitis. Brain Research, 1376, 101–112.PubMedGoogle Scholar
  45. 45.
    Liang, Y. J., Chen, C. Y., Juang, S. J., Lai, L. P., Shyu, K. G., Wang, B. W., et al. (2010). Peroxisome proliferator-activated receptor δ agonists attenuated the C-reactive protein-induced pro-inflammation in cardiomyocytes and H9c2 cardiomyoblasts. European Journal in Pharmacology, 643(1), 84–92.Google Scholar
  46. 46.
    Man, M. Q., Barish, G. D., Schmuth, M., Crumrine, D., Barak, Y., Chang, S., et al. (2007). Deficiency of PPARβ/δ in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation. Journal of Investigative Dermatology, 128(2), 370–377.PubMedGoogle Scholar
  47. 47.
    Minutoli, L., Antonuccio, P., Polito, F., Bitto, A., Squadrito, F., Irrera, N., et al. (2009). Peroxisome proliferator activated receptor β/δ activation prevents extracellular regulated kinase 1/2 phosphorylation and protects the testis from ischemia and reperfusion injury. Journal of Urology, 181, 1913–1921.PubMedGoogle Scholar
  48. 48.
    Paterniti, I., Esposito, E., Mazzon, E., Galuppo, M., Di Paola, R., Bramanti, P., et al. (2010). Evidence for the role of peroxisome proliferator-activated receptor-β/δ in the development of spinal cord injury. Journal of Pharmacology and Experimental Therapeutics, 333(2), 465–477.PubMedGoogle Scholar
  49. 49.
    Piqueras, L., Sanz, M. J., Perretti, M., Morcillo, E., Norling, L., Mitchell, J. A., et al. (2009). Activation of PPARβ/δ inhibits leukocyte recruitment, cell adhesion molecule expression, and chemokine release. Journal of Leukocyte Biology, 86(1), 115–122.PubMedGoogle Scholar
  50. 50.
    Rival, Y., Beneteau, N., Taillandier, T., Pezet, M., Dupont-Passelaigue, E., Patoiseau, J. F., et al. (2002). PPARα and PPARδ activators inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of VCAM-1 in EAhy926 endothelial cells. European Journal in Pharmacology, 435(2–3), 143–151.Google Scholar
  51. 51.
    Rival, Y., Puech, L., Taillandier, T., Beneteau, N., Rouquette, A., Lestienne, F., et al. (2009). PPAR activators and COX inhibitors selectively block cytokine-induced COX-2 expression and activity in human aortic smooth muscle cells. European Journal in Pharmacology, 606(1–3), 121–129.Google Scholar
  52. 52.
    Smeets, P. J., Teunissen, B. E., Planavila, A., de Vogel-van den Bosch, H., Willemsen, P. H., van der Vusse, G. J., et al. (2008). Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by PPARα and PPARδ. Journal of Biological Chemistry, 283(43), 29109–29118.PubMedGoogle Scholar
  53. 53.
    Woo, C. H., Massett, M. P., Shishido, T., Itoh, S., Ding, B., McClain, C., et al. (2006). ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor δ (PPARδ) stimulation. Journal of Biological Chemistry, 281(43), 32164–32174.PubMedGoogle Scholar
  54. 54.
    Zingarelli, B., Piraino, G., Hake, P. W., O'Connor, M., Denenberg, A., Fan, H., et al. (2010). Peroxisome proliferator-activated receptor δ regulates inflammation via NF-kB signaling in polymicrobial sepsis. American Journal of Pathology, 177(4), 1834–1847.PubMedGoogle Scholar
  55. 55.
    Almad, A., & McTigue, D. M. (2009). Chronic expression of PPAR-δ by oligodendrocyte lineage cells in the injured rat spinal cord. Journal of Comparative Neurology, 518(6), 785–799.Google Scholar
  56. 56.
    Aung, C. S., Faddy, H. M., Lister, E. J., Monteith, G. R., & Roberts-Thomson, S. J. (2006). Isoform specific changes in PPARα and β in colon and breast cancer with differentiation. Biochemical and Biophysical Research Communications, 340(2), 656–660.PubMedGoogle Scholar
  57. 57.
    Boiteux, G., Lascombe, I., Roche, E., Plissonnier, M. L., Clairotte, A., Bittard, H., et al. (2009). A-FABP, a candidate progression marker of human transitional cell carcinoma of the bladder, is differentially regulated by PPAR in urothelial cancer cells. International Journal of Cancer, 124(8), 1820–1828.Google Scholar
  58. 58.
    Borland, M. G., Foreman, J. E., Girroir, E. E., Zolfaghari, R., Sharma, A. K., Amin, S. M., et al. (2008). Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits cell proliferation in human HaCaT keratinocytes. Molecular Pharmacology, 74(5), 1429–1442.PubMedGoogle Scholar
  59. 59.
    Burdick, A. D., Bility, M. T., Girroir, E. E., Billin, A. N., Willson, T. M., Gonzalez, F. J., et al. (2007). Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits cell growth of human N/TERT-1 keratinocytes. Cellular Signaling, 19(6), 1163–1171.Google Scholar
  60. 60.
    Di Loreto, S., D'Angelo, B., D'Amico, M. A., Benedetti, E., Cristiano, L., Cinque, B., et al. (2007). PPARβ agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y. Journal of Cellular Physiology, 211(3), 837–847.PubMedGoogle Scholar
  61. 61.
    Hollingshead, H. E., Borland, M. G., Billin, A. N., Willson, T. M., Gonzalez, F. J., & Peters, J. M. (2008). Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) and inhibition of cyclooxygenase 2 (COX2) attenuate colon carcinogenesis through independent signaling mechanisms. Carcinogenesis, 29(1), 169–176.PubMedGoogle Scholar
  62. 62.
    Kim, D. J., Bility, M. T., Billin, A. N., Willson, T. M., Gonzalez, F. J., & Peters, J. M. (2006). PPARβ/δ selectively induces differentiation and inhibits cell proliferation. Cell Death and Differentiation, 13(1), 53–60.PubMedGoogle Scholar
  63. 63.
    Marin, H. E., Peraza, M. A., Billin, A. N., Willson, T. M., Ward, J. M., Kennett, M. J., et al. (2006). Ligand activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) inhibits colon carcinogenesis. Cancer Research, 66(8), 4394–4401.PubMedGoogle Scholar
  64. 64.
    Matsuura, H., Adachi, H., Smart, R. C., Xu, X., Arata, J., & Jetten, A. M. (1999). Correlation between expression of peroxisome proliferator-activated receptor β and squamous differentiation in epidermal and tracheobronchial epithelial cells. Molecular and Cellular Endocrinology, 147(1–2), 85–92.PubMedGoogle Scholar
  65. 65.
    Nadra, K., Anghel, S. I., Joye, E., Tan, N. S., Basu-Modak, S., Trono, D., et al. (2006). Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor β/δ. Molecular and Cellular Biology, 26(8), 3266–3281.PubMedGoogle Scholar
  66. 66.
    Sakuma, S., Endo, T., Kanda, T., Nakamura, H., Yamasaki, S., & Yamakawa, T. (2011). Synthesis of a novel human PPARδ selective agonist and its stimulatory effect on oligodendrocyte differentiation. Bioorganic and Medicinal Chemistry Letters, 21(1), 240–244.PubMedGoogle Scholar
  67. 67.
    Saluja, I., Granneman, J. G., & Skoff, R. P. (2001). PPARδ agonists stimulate oligodendrocyte differentiation in tissue culture. Glia, 33(3), 191–204.PubMedGoogle Scholar
  68. 68.
    Schmuth, M., Haqq, C. M., Cairns, W. J., Holder, J. C., Dorsam, S., Chang, S., et al. (2004). Peroxisome proliferator-activated receptor (PPAR)-β/δ stimulates differentiation and lipid accumulation in keratinocytes. Journal of Investigative Dermatology, 122(4), 971–983.PubMedGoogle Scholar
  69. 69.
    Still, K., Grabowski, P., Mackie, I., Perry, M., & Bishop, N. (2008). The peroxisome proliferator activator receptor α/δ agonists linoleic acid and bezafibrate upregulate osteoblast differentiation and induce periosteal bone formation in vivo. Calcified Tissue International, 83(4), 285–292.PubMedGoogle Scholar
  70. 70.
    Tan, N. S., Michalik, L., Noy, N., Yasmin, R., Pacot, C., Heim, M., et al. (2001). Critical roles of PPARβ/δ in keratinocyte response to inflammation. Genes and Development, 15(24), 3263–3277.PubMedGoogle Scholar
  71. 71.
    Varnat, F., Heggeler, B. B., Grisel, P., Boucard, N., Corthesy-Theulaz, I., Wahli, W., et al. (2006). PPARβ/δ regulates paneth cell differentiation via controlling the hedgehog signaling pathway. Gastroenterology, 131(2), 538–553.PubMedGoogle Scholar
  72. 72.
    Westergaard, M., Henningsen, J., Svendsen, M. L., Johansen, C., Jensen, U. B., Schroder, H. D., et al. (2001). Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid. Journal of Investigative Dermatology, 116(5), 702–712.PubMedGoogle Scholar
  73. 73.
    Yang, L., Olsson, B., Pfeifer, D., Jonsson, J. I., Zhou, Z. G., Jiang, X., et al. (2010). Knockdown of peroxisome proliferator-activated receptor-β induces less differentiation and enhances cell-fibronectin adhesion of colon cancer cells. Oncogene, 29(4), 516–526.PubMedGoogle Scholar
  74. 74.
    He, T. C., Chan, T. A., Vogelstein, B., & Kinzler, K. W. (1999). PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 99(3), 335–345.PubMedGoogle Scholar
  75. 75.
    Peters, J. M., & Gonzalez, F. J. (2009). Sorting out the functional role(s) of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in cell proliferation and cancer. Biochimica et Biophysica Acta, 1796(2), 230–241.PubMedGoogle Scholar
  76. 76.
    Peters, J. M., Hollingshead, H. E., & Gonzalez, F. J. (2008). Role of peroxisome-proliferator-activated receptor β/δ (PPARβ/δ) in gastrointestinal tract function and disease. Clinical Science (London), 115(4), 107–127.Google Scholar
  77. 77.
    Di-Poi, N., Tan, N. S., Michalik, L., Wahli, W., & Desvergne, B. (2002). Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway. Molecular Cell, 10, 721–733.PubMedGoogle Scholar
  78. 78.
    Burdick, A. D., Kim, D. J., Peraza, M. A., Gonzalez, F. J., & Peters, J. M. (2006). The role of peroxisome proliferator-activated receptor-β/δ in epithelial cell growth and differentiation. Cellular Signaling, 18(1), 9–20.Google Scholar
  79. 79.
    Braissant, O., Foufelle, F., Scotto, C., Dauca, M., & Wahli, W. (1996). Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology, 137(1), 354–366.PubMedGoogle Scholar
  80. 80.
    Escher, P., Braissant, O., Basu-Modak, S., Michalik, L., Wahli, W., & Desvergne, B. (2001). Rat PPARs: Quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology, 142(10), 4195–4202.PubMedGoogle Scholar
  81. 81.
    Berglund, L., Bjorling, E., Oksvold, P., Fagerberg, L., Asplund, A., Szigyarto, C. A., et al. (2008). A genecentric human protein atlas for expression profiles based on antibodies. Molecular and Cellular Proteomics, 7(10), 2019–2027.PubMedGoogle Scholar
  82. 82.
    Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C. A., Amini, B., Andersen, E., et al. (2005). A human protein atlas for normal and cancer tissues based on antibody proteomics. Molecular and Cellular Proteomics, 4(12), 1920–1932.PubMedGoogle Scholar
  83. 83.
    Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., et al. (2010). Towards a knowledge-based human protein atlas. Nature Biotechnology, 28(12), 1248–1250.PubMedGoogle Scholar
  84. 84.
    Foreman, J. E., Chang, W.-C., Palkar, P. S., Zhu, B., Borland, M. G., Williams, J. L., et al. (2011). Functional characterization of peroxisome proliferator-activated receptor-β/δ expression in colon cancer. Molecular Carcinogenesis, 50(11), 884–900.Google Scholar
  85. 85.
    Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.PubMedGoogle Scholar
  86. 86.
    Terzic, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and colon cancer. Gastroenterology, 138(6), 2101–2114. e2105.PubMedGoogle Scholar
  87. 87.
    Gupta, R. A., Wang, D., Katkuri, S., Wang, H., Dey, S. K., & DuBois, R. N. (2004). Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nature Medicine, 10(3), 245–247.PubMedGoogle Scholar
  88. 88.
    Wang, D., Wang, H., Guo, Y., Ning, W., Katkuri, S., Wahli, W., et al. (2006). Crosstalk between peroxisome proliferator-activated receptor δ and VEGF stimulates cancer progression. Proceedings of the National Academy of Science of the United States of America, 103(50), 19069–19074.Google Scholar
  89. 89.
    Zuo, X., Peng, Z., Moussalli, M. J., Morris, J. S., Broaddus, R. R., Fischer, S. M., et al. (2009). Targeted genetic disruption of peroxisome proliferator-activated receptor-δ and colonic tumorigenesis. Journal of the National Cancer Institute, 101(10), 762–767.PubMedGoogle Scholar
  90. 90.
    Park, B. H., Vogelstein, B., & Kinzler, K. W. (2001). Genetic disruption of PPARδ decreases the tumorigenicity of human colon cancer cells. Proceedings of the National Academy of Science of the United States of America, 98(5), 2598–2603.Google Scholar
  91. 91.
    Barak, Y., Liao, D., He, W., Ong, E. S., Nelson, M. C., Olefsky, J. M., et al. (2002). Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proceedings of the National Academy of Science of the United States of America, 99, 303–308.Google Scholar
  92. 92.
    Harman, F. S., Nicol, C. J., Marin, H. E., Ward, J. M., Gonzalez, F. J., & Peters, J. M. (2004). Peroxisome proliferator-activated receptor-δ attenuates colon carcinogenesis. Nature Medicine, 10(5), 481–483.PubMedGoogle Scholar
  93. 93.
    Hollingshead, H. E., Killins, R. L., Borland, M. G., Girroir, E. E., Billin, A. N., Willson, T. M., et al. (2007). Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis, 28(12), 2641–2649.PubMedGoogle Scholar
  94. 94.
    Stephen, R. L., Gustafsson, M. C., Jarvis, M., Tatoud, R., Marshall, B. R., Knight, D., et al. (2004). Activation of peroxisome proliferator-activated receptor δ stimulates the proliferation of human breast and prostate cancer cell lines. Cancer Research, 64(9), 3162–3170.PubMedGoogle Scholar
  95. 95.
    Yang, L., Zhou, Z. G., Zheng, X. L., Wang, L., Yu, Y. Y., Zhou, B., et al. (2008). RNA interference against peroxisome proliferator-activated receptor δ gene promotes proliferation of human colorectal cancer cells. Diseases of the Colon and Rectum, 51(3), 318–328.PubMedGoogle Scholar
  96. 96.
    Takayama, O., Yamamoto, H., Damdinsuren, B., Sugita, Y., Ngan, C. Y., Xu, X., et al. (2006). Expression of PPARδ in multistage carcinogenesis of the colorectum: Implications of malignant cancer morphology. British Journal of Cancer, 95(7), 889–895.PubMedGoogle Scholar
  97. 97.
    Yoshinaga, M., Taki, K., Somada, S., Sakiyama, Y., Kubo, N., Kaku, T., et al. (2010). The expression of both peroxisome proliferator-activated receptor δ and cyclooxygenase-2 in tissues is associated with poor prognosis in colorectal cancer patients. Digestive Diseases and Sciences, 56, 1194–1200.PubMedGoogle Scholar
  98. 98.
    Ouyang, N., Williams, J. L., & Rigas, B. (2006). NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR)δ expression in APC(min/+) mice proportionally to their tumor inhibitory effect: Implications for the role of PPARδ in carcinogenesis. Carcinogenesis, 27(2), 232–239.PubMedGoogle Scholar
  99. 99.
    Yang, L., Zhang, H., Zhou, Z. G., Yan, H., Adell, G., & Sun, X. F. (2011). Biological function and prognostic significance of peroxisome proliferator-activated receptor δ in rectal cancer. Clinical Cancer Research, 17(11), 3760–3770.Google Scholar
  100. 100.
    Gimble, J. M., et al. (1998). Expression of peroxisome proliferator activated receptor mRNA in normal and tumorigenic rodent mammary glands. Biochemical and Biophysical Research Communications., 253(3), 813–817.PubMedGoogle Scholar
  101. 101.
    Foreman, J. E., Sharma, A. K., Amin, S., Gonzalez, F. J., & Peters, J. M. (2010). Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits cell growth in a mouse mammary gland cancer cell line. Cancer Letters, 288, 219–225.PubMedGoogle Scholar
  102. 102.
    Guilbaud, N. F., Gas, N., Dupont, M. A., & Valette, A. (1990). Effects of differentiation-inducing agents on maturation of human MCF-7 breast cancer cells. Journal of Cellular Physiology, 145(1), 162–172.PubMedGoogle Scholar
  103. 103.
    Girroir, E. E., Hollingshead, H. E., Billin, A. N., Willson, T. M., Robertson, G. P., Sharma, A. K., et al. (2008). Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology, 243(1–2), 236–243.PubMedGoogle Scholar
  104. 104.
    Palkar, P. S., Borland, M. G., Naruhn, S., Ferry, C. H., Lee, C., Sk, U. H., et al. (2010). Cellular and pharmacological selectivity of the PPARβ/δ antagonist GSK3787. Molecular Pharmacology, 78(3), 419–430.PubMedGoogle Scholar
  105. 105.
    Conway, J. G., Tomaszewski, K. E., Olson, M. J., Cattley, R. C., Marsman, D. S., & Popp, J. A. (1989). Relationship of oxidative damage to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and Wy-14,643. Carcinogenesis, 10(3), 513–519.PubMedGoogle Scholar
  106. 106.
    Ghosh, M., Ai, Y., Narko, K., Wang, Z., Peters, J. M., & Hla, T. (2009). PPARδ is pro-tumorigenic in a mouse model of COX-2-induced mammary cancer. Prostaglandins and Other Lipid Mediators, 88(3–4), 97–100.PubMedGoogle Scholar
  107. 107.
    Yin, Y., Russell, R. G., Dettin, L. E., Bai, R., Wei, Z. L., Kozikowski, A. P., et al. (2005). Peroxisome proliferator-activated receptor δ and γ agonists differentially alter tumor differentiation and progression during mammary carcinogenesis. Cancer Research, 65(9), 3950–3957.PubMedGoogle Scholar
  108. 108.
    Pollock, C. B., Yin, Y., Yuan, H., Zeng, X., King, S., Li, X., et al. (2011). PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis. PLoS One, 6(1), e16215.PubMedGoogle Scholar
  109. 109.
    Shearer, B. G., & Hoekstra, W. J. (2003). Recent advances in peroxisome proliferator-activated receptor science. Current Medicinal Chemistry, 10(4), 267–280.PubMedGoogle Scholar
  110. 110.
    Narkar, V. A., Downes, M., Yu, R. T., Embler, E., Wang, Y. X., Banayo, E., et al. (2008). AMPK and PPARδ agonists are exercise mimetics. Cell, 134(3), 405–415.PubMedGoogle Scholar
  111. 111.
    Tachibana, K., Kobayashi, Y., Tanaka, T., Tagami, M., Sugiyama, A., Katayama, T., et al. (2005). Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nuclear Receptor, 3, 3.PubMedGoogle Scholar
  112. 112.
    Szeles, L., Poliska, S., Nagy, G., Szatmari, I., Szanto, A., Pap, A., et al. (2010) Research resource: Transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Molecular Endocrinology, 24(11),2218-2231.Google Scholar
  113. 113.
    Schug, T. T., Berry, D. C., Shaw, N. S., Travis, S. N., & Noy, N. (2007). Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell, 129(4), 723–733.PubMedGoogle Scholar
  114. 114.
    Schug, T. T., Berry, D. C., Toshkov, I. A., Cheng, L., Nikitin, A. Y., & Noy, N. (2008). Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPARβ/δ to RAR. Proceedings of the National Academy of Science of the United States of America, 105(21), 7546–7551.Google Scholar
  115. 115.
    Kannan-Thulasiraman, P., Seachrist, D. D., Mahabeleshwar, G. H., Jain, M. K., & Noy, N. (2010). Fatty acid-binding protein 5 and PPARβ/δ are critical mediators of epidermal growth factor receptor-induced carcinoma cell growth. Journal of Biological Chemistry, 285(25), 19106–19115.PubMedGoogle Scholar
  116. 116.
    Bissahoyo, A., Pearsall, R. S., Hanlon, K., Amann, V., Hicks, D., Godfrey, V. L., et al. (2005). Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: Effects of dose, route, and diet. Toxicological Sciences, 88(2), 340–345.PubMedGoogle Scholar
  117. 117.
    Dietrich, W. F., Lander, E. S., Smith, J. S., Moser, A. R., Gould, K. A., Luongo, C., et al. (1993). Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell, 75(4), 631–639.PubMedGoogle Scholar
  118. 118.
    Moser, A. R., Dove, W. F., Roth, K. A., & Gordon, J. I. (1992). The Min (multiple intestinal neoplasia) mutation: Its effect on gut epithelial cell differentiation and interaction with a modifier system. Journal of Cell Biology, 116(6), 1517–1526.PubMedGoogle Scholar
  119. 119.
    Rieck, M., Meissner, W., Ries, S., Muller-Brusselbach, S., & Muller, R. (2008). Ligand-mediated regulation of peroxisome proliferator-activated receptor (PPAR) β/δ: A comparative analysis of PPAR-selective agonists and all-trans retinoic acid. Molecular Pharmacology, 74(5), 1269–1277.PubMedGoogle Scholar
  120. 120.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.PubMedGoogle Scholar
  121. 121.
    Pedchenko, T. V., Gonzalez, A. L., Wang, D., DuBois, R. N., & Massion, P. P. (2008). Peroxisome proliferator-activated receptor β/δ expression and activation in lung cancer. American Journal of Respiratory Cell and Molecular Biology, 39(6), 689–696.PubMedGoogle Scholar
  122. 122.
    Foreman, J. E., Sorg, J. M., McGinnis, K. S., Rigas, B., Williams, J. L., Clapper, M. L., et al. (2009). Regulation of peroxisome proliferator-activated receptor-β/δ by the APC/β-CATENIN pathway and nonsteroidal antiinflammatory drugs. Molecular Carcinogenesis, 48(10), 942–952.PubMedGoogle Scholar
  123. 123.
    Fukumoto, K., Yano, Y., Virgona, N., Hagiwara, H., Sato, H., Senba, H., et al. (2005). Peroxisome proliferator-activated receptor δ as a molecular target to regulate lung cancer cell growth. FEBS Letters, 579(17), 3829–3836.PubMedGoogle Scholar
  124. 124.
    Ali, F. Y., Egan, K., Fitzgerald, G. A., Desvergne, B., Wahli, W., Bishop-Bailey, D., et al. (2005). Role of prostacyclin receptor versus PPARβ with treprostinil sodium on lung fibroblast proliferation. American Journal of Respiratory Cell and Molecular Biology, 34(2), 242–246.PubMedGoogle Scholar
  125. 125.
    Han, S., Ritzenthaler, J. D., Wingerd, B., & Roman, J. (2005). Activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) increases the expression of prostaglandin E2 receptor subtype EP4. The roles of phosphatidylinositol 3-kinase and CCAAT/enhancer-binding protein β. Journal of Biological Chemistry, 280(39), 33240–33249. [RETRACTED (2011). Journal of Biological Chemistry, 286 (28) 25416].Google Scholar
  126. 126.
    Han, S., Ritzenthaler, J. D., Zheng, Y., & Roman, J. (2008). PPARβ/δ agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: The involvement of PI3K and NF-κB signals. American Journal Physiology-Lung Cellular and Molecular Physiology, 294(6), L1238–L1249.Google Scholar
  127. 127.
    Han, S., Ritzenthaler, J. D., Sun, X., Zheng, Y., & Roman, J. (2009). Activation of peroxisome proliferator-activated receptor β/δ induces lung cancer growth via peroxisome proliferator-activated receptor coactivator γ-1alpha. American Journal of Respiratory Cell and Molecular Biology, 40(3), 325–331.PubMedGoogle Scholar
  128. 128.
    Sun, X., Ritzenthaler, J. D., Zhong, X., Zheng, Y., Roman, J., & Han, S. (2009). Nicotine stimulates PPARβ/δ expression in human lung carcinoma cells through activation of PI3K/mTOR and suppression of AP-2α. Cancer Research, 69(16), 6445–6453.PubMedGoogle Scholar
  129. 129.
    He, P., Borland, M. G., Zhu, B., Sharma, A. K., Amin, S., El-Bayoumy, K., et al. (2008). Effect of ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in human lung cancer cell lines. Toxicology, 254, 112–117.PubMedGoogle Scholar
  130. 130.
    Forman, B. M., Chen, J., & Evans, R. M. (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proceedings of the National Academy of Science of the United States of America, 94(9), 4312–4317.Google Scholar
  131. 131.
    Keith, R. L., Miller, Y. E., Hoshikawa, Y., Moore, M. D., Gesell, T. L., Gao, B., et al. (2002). Manipulation of pulmonary prostacyclin synthase expression prevents murine lung cancer. Cancer Research, 62(3), 734–740.PubMedGoogle Scholar
  132. 132.
    Keith, R. L., Miller, Y. E., Hudish, T. M., Girod, C. E., Sotto-Santiago, S., Franklin, W. A., et al. (2004). Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Research, 64(16), 5897–5904.PubMedGoogle Scholar
  133. 133.
    Nemenoff, R., Meyer, A. M., Hudish, T. M., Mozer, A. B., Snee, A., Narumiya, S., et al. (2008). Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator-activated receptor γ. Cancer Prevention Research (Philadelphia), 1(5), 349–356.Google Scholar
  134. 134.
    Fauti, T., Müller-Brüsselbach, S., Kreutzer, M., Rieck, M., Meissner, W., Rapp, U., et al. (2005). Induction of PPARβ and prostacyclin (PGI2) synthesis by Raf signaling: Failure of PGI2 to activate PPARβ. FEBS Journal, 273(1), 170–179.Google Scholar
  135. 135.
    Muller-Brusselbach, S., Ebrahimsade, S., Jakel, J., Eckhardt, J., Rapp, U. R., Peters, J. M., et al. (2007). Growth of transgenic RAF-induced lung adenomas is increased in mice with a disrupted PPARβ/δ gene. International Journal of Oncology, 31(3), 607–611.PubMedGoogle Scholar
  136. 136.
    Engels, E. A., Wu, X., Gu, J., Dong, Q., Liu, J., & Spitz, M. R. (2007). Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Research, 67(13), 6520–6527.PubMedGoogle Scholar
  137. 137.
    Kilgore, K. S., & Billin, A. N. (2008). PPARβ/δ ligands as modulators of the inflammatory response. Current Opinion in Investigational Drugs, 9(5), 463–469.PubMedGoogle Scholar
  138. 138.
    Tauler, J., & Mulshine, J. L. (2009). Lung cancer and inflammation: Interaction of chemokines and hnRNPs. Current Opinion in Pharmacology, 9(4), 384–388.PubMedGoogle Scholar
  139. 139.
    Kramer, D. K., Al-Khalili, L., Guigas, B., Leng, Y., Garcia-Roves, P. M., & Krook, A. (2007). Role of AMP kinase and PPARδ in the regulation of lipid and glucose metabolism in human skeletal muscle. Journal of Biological Chemistry, 282(27), 19313–19320.PubMedGoogle Scholar
  140. 140.
    Kramer, D. K., Al-Khalili, L., Perrini, S., Skogsberg, J., Wretenberg, P., Kannisto, K., et al. (2005). Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor δ. Diabetes, 54(4), 1157–1163.PubMedGoogle Scholar
  141. 141.
    Kefas, B. A., Cai, Y., Ling, Z., Heimberg, H., Hue, L., Pipeleers, D., et al. (2003). AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. Journal of Molecular Endocrinology, 30(2), 151–161.PubMedGoogle Scholar
  142. 142.
    Meisse, D., Van de Casteele, M., Beauloye, C., Hainault, I., Kefas, B. A., Rider, M. H., et al. (2002). Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Letters, 526(1–3), 38–42.PubMedGoogle Scholar
  143. 143.
    Rattan, R., Giri, S., Singh, A. K., & Singh, I. (2005). 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. Journal of Biological Chemistry, 280(47), 39582–39593.PubMedGoogle Scholar
  144. 144.
    Xiang, X., Saha, A. K., Wen, R., Ruderman, N. B., & Luo, Z. (2004). AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochemical and Biophysical Research Communications, 321(1), 161–167.PubMedGoogle Scholar
  145. 145.
    Li, J., Jiang, P., Robinson, M., Lawrence, T. S., & Sun, Y. (2003). AMPK-β1 subunit is a p53-independent stress responsive protein that inhibits tumor cell growth upon forced expression. Carcinogenesis, 24(5), 827–834.PubMedGoogle Scholar
  146. 146.
    Bility, M. T., Devlin-Durante, M. K., Blazanin, N., Glick, A. B., Ward, J. M., Kang, B. H., et al. (2008). Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits chemically-induced skin tumorigenesis. Carcinogenesis, 29(12), 2406–2414.PubMedGoogle Scholar
  147. 147.
    Bility, M. T., Zhu, B., Kang, B. H., Gonzalez, F. J., & Peters, J. M. (2010). Ligand activation of peroxisome proliferator-activated receptor-β/δ and inhibition of cyclooxygenase-2 enhances inhibition of skin tumorigenesis. Toxicological Sciences, 113(1), 27–36.PubMedGoogle Scholar
  148. 148.
    Kim, D. J., Akiyama, T. E., Harman, F. S., Burns, A. M., Shan, W., Ward, J. M., et al. (2004). Peroxisome proliferator-activated receptor β (δ)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. Journal of Biological Chemistry, 279(22), 23719–23727.PubMedGoogle Scholar
  149. 149.
    Kim, D. J., Murray, I. A., Burns, A. M., Gonzalez, F. J., Perdew, G. H., & Peters, J. M. (2005). Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits epidermal cell proliferation by down-regulation of kinase activity. Journal of Biological Chemistry, 280(10), 9519–9527.PubMedGoogle Scholar
  150. 150.
    Kim, D. J., Prabhu, K. S., Gonzalez, F. J., & Peters, J. M. (2006). Inhibition of chemically-induced skin carcinogenicity by sulindac is independent of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Carcinogenesis, 27(5), 1105–1112.PubMedGoogle Scholar
  151. 151.
    Peters, J. M., Lee, S. S. T., Li, W., Ward, J. M., Gavrilova, O., Everett, C., et al. (2000). Growth, adipose, brain and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β/δ. Molecular and Cellular Biology, 20, 5119–5128.PubMedGoogle Scholar
  152. 152.
    Zhu, B., Bai, R., Kennett, M. J., Kang, B. H., Gonzalez, F. J., & Peters, J. M. (2011). Chemoprevention of chemically induced skin tumorigenesis by ligand activation of peroxisome proliferator-activated receptor-β/δ and inhibition of cyclooxygenase 2. Molecular Cancer Therapeutics, 9(12), 3267–3277.Google Scholar
  153. 153.
    Pais, R., Silaghi, H., Silaghi, A. C., Rusu, M. L., & Dumitrascu, D. L. (2009). Metabolic syndrome and risk of subsequent colorectal cancer. World Journal of Gastroenterology, 15(41), 5141–5148.PubMedGoogle Scholar
  154. 154.
    Prizment, A. E., Flood, A., Anderson, K. E., & Folsom, A. R. (2010). Survival of women with colon cancer in relation to precancer anthropometric characteristics: The Iowa Women's Health Study. Cancer Epidemiology, Biomarkers and Prevention, 19(9), 2229–2237.PubMedGoogle Scholar
  155. 155.
    Tsugane, S., & Inoue, M. (2010). Insulin resistance and cancer: Epidemiological evidence. Cancer Science, 101(5), 1073–1079.PubMedGoogle Scholar
  156. 156.
    Wolin, K. Y., Carson, K., & Colditz, G. A. (2011). Obesity and cancer. Oncologist, 15(6), 556–565.Google Scholar
  157. 157.
    Vosper, H., Khoudoli, G. A., & Palmer, C. N. (2003). The peroxisome proliferator activated receptor delta is required for the differentiation of THP-1 monocytic cells by phorbol ester. Nuclear Receptor, 1(1), 9.PubMedGoogle Scholar
  158. 158.
    Werling, U., Siehler, S., Litfin, M., Nau, H., & Gottlicher, M. (2001). Induction of differentiation in F9 cells and activation of peroxisome proliferator-activated receptor delta by valproic acid and its teratogenic derivatives. Molecular Pharmacology, 59(5), 1269–1276.PubMedGoogle Scholar
  159. 159.
    Liou, J. Y., Ghelani, D., Yeh, S., & Wu, K. K. (2007). Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3ε. Cancer Research, 67(7), 3185–3191.PubMedGoogle Scholar
  160. 160.
    Wu, K. K., & Liou, J. Y. (2009). Cyclooxygenase inhibitors induce colon cancer cell apoptosis via PPARδ– > 14–3–3ε pathway. Methods in Molecular Biology, 512, 295–307.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jeffrey M. Peters
    • 1
  • Jennifer E. Foreman
    • 1
  • Frank J. Gonzalez
    • 2
  1. 1.Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and CarcinogenesisThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Laboratory of MetabolismNational Cancer InstituteBethesdaUSA

Personalised recommendations