Advertisement

Cancer and Metastasis Reviews

, Volume 30, Issue 3–4, pp 577–597 | Cite as

Extracellular and intracellular sphingosine-1-phosphate in cancer

  • Jessie W. Yester
  • Etsegenet Tizazu
  • Kuzhuvelil B. Harikumar
  • Tomasz Kordula
Article

Abstract

Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.

Keywords

Cancer Sphingosine-1-phosphate Sphingosine kinases 

Notes

Acknowledgments

We apologize to the many scientists whose work could not be cited due to space limitations. This work was supported by the R21NS063283 grant from the National Institutes of Health and the 2009 FPP-02 VCU’s Massey Cancer Pilot Project (both to T.K.). We also would like to thank our colleagues Nadia Lamour, Sheldon Milstien, and Sarah Spiegel for critically reading this review.

References

  1. 1.
    Ponnusamy, S., Meyers-Needham, M., Senkal, C. E., Saddoughi, S. A., Sentelle, D., Selvam, S. P., et al. (2010). Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncology, 6, 1603–1624.PubMedGoogle Scholar
  2. 2.
    Morales, A., & Fernandez-Checa, J. C. (2007). Pharmacological modulation of sphingolipids and role in disease and cancer cell biology. Mini Reviews in Medicinal Chemistry, 7, 371–382.PubMedGoogle Scholar
  3. 3.
    Park, J. H., & Schuchman, E. H. (2006). Acid ceramidase and human disease. Biochimica et Biophysica Acta, 1758, 2133–2138.PubMedGoogle Scholar
  4. 4.
    Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., et al. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800–803.PubMedGoogle Scholar
  5. 5.
    Zhang, H., Desai, N. N., Olivera, A., Seki, T., Brooker, G., & Spiegel, S. (1991). Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. The Journal of Cell Biology, 114, 155–167.PubMedGoogle Scholar
  6. 6.
    Olivera, A., & Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365, 557–560.PubMedGoogle Scholar
  7. 7.
    Mitra, P., Oskeritzian, C. A., Payne, S. G., Beaven, M. A., Milstien, S., & Spiegel, S. (2006). Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 16394–16399.PubMedGoogle Scholar
  8. 8.
    Boujaoude, L. C., Bradshaw-Wilder, C., Mao, C., Cohn, J., Ogretmen, B., Hannun, Y. A., et al. (2001). Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. Journal of Biological Chemistry, 276, 35258–35264.PubMedGoogle Scholar
  9. 9.
    Osborne, N., Brand-Arzamendi, K., Ober, E. A., Jin, S. W., Verkade, H., Holtzman, N. G., et al. (2008). The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Current Biology, 18, 1882–1888.PubMedGoogle Scholar
  10. 10.
    Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A., & Mochizuki, N. (2009). The sphingolipid transporter Spns2 functions in migration of zebrafish myocardial precursors. Science, 323, 524–527.PubMedGoogle Scholar
  11. 11.
    Hisano, Y., Kobayashi, N., Kawahara, A., Yamaguchi, A., & Nishi, T. (2011). The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. Journal of Biological Chemistry, 286, 1758–1766.PubMedGoogle Scholar
  12. 12.
    Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., et al. (2009). Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science, 325, 1254–1257.PubMedGoogle Scholar
  13. 13.
    Alvarez, S. E., Harikumar, K. B., Hait, N. C., Allegood, J., Strub, G. M., Kim, E. Y., et al. (2010). Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 465, 1084–1088.PubMedGoogle Scholar
  14. 14.
    Strub, G. M., Paillard, M., Liang, J., Gomez, L., Allegood, J. C., Hait, N. C., et al. (2010). Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. The FASEB Journal, 25, 600–612.PubMedGoogle Scholar
  15. 15.
    Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. Journal of Neuroscience, 31, 6850–6857.PubMedGoogle Scholar
  16. 16.
    Le Stunff, H., Peterson, C., Thornton, R., Milstien, S., Mandala, S. M., & Spiegel, S. (2002). Characterization of murine sphingosine-1-phosphate phosphohydrolase. Journal of Biological Chemistry, 277, 8920–8927.PubMedGoogle Scholar
  17. 17.
    Van Veldhoven, P. P. (2000). Sphingosine-1-phosphate lyase. Methods in Enzymology, 311, 244–254.PubMedGoogle Scholar
  18. 18.
    Spiegel, S., & Milstien, S. (2002). Sphingosine 1-phosphate, a key cell signaling molecule. Journal of Biological Chemistry, 277, 25851–25854.PubMedGoogle Scholar
  19. 19.
    Birbes, H., El Bawab, S., Obeid, L. M., & Hannun, Y. A. (2002). Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Advances in Enzyme Regulation, 42, 113–129.PubMedGoogle Scholar
  20. 20.
    Tilly, J. L., & Kolesnick, R. N. (2002). Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochimica et Biophysica Acta, 1585, 135–138.PubMedGoogle Scholar
  21. 21.
    Olivera, A., Kohama, T., Tu, Z., Milstien, S., & Spiegel, S. (1998). Purification and characterization of rat kidney sphingosine kinase. Journal of Biological Chemistry, 273, 12576–12583.PubMedGoogle Scholar
  22. 22.
    Liu, H., Sugiura, M., Nava, V. E., Edsall, L. C., Kono, K., Poulton, S., et al. (2000). Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. Journal of Biological Chemistry, 275, 19513–19520.PubMedGoogle Scholar
  23. 23.
    Allende, M. L., Sasaki, T., Kawai, H., Olivera, A., Mi, Y., van Echten-Deckert, G., et al. (2004). Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. Journal of Biological Chemistry, 279, 52487–52492.PubMedGoogle Scholar
  24. 24.
    Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., & Proia, R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Molecular and Cellular Biology, 25, 11113–11121.PubMedGoogle Scholar
  25. 25.
    Sarkar, S., Maceyka, M., Hait, N. C., Paugh, S. W., Sankala, H., Milstien, S., et al. (2005). Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Letters, 579, 5313–5317.PubMedGoogle Scholar
  26. 26.
    Hobson, J. P., Rosenfeldt, H. M., Barak, L. S., Olivera, A., Poulton, S., Caron, M. G., et al. (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science, 291, 1800–1803.PubMedGoogle Scholar
  27. 27.
    Shu, X., Wu, W., Mosteller, R. D., & Broek, D. (2002). Sphingosine kinase mediates vascular endothelial growth factor-induced activation of Ras and mitogen-activated protein kinases. Molecular and Cellular Biology, 22, 7758–7768.PubMedGoogle Scholar
  28. 28.
    Xia, P., Wang, L., Moretti, P. A., Albanese, N., Chai, F., Pitson, S. M., et al. (2002). Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. Journal of Biological Chemistry, 277, 7996–8003.PubMedGoogle Scholar
  29. 29.
    Pettus, B. J., Bielawski, J., Porcelli, A. M., Reames, D. L., Johnson, K. R., Morrow, J., et al. (2003). The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. The FASEB Journal, 17, 1411–1421.PubMedGoogle Scholar
  30. 30.
    Jolly, P. S., Bektas, M., Olivera, A., Gonzalez-Espinosa, C., Proia, R. L., Rivera, J., et al. (2004). Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. The Journal of Experimental Medicine, 199, 959–970.PubMedGoogle Scholar
  31. 31.
    Taha, T. A., Hannun, Y. A., & Obeid, L. M. (2006). Sphingosine kinase: biochemical and cellular regulation and role in disease. Journal of Biochemistry and Molecular Biology, 39, 113–131.PubMedGoogle Scholar
  32. 32.
    Alvarez, S. E., Milstien, S., & Spiegel, S. (2007). Autocrine and paracrine roles of sphingosine-1-phosphate. Trends in Endocrinology and Metabolism, 18, 300–307.PubMedGoogle Scholar
  33. 33.
    Pitson, S. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A., et al. (2003). Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO Journal, 22, 5491–5500.PubMedGoogle Scholar
  34. 34.
    Stahelin, R. V., Hwang, J. H., Kim, J. H., Park, Z. Y., Johnson, K. R., Obeid, L. M., et al. (2005). The mechanism of membrane targeting of human sphingosine kinase 1. Journal of Biological Chemistry, 280, 43030–43038.PubMedGoogle Scholar
  35. 35.
    Spiegel, S., & Milstien, S. (2003). Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Reviews Molecular Cell Biology, 4, 397–407.PubMedGoogle Scholar
  36. 36.
    Jarman, K. E., Moretti, P. A., Zebol, J. R., & Pitson, S. M. (2010). Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. Journal of Biological Chemistry, 285, 483–492.PubMedGoogle Scholar
  37. 37.
    Bryan, L., Kordula, T., Spiegel, S., & Milstien, S. (2008). Regulation and functions of sphingosine kinases in the brain. Biochimica et Biophysica Acta, 1781, 459–466.PubMedGoogle Scholar
  38. 38.
    Sobue, S., Hagiwara, K., Banno, Y., Tamiya-Koizumi, K., Suzuki, M., Takagi, A., et al. (2005). Transcription factor specificity protein 1 (Sp1) is the main regulator of nerve growth factor-induced sphingosine kinase 1 gene expression of the rat pheochromocytoma cell line, PC12. Journal of Neurochemistry, 95, 940–949.PubMedGoogle Scholar
  39. 39.
    Paugh, B. S., Bryan, L., Paugh, S. W., Wilczynska, K. M., Alvarez, S. M., Singh, S. K., et al. (2009). Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. Journal of Biological Chemistry, 284, 3408–3417.PubMedGoogle Scholar
  40. 40.
    Nakade, Y., Banno, Y., Tamiya-Koizumi, K., Hagiwara, K., Sobue, S., Koda, M., et al. (2003). Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochimica et Biophysica Acta, 1635, 104–116.PubMedGoogle Scholar
  41. 41.
    Anelli, V., Gault, C. R., Cheng, A. B., & Obeid, L. M. (2008). Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. Journal of Biological Chemistry, 283, 3365–3375.PubMedGoogle Scholar
  42. 42.
    Doll, F., Pfeilschifter, J., & Huwiler, A. (2007). Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocrine-Related Cancer, 14, 325–335.PubMedGoogle Scholar
  43. 43.
    Ancellin, N., Colmont, C., Su, J., Li, Q., Mittereder, N., Chae, S. S., et al. (2002). Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. Journal of Biological Chemistry, 277, 6667–6675.PubMedGoogle Scholar
  44. 44.
    Venkataraman, K., Thangada, S., Michaud, J., Oo, M. L., Ai, Y., Lee, Y. M., et al. (2006). Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochemical Journal, 397, 461–471.PubMedGoogle Scholar
  45. 45.
    Kawamori, T., Osta, W., Johnson, K. R., Pettus, B. J., Bielawski, J., Tanaka, T., et al. (2006). Sphingosine kinase 1 is up-regulated in colon carcinogenesis. The FASEB Journal, 20, 386–388.PubMedGoogle Scholar
  46. 46.
    Kawamori, T., Kaneshiro, T., Okumura, M., Maalouf, S., Uflacker, A., Bielawski, J., et al. (2009). Role for sphingosine kinase 1 in colon carcinogenesis. The FASEB Journal, 23, 405–414.PubMedGoogle Scholar
  47. 47.
    Malavaud, B., Pchejetski, D., Mazerolles, C., de Paiva, G. R., Calvet, C., Doumerc, N., et al. (2010). Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. European Journal of Cancer, 46, 3417–3424.PubMedGoogle Scholar
  48. 48.
    Song, L., Xiong, H., Li, J., Liao, W., Wang, L., Wu, J., et al. (2011). Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clinical Cancer Research, 17, 1839–1849.PubMedGoogle Scholar
  49. 49.
    Marfe, G., Di Stefano, C., Gambacurta, A., Ottone, T., Martini, V., Abruzzese, E., et al. (2011). Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Experimental Hematology, 39, 653–665.e6.PubMedGoogle Scholar
  50. 50.
    Li, J., Guan, H. Y., Gong, L. Y., Song, L. B., Zhang, N., Wu, J., et al. (2008). Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clinical Cancer Research, 14, 6996–7003.PubMedGoogle Scholar
  51. 51.
    Van Brocklyn, J. R., Jackson, C. A., Pearl, D. K., Kotur, M. S., Snyder, P. J., & Prior, T. W. (2005). Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. Journal of Neuropathology and Experimental Neurology, 64, 695–705.PubMedGoogle Scholar
  52. 52.
    Nava, V. E., Hobson, J. P., Murthy, S., Milstien, S., & Spiegel, S. (2002). Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Experimental Cell Research, 281, 115–127.PubMedGoogle Scholar
  53. 53.
    Osborne, C. K., Hamilton, B., Titus, G., & Livingston, R. B. (1980). Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Research, 40, 2361–2366.PubMedGoogle Scholar
  54. 54.
    Li, Q. F., Huang, W. R., Duan, H. F., Wang, H., Wu, C. T., & Wang, L. S. (2007). Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene, 26, 7904–7908.PubMedGoogle Scholar
  55. 55.
    Salas, A., Ponnusamy, S., Senkal, C. E., Meyers-Needham, M., Selvam, S. P., Saddoughi, S. A., et al. (2011). Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood, 117, 5941–5952.PubMedGoogle Scholar
  56. 56.
    Liu, H., Toman, R. E., Goparaju, S. K., Maceyka, M., Nava, V. E., Sankala, H., et al. (2003). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. Journal of Biological Chemistry, 278, 40330–40336.PubMedGoogle Scholar
  57. 57.
    Sankala, H. M., Hait, N. C., Paugh, S. W., Shida, D., Lepine, S., Elmore, L. W., et al. (2007). Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Research, 67, 10466–10474.PubMedGoogle Scholar
  58. 58.
    Weigert, A., Johann, A. M., von Knethen, A., Schmidt, H., Geisslinger, G., & Brune, B. (2006). Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood, 108, 1635–1642.PubMedGoogle Scholar
  59. 59.
    Weigert, A., Cremer, S., Schmidt, M. V., von Knethen, A., Angioni, C., Geisslinger, G., et al. (2010). Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood, 115, 3531–3540.PubMedGoogle Scholar
  60. 60.
    Gude, D. R., Alvarez, S. E., Paugh, S. W., Mitra, P., Yu, J., Griffiths, R., et al. (2008). Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. The FASEB Journal, 22, 2629–2638.PubMedGoogle Scholar
  61. 61.
    Gu, Y., Forostyan, T., Sabbadini, R., & Rosenblatt, J. (2011). Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. The Journal of Cell Biology, 193, 667–676.PubMedGoogle Scholar
  62. 62.
    Hait, N. C., Bellamy, A., Milstien, S., Kordula, T., & Spiegel, S. (2007). Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. Journal of Biological Chemistry, 282, 12058–12065.PubMedGoogle Scholar
  63. 63.
    Paugh, S. W., Payne, S. G., Barbour, S. E., Milstien, S., & Spiegel, S. (2003). The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Letters, 554, 189–193.PubMedGoogle Scholar
  64. 64.
    Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., et al. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427, 355–360.PubMedGoogle Scholar
  65. 65.
    Martin, R. (2010). Multiple sclerosis: closing in on an oral treatment. Nature, 464, 360–362.PubMedGoogle Scholar
  66. 66.
    Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S., & Spiegel, S. (2002). Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. The Journal of Cell Biology, 158, 1039–1049.PubMedGoogle Scholar
  67. 67.
    Pyne, S., Lee, S. C., Long, J., & Pyne, N. J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cellular Signalling, 21, 14–21.PubMedGoogle Scholar
  68. 68.
    Sciorra, V. A., & Morris, A. J. (1999). Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Molecular Biology of the Cell, 10, 3863–3876.PubMedGoogle Scholar
  69. 69.
    Nanjundan, M., & Possmayer, F. (2001). Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms. Biochemical Journal, 358, 637–646.PubMedGoogle Scholar
  70. 70.
    Kai, M., Sakane, F., Jia, Y. J., Imai, S., Yasuda, S., & Kanoh, H. (2006). Lipid phosphate phosphatases 1 and 3 are localized in distinct lipid rafts. Journal of Biochemistry, 140, 677–686.PubMedGoogle Scholar
  71. 71.
    Jia, Y. J., Kai, M., Wada, I., Sakane, F., & Kanoh, H. (2003). Differential localization of lipid phosphate phosphatases 1 and 3 to cell surface subdomains in polarized MDCK cells. FEBS Letters, 552, 240–246.PubMedGoogle Scholar
  72. 72.
    Alderton, F., Darroch, P., Sambi, B., McKie, A., Ahmed, I. S., Pyne, N., et al. (2001). G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. Journal of Biological Chemistry, 276, 13452–13460.PubMedGoogle Scholar
  73. 73.
    Kai, M., Wada, I., Imai, S., Sakane, F., & Kanoh, H. (1997). Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. Journal of Biological Chemistry, 272, 24572–24578.PubMedGoogle Scholar
  74. 74.
    Ulrix, W., Swinnen, J. V., Heyns, W., & Verhoeven, G. (1998). Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. Journal of Biological Chemistry, 273, 4660–4665.PubMedGoogle Scholar
  75. 75.
    Mandala, S. M., Thornton, R., Galve-Roperh, I., Poulton, S., Peterson, C., Olivera, A., et al. (2000). Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proceedings of the National Academy of Sciences of the United States of America, 97, 7859–7864.PubMedGoogle Scholar
  76. 76.
    Lepine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., & Spiegel, S. (2011). Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death and Differentiation, 18, 350–361.PubMedGoogle Scholar
  77. 77.
    Ogawa, C., Kihara, A., Gokoh, M., & Igarashi, Y. (2003). Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. Journal of Biological Chemistry, 278, 1268–1272.PubMedGoogle Scholar
  78. 78.
    Mechtcheriakova, D., Wlachos, A., Sobanov, J., Kopp, T., Reuschel, R., Bornancin, F., et al. (2007). Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cellular Signalling, 19, 748–760.PubMedGoogle Scholar
  79. 79.
    Bandhuvula, P., & Saba, J. D. (2007). Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends in Molecular Medicine, 13, 210–217.PubMedGoogle Scholar
  80. 80.
    Van Veldhoven, P. P., Gijsbers, S., Mannaerts, G. P., Vermeesch, J. R., & Brys, V. (2000). Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochimica et Biophysica Acta, 1487, 128–134.PubMedGoogle Scholar
  81. 81.
    Colie, S., Van Veldhoven, P. P., Kedjouar, B., Bedia, C., Albinet, V., Sorli, S. C., et al. (2009). Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Research, 69, 9346–9353.PubMedGoogle Scholar
  82. 82.
    Allende, M. L., Bektas, M., Lee, B. G., Bonifacino, E., Kang, J., Tuymetova, G., et al. (2011). Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. Journal of Biological Chemistry, 286, 7348–7358.PubMedGoogle Scholar
  83. 83.
    Min, J., Van Veldhoven, P. P., Zhang, L., Hanigan, M. H., Alexander, H., & Alexander, S. (2005). Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Molecular Cancer Research, 3, 287–296.PubMedGoogle Scholar
  84. 84.
    Oskouian, B., Sooriyakumaran, P., Borowsky, A. D., Crans, A., Dillard-Telm, L., Tam, Y. Y., et al. (2006). Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 103, 17384–17389.PubMedGoogle Scholar
  85. 85.
    Kumar, A., Oskouian, B., Fyrst, H., Zhang, M., Paris, F., & Saba, J. D. (2011). S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism. Cell Death and Disease, 2, e119.PubMedGoogle Scholar
  86. 86.
    Min, J., Stegner, A. L., Alexander, H., & Alexander, S. (2004). Overexpression of sphingosine-1-phosphate lyase or inhibition of sphingosine kinase in Dictyostelium discoideum results in a selective increase in sensitivity to platinum-based chemotherapy drugs. Eukaryotic Cell, 3, 795–805.PubMedGoogle Scholar
  87. 87.
    Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews. Cancer, 10, 489–503.PubMedGoogle Scholar
  88. 88.
    Maceyka, M., Milstien, S., & Spiegel, S. (2009). Sphingosine-1-phosphate: the Swiss army knife of sphingolipid signaling. Journal of Lipid Research, 50(Suppl), S272–S276.PubMedGoogle Scholar
  89. 89.
    Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., et al. (1998). Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science, 279, 1552–1555.PubMedGoogle Scholar
  90. 90.
    Wang, F., Van Brocklyn, J. R., Hobson, J. P., Movafagh, S., Zukowska-Grojec, Z., Milstien, S., et al. (1999). Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. Journal of Biological Chemistry, 274, 35343–35350.PubMedGoogle Scholar
  91. 91.
    Lee, M. J., Thangada, S., Paik, J. H., Sapkota, G. P., Ancellin, N., Chae, S. S., et al. (2001). Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Molecular Cell, 8, 693–704.PubMedGoogle Scholar
  92. 92.
    Rosenfeldt, H. M., Hobson, J. P., Milstien, S., & Spiegel, S. (2001). The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility. Biochemical Society Transactions, 29, 836–839.PubMedGoogle Scholar
  93. 93.
    Graler, M. H., Grosse, R., Kusch, A., Kremmer, E., Gudermann, T., & Lipp, M. (2003). The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. Journal of Cellular Biochemistry, 89, 507–519.PubMedGoogle Scholar
  94. 94.
    Takuwa, Y., Takuwa, N., & Sugimoto, N. (2002). The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. Journal of Biochemistry, 131, 767–771.PubMedGoogle Scholar
  95. 95.
    Bryan, L., Paugh, B. S., Kapitonov, D., Wilczynska, K. M., Alvarez, S. M., Singh, S. K., et al. (2008). Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness. Molecular Cancer Research, 6, 1469–1477.PubMedGoogle Scholar
  96. 96.
    Young, N., Pearl, D. K., & Van Brocklyn, J. R. (2009). Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. Molecular Cancer Research, 7, 23–32.PubMedGoogle Scholar
  97. 97.
    LaMontagne, K., Littlewood-Evans, A., Schnell, C., O’Reilly, T., Wyder, L., Sanchez, T., et al. (2006). Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Research, 66, 221–231.PubMedGoogle Scholar
  98. 98.
    English, D., Kovala, A. T., Welch, Z., Harvey, K. A., Siddiqui, R. A., Brindley, D. N., et al. (1999). Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. Journal of Hematotherapy & Stem Cell Research, 8, 627–634.Google Scholar
  99. 99.
    Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., et al. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. The Journal of Clinical Investigation, 106, 951–961.PubMedGoogle Scholar
  100. 100.
    Schaphorst, K. L., Chiang, E., Jacobs, K. N., Zaiman, A., Natarajan, V., Wigley, F., et al. (2003). Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L258–L267.PubMedGoogle Scholar
  101. 101.
    Schwab, S. R., & Cyster, J. G. (2007). Finding a way out: lymphocyte egress from lymphoid organs. Nature Immunology, 8, 1295–1301.PubMedGoogle Scholar
  102. 102.
    Rosen, H., Gonzalez-Cabrera, P. J., Sanna, M. G., & Brown, S. (2009). Sphingosine 1-phosphate receptor signaling. Annual Review of Biochemistry, 78, 743–768.PubMedGoogle Scholar
  103. 103.
    Van Brocklyn, J. R. (2010). Regulation of cancer cell migration and invasion by sphingosine-1-phosphate. World Journal of Biological Chemistry, 1, 307–312.PubMedGoogle Scholar
  104. 104.
    Takuwa, Y., Du, W., Qi, X., Okamoto, Y., Takuwa, N., & Yoshioka, K. (2010). Roles of sphingosine-1-phosphate signaling in angiogenesis. World Journal of Biological Chemistry, 1, 298–306.PubMedGoogle Scholar
  105. 105.
    Strub, G. M., Maceyka, M., Hait, N. C., Milstien, S., & Spiegel, S. (2010). Extracellular and intracellular actions of sphingosine-1-phosphate. Advances in Experimental Medicine and Biology, 688, 141–155.PubMedGoogle Scholar
  106. 106.
    Maceyka, M., Alvarez, S. E., Milstien, S., & Spiegel, S. (2008). Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Molecular and Cellular Biology, 28, 5687–5697.PubMedGoogle Scholar
  107. 107.
    Watson, C., Long, J. S., Orange, C., Tannahill, C. L., Mallon, E., McGlynn, L. M., et al. (2010). High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. American Journal of Pathology, 177, 2205–2215.PubMedGoogle Scholar
  108. 108.
    Allende, M. L., Yamashita, T., & Proia, R. L. (2003). G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 102, 3665–3667.PubMedGoogle Scholar
  109. 109.
    Harada, J., Foley, M., Moskowitz, M. A., & Waeber, C. (2004). Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. Journal of Neurochemistry, 88, 1026–1039.PubMedGoogle Scholar
  110. 110.
    Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., et al. (2002). Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science, 296, 346–349.PubMedGoogle Scholar
  111. 111.
    Balthasar, S., Samulin, J., Ahlgren, H., Bergelin, N., Lundqvist, M., Toescu, E. C., et al. (2006). Sphingosine 1-phosphate receptor expression profile and regulation of migration in human thyroid cancer cells. Biochemical Journal, 398, 547–556.PubMedGoogle Scholar
  112. 112.
    Bergelin, N., Lof, C., Balthasar, S., Kalhori, V., & Tornquist, K. (2010). S1P1 and VEGFR-2 form a signaling complex with extracellularly regulated kinase 1/2 and protein kinase C-alpha regulating ML-1 thyroid carcinoma cell migration. Endocrinology, 151, 2994–3005.PubMedGoogle Scholar
  113. 113.
    Waeber, C., Blondeau, N., & Salomone, S. (2004). Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News & Perspectives, 17, 365–382.Google Scholar
  114. 114.
    Herr, D. R., Grillet, N., Schwander, M., Rivera, R., Muller, U., & Chun, J. (2007). Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. Journal of Neuroscience, 27, 1474–1478.PubMedGoogle Scholar
  115. 115.
    Kono, Y., Nishiuma, T., Nishimura, Y., Kotani, Y., Okada, T., Nakamura, S., et al. (2007). Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. American Journal of Respiratory Cell and Molecular Biology, 37, 395–404.PubMedGoogle Scholar
  116. 116.
    MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. European Journal of Neuroscience, 14, 203–209.PubMedGoogle Scholar
  117. 117.
    Yamashita, H., Kitayama, J., Shida, D., Yamaguchi, H., Mori, K., Osada, M., et al. (2006). Sphingosine 1-phosphate receptor expression profile in human gastric cancer cells: differential regulation on the migration and proliferation. Journal of Surgical Research, 130, 80–87.PubMedGoogle Scholar
  118. 118.
    Ancellin, N., & Hla, T. (1999). Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. Journal of Biological Chemistry, 274, 18997–19002.PubMedGoogle Scholar
  119. 119.
    Sugimoto, N., Takuwa, N., Okamoto, H., Sakurada, S., & Takuwa, Y. (2003). Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Molecular and Cellular Biology, 23, 1534–1545.PubMedGoogle Scholar
  120. 120.
    Okamoto, H., Takuwa, N., Yokomizo, T., Sugimoto, N., Sakurada, S., Shigematsu, H., et al. (2000). Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Molecular and Cellular Biology, 20, 9247–9261.PubMedGoogle Scholar
  121. 121.
    Du, W., Takuwa, N., Yoshioka, K., Okamoto, Y., Gonda, K., Sugihara, K., et al. (2010). S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Research, 70, 772–781.PubMedGoogle Scholar
  122. 122.
    Lepley, D., Paik, J. H., Hla, T., & Ferrer, F. (2005). The G protein-coupled receptor S1P2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Research, 65, 3788–3795.PubMedGoogle Scholar
  123. 123.
    Paik, J. H., Chae, S., Lee, M. J., Thangada, S., & Hla, T. (2001). Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. Journal of Biological Chemistry, 276, 11830–11837.PubMedGoogle Scholar
  124. 124.
    Ishii, I., Friedman, B., Ye, X., Kawamura, S., McGiffert, C., Contos, J. J., et al. (2001). Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. Journal of Biological Chemistry, 276, 33697–33704.PubMedGoogle Scholar
  125. 125.
    Baudhuin, L. M., Jiang, Y., Zaslavsky, A., Ishii, I., Chun, J., & Xu, Y. (2004). S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR). The FASEB Journal, 18, 341–343.PubMedGoogle Scholar
  126. 126.
    Sanna, M. G., Liao, J., Jo, E., Alfonso, C., Ahn, M. Y., Peterson, M. S., et al. (2004). Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. Journal of Biological Chemistry, 279, 13839–13848.PubMedGoogle Scholar
  127. 127.
    Forrest, M., Sun, S. Y., Hajdu, R., Bergstrom, J., Card, D., Doherty, G., et al. (2004). Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. Journal of Pharmacology and Experimental Therapeutics, 309, 758–768.PubMedGoogle Scholar
  128. 128.
    Graler, M. H., Bernhardt, G., & Lipp, M. (1998). EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics, 53, 164–169.PubMedGoogle Scholar
  129. 129.
    Van Brocklyn, J. R., Graler, M. H., Bernhardt, G., Hobson, J. P., Lipp, M., & Spiegel, S. (2000). Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood, 95, 2624–2629.PubMedGoogle Scholar
  130. 130.
    Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., et al. (2000). Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochemical and Biophysical Research Communications, 268, 583–589.PubMedGoogle Scholar
  131. 131.
    Terai, K., Soga, T., Takahashi, M., Kamohara, M., Ohno, K., Yatsugi, S., et al. (2003). Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience, 116, 1053–1062.PubMedGoogle Scholar
  132. 132.
    Kothapalli, R., Kusmartseva, I., & Loughran, T. P. (2002). Characterization of a human sphingosine-1-phosphate receptor gene (S1P5) and its differential expression in LGL leukemia. Biochimica et Biophysica Acta, 1579, 117–123.PubMedGoogle Scholar
  133. 133.
    Walzer, T., Chiossone, L., Chaix, J., Calver, A., Carozzo, C., Garrigue-Antar, L., et al. (2007). Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunology, 8, 1337–1344.PubMedGoogle Scholar
  134. 134.
    Im, D. S., Heise, C. E., Ancellin, N., O’Dowd, B. F., Shei, G. J., Heavens, R. P., et al. (2000). Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. Journal of Biological Chemistry, 275, 14281–14286.PubMedGoogle Scholar
  135. 135.
    Malek, R. L., Toman, R. E., Edsall, L. C., Wong, S., Chiu, J., Letterle, C. A., et al. (2001). Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. Journal of Biological Chemistry, 276, 5692–5699.PubMedGoogle Scholar
  136. 136.
    Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., et al. (2005). Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. Journal of Neuroscience, 25, 1459–1469.PubMedGoogle Scholar
  137. 137.
    Jenne, C. N., Enders, A., Rivera, R., Watson, S. R., Bankovich, A. J., Pereira, J. P., et al. (2009). T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. The Journal of Experimental Medicine, 206, 2469–2481.PubMedGoogle Scholar
  138. 138.
    Hu, W. M., Li, L., Jing, B. Q., Zhao, Y. S., Wang, C. L., Feng, L., et al. (2010). Effect of S1P5 on proliferation and migration of human esophageal cancer cells. World Journal of Gastroenterology, 16, 1859–1866.PubMedGoogle Scholar
  139. 139.
    Kim, R. H., Takabe, K., Milstien, S., & Spiegel, S. (2009). Export and functions of sphingosine-1-phosphate. Biochimica et Biophysica Acta, 1791, 692–696.PubMedGoogle Scholar
  140. 140.
    Sato, K., Malchinkhuu, E., Horiuchi, Y., Mogi, C., Tomura, H., Tosaka, M., et al. (2007). Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. Journal of Neurochemistry, 103, 2610–2619.PubMedGoogle Scholar
  141. 141.
    Takabe, K., Kim, R. H., Allegood, J. C., Mitra, P., Ramachandran, S., Nagahashi, M., et al. (2010). Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. Journal of Biological Chemistry, 285, 10477–10486.PubMedGoogle Scholar
  142. 142.
    Lee, Y. M., Venkataraman, K., Hwang, S. I., Han, D. K., & Hla, T. (2007). A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins & Other Lipid Mediators, 84, 154–162.Google Scholar
  143. 143.
    Birchwood, C. J., Saba, J. D., Dickson, R. C., & Cunningham, K. W. (2001). Calcium influx and signaling in yeast stimulated by intracellular sphingosine 1-phosphate accumulation. Journal of Biological Chemistry, 276, 11712–11718.PubMedGoogle Scholar
  144. 144.
    Ng, C. K., Carr, K., McAinsh, M. R., Powell, B., & Hetherington, A. M. (2001). Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 410, 596–599.PubMedGoogle Scholar
  145. 145.
    Pandey, S., & Assmann, S. M. (2004). The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. The Plant Cell, 16, 1616–1632.PubMedGoogle Scholar
  146. 146.
    Meyer zu Heringdorf, D., Liliom, K., Schaefer, M., Danneberg, K., Jaggar, J. H., Tigyi, G., et al. (2003). Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+ mobilization independently of G-protein-coupled receptors. FEBS Letters, 554, 443–449.PubMedGoogle Scholar
  147. 147.
    Ding, G., Sonoda, H., Yu, H., Kajimoto, T., Goparaju, S. K., Jahangeer, S., et al. (2007). Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. Journal of Biological Chemistry, 282, 27493–27502.PubMedGoogle Scholar
  148. 148.
    Ledeen, R. W., & Wu, G. (2008). Nuclear sphingolipids: metabolism and signaling. Journal of Lipid Research, 49, 1176–1186.PubMedGoogle Scholar
  149. 149.
    Albi, E., Lazzarini, R., & Viola Magni, M. (2008). Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochemical Journal, 410, 381–389.PubMedGoogle Scholar
  150. 150.
    Hassig, C. A., Tong, J. K., Fleischer, T. C., Owa, T., Grable, P. G., Ayer, D. E., et al. (1998). A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 95, 3519–3524.PubMedGoogle Scholar
  151. 151.
    Zeng, Y., Tang, C. M., Yao, Y. L., Yang, W. M., & Seto, E. (1998). Cloning and characterization of the mouse histone deacetylase-2 gene. Journal of Biological Chemistry, 273, 28921–28930.PubMedGoogle Scholar
  152. 152.
    Igarashi, N., Okada, T., Hayashi, S., Fujita, T., Jahangeer, S., & Nakamura, S. (2003). Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. Journal of Biological Chemistry, 278, 46832–46839.PubMedGoogle Scholar
  153. 153.
    Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer and Metastasis Reviews, 25, 409–416.PubMedGoogle Scholar
  154. 154.
    Xia, P., Gamble, J. R., Rye, K. A., Wang, L., Hii, C. S., Cockerill, P., et al. (1998). Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 95, 14196–14201.PubMedGoogle Scholar
  155. 155.
    Xia, P., Wang, L., Gamble, J. R., & Vadas, M. A. (1999). Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. Journal of Biological Chemistry, 274, 34499–34505.PubMedGoogle Scholar
  156. 156.
    Takabe, K., Paugh, S. W., Milstien, S., & Spiegel, S. (2008). “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacological Reviews, 60, 181–195.PubMedGoogle Scholar
  157. 157.
    De Palma, C., Meacci, E., Perrotta, C., Bruni, P., & Clementi, E. (2006). Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 99–105.PubMedGoogle Scholar
  158. 158.
    Scherer, E. Q., Yang, J., Canis, M., Reimann, K., Ivanov, K., Diehl, C. D., et al. (2010). Tumor necrosis factor-alpha enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke, 41, 2618–2624.PubMedGoogle Scholar
  159. 159.
    Vann, L. R., Payne, S. G., Edsall, L. C., Twitty, S., Spiegel, S., & Milstien, S. (2002). Involvement of sphingosine kinase in TNF-alpha-stimulated tetrahydrobiopterin biosynthesis in C6 glioma cells. Journal of Biological Chemistry, 277, 12649–12656.PubMedGoogle Scholar
  160. 160.
    Chen, G., & Goeddel, D. V. (2002). TNF-R1 signaling: a beautiful pathway. Science, 296, 1634–1635.PubMedGoogle Scholar
  161. 161.
    Lin, Y., Devin, A., Rodriguez, Y., & Liu, Z. G. (1999). Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes & Development, 13, 2514–2526.Google Scholar
  162. 162.
    Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cellular Signalling, 104, 487–501.Google Scholar
  163. 163.
    Lee, T. K., Man, K., Ho, J. W., Sun, C. K., Ng, K. T., Wang, X. H., et al. (2004). FTY720 induces apoptosis of human hepatoma cell lines through PI3-K-mediated Akt dephosphorylation. Carcinogenesis, 25, 2397–2405.PubMedGoogle Scholar
  164. 164.
    Napolitano, G., & Karin, M. (2010). Sphingolipids: the oil on the TRAFire that promotes inflammation. Science Signaling, 3, pe34.PubMedGoogle Scholar
  165. 165.
    Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285–296.PubMedGoogle Scholar
  166. 166.
    Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461–466.PubMedGoogle Scholar
  167. 167.
    Hoeller, D., & Dikic, I. (2009). Targeting the ubiquitin system in cancer therapy. Nature, 458, 438–444.PubMedGoogle Scholar
  168. 168.
    Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedGoogle Scholar
  169. 169.
    Haglund, K., & Dikic, I. (2005). Ubiquitylation and cell signaling. EMBO Journal, 24, 3353–3359.PubMedGoogle Scholar
  170. 170.
    Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.PubMedGoogle Scholar
  171. 171.
    Berger, K. H., & Yaffe, M. P. (1998). Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Molecular and Cellular Biology, 18, 4043–4052.PubMedGoogle Scholar
  172. 172.
    Nijtmans, L. G., de Jong, L., Artal Sanz, M., Coates, P. J., Berden, J. A., Back, J. W., et al. (2000). Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO Journal, 19, 2444–2451.PubMedGoogle Scholar
  173. 173.
    Nijtmans, L. G., Artal, S. M., Grivell, L. A., & Coates, P. J. (2002). The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cellular and Molecular Life Sciences, 59, 143–155.PubMedGoogle Scholar
  174. 174.
    Osman, C., Merkwirth, C., & Langer, T. (2009). Prohibitins and the functional compartmentalization of mitochondrial membranes. Journal of Cell Science, 122, 3823–3830.PubMedGoogle Scholar
  175. 175.
    Coates, P. J., Jamieson, D. J., Smart, K., Prescott, A. R., & Hall, P. A. (1997). The prohibitin family of mitochondrial proteins regulate replicative lifespan. Current Biology, 7, 607–610.PubMedGoogle Scholar
  176. 176.
    Kasashima, K., Ohta, E., Kagawa, Y., & Endo, H. (2006). Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. Journal of Biological Chemistry, 281, 36401–36410.PubMedGoogle Scholar
  177. 177.
    Coates, P. J., Nenutil, R., McGregor, A., Picksley, S. M., Crouch, D. H., Hall, P. A., et al. (2001). Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Experimental Cell Research, 265, 262–273.PubMedGoogle Scholar
  178. 178.
    Manjeshwar, S., Branam, D. E., Lerner, M. R., Brackett, D. J., & Jupe, E. R. (2003). Tumor suppression by the prohibitin gene 3′untranslated region RNA in human breast cancer. Cancer Research, 63, 5251–5256.PubMedGoogle Scholar
  179. 179.
    Vassar, R., Kovacs, D. M., Yan, R., & Wong, P. C. (2009). The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. Journal of Neuroscience, 29, 12787–12794.PubMedGoogle Scholar
  180. 180.
    Fleck, D., Garratt, A.N., Haass, C., and Willem, M. (2011). BACE1 dependent neuregulin proteolysis. Current Alzheimer Research, in press.Google Scholar
  181. 181.
    Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749–759.PubMedGoogle Scholar
  182. 182.
    Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell, 9, 459–470.PubMedGoogle Scholar
  183. 183.
    Ghavami, S., Hashemi, M., Ande, S. R., Yeganeh, B., Xiao, W., Eshraghi, M., et al. (2009). Apoptosis and cancer: mutations within caspase genes. Journal of Medical Genetics, 46, 497–510.PubMedGoogle Scholar
  184. 184.
    Heinrich, M., Wickel, M., Winoto-Morbach, S., Schneider-Brachert, W., Weber, T., Brunner, J., et al. (2000). Ceramide as an activator lipid of cathepsin D. Advances in Experimental Medicine and Biology, 477, 305–315.PubMedGoogle Scholar
  185. 185.
    Chalfant, C. E., Kishikawa, K., Mumby, M. C., Kamibayashi, C., Bielawska, A., & Hannun, Y. A. (1999). Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. Journal of Biological Chemistry, 274, 20313–20317.PubMedGoogle Scholar
  186. 186.
    Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., & Hannun, Y. A. (1993). Ceramide activates heterotrimeric protein phosphatase 2A. Journal of Biological Chemistry, 268, 15523–15530.PubMedGoogle Scholar
  187. 187.
    Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B. G., & Bieberich, E. (2005). Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. Journal of Biological Chemistry, 280, 26415–26424.PubMedGoogle Scholar
  188. 188.
    Fox, T. E., Houck, K. L., O’Neill, S. M., Nagarajan, M., Stover, T. C., Pomianowski, P. T., et al. (2007). Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. Journal of Biological Chemistry, 282, 12450–12457.PubMedGoogle Scholar
  189. 189.
    Cuvillier, O., Rosenthal, D. S., Smulson, M. E., & Spiegel, S. (1998). Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. Journal of Biological Chemistry, 273, 2910–2916.PubMedGoogle Scholar
  190. 190.
    Cuvillier, O., & Levade, T. (2001). Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood, 98, 2828–2836.PubMedGoogle Scholar
  191. 191.
    Li, Q. F., Wu, C. T., Guo, Q., Wang, H., & Wang, L. S. (2008). Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis. Biochemical and Biophysical Research Communications, 371, 159–162.PubMedGoogle Scholar
  192. 192.
    Sauer, B., Gonska, H., Manggau, M., Kim, D. S., Schraut, C., Schafer-Korting, M., et al. (2005). Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie, 60, 298–304.PubMedGoogle Scholar
  193. 193.
    Avery, K., Avery, S., Shepherd, J., Heath, P. R., & Moore, H. (2008). Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells and Development, 17, 1195–1205.PubMedGoogle Scholar
  194. 194.
    Betito, S., & Cuvillier, O. (2006). Regulation by sphingosine 1-phosphate of Bax and Bad activities during apoptosis in a MEK-dependent manner. Biochemical and Biophysical Research Communications, 340, 1273–1277.PubMedGoogle Scholar
  195. 195.
    Bonhoure, E., Lauret, A., Barnes, D. J., Martin, C., Malavaud, B., Kohama, T., et al. (2008). Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells. Leukemia, 22, 971–979.PubMedGoogle Scholar
  196. 196.
    Damgaard, R. B., & Gyrd-Hansen, M. (2011). Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity. Discovery Medicine, 11, 221–231.PubMedGoogle Scholar
  197. 197.
    Bonnaud, S., Niaudet, C., Pottier, G., Gaugler, M. H., Millour, J., Barbet, J., et al. (2007). Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Research, 67, 1803–1811.PubMedGoogle Scholar
  198. 198.
    Lockman, K., Hinson, J. S., Medlin, M. D., Morris, D., Taylor, J. M., & Mack, C. P. (2004). Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. Journal of Biological Chemistry, 279, 42422–42430.PubMedGoogle Scholar
  199. 199.
    Xia, P., Gamble, J. R., Wang, L., Pitson, S. M., Moretti, P. A., Wattenberg, B. W., et al. (2000). An oncogenic role of sphingosine kinase. Current Biology, 10, 1527–1530.PubMedGoogle Scholar
  200. 200.
    Arikawa, K., Takuwa, N., Yamaguchi, H., Sugimoto, N., Kitayama, J., Nagawa, H., et al. (2003). Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. Journal of Biological Chemistry, 278, 32841–32851.PubMedGoogle Scholar
  201. 201.
    Van Brocklyn, J. R., Young, N., & Roof, R. (2003). Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Letters, 199, 53–60.PubMedGoogle Scholar
  202. 202.
    Malchinkhuu, E., Sato, K., Maehama, T., Mogi, C., Tomura, H., Ishiuchi, S., et al. (2008). S1P(2) receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. Biochemical and Biophysical Research Communications, 366, 963–968.PubMedGoogle Scholar
  203. 203.
    Windh, R. T., Lee, M. J., Hla, T., An, S., Barr, A. J., & Manning, D. R. (1999). Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. Journal of Biological Chemistry, 274, 27351–27358.PubMedGoogle Scholar
  204. 204.
    Okamoto, H., Takuwa, N., Yatomi, Y., Gonda, K., Shigematsu, H., & Takuwa, Y. (1999). EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochemical and Biophysical Research Communications, 260, 203–208.PubMedGoogle Scholar
  205. 205.
    Taha, T. A., Argraves, K. M., & Obeid, L. M. (2004). Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochimica et Biophysica Acta, 1682, 48–55.PubMedGoogle Scholar
  206. 206.
    Waters, C. M., Long, J., Gorshkova, I., Fujiwara, Y., Connell, M., Belmonte, K. E., et al. (2006). Cell migration activated by platelet-derived growth factor receptor is blocked by an inverse agonist of the sphingosine 1-phosphate receptor-1. The FASEB Journal, 20, 509–511.PubMedGoogle Scholar
  207. 207.
    Hsieh, H. L., Sun, C. C., Wu, C. B., Wu, C. Y., Tung, W. H., Wang, H. H., et al. (2008). Sphingosine 1-phosphate induces EGFR expression via Akt/NF-kappaB and ERK/AP-1 pathways in rat vascular smooth muscle cells. Journal of Cellular Biochemistry, 103, 1732–1746.PubMedGoogle Scholar
  208. 208.
    Paugh, B. S., Paugh, S. W., Bryan, L., Kapitonov, D., Wilczynska, K. M., Gopalan, S. M., et al. (2008). EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. The FASEB Journal, 22, 455–465.PubMedGoogle Scholar
  209. 209.
    Sukocheva, O., Wadham, C., Holmes, A., Albanese, N., Verrier, E., Feng, F., et al. (2006). Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. The Journal of Cell Biology, 173, 301–310.PubMedGoogle Scholar
  210. 210.
    Shida, D., Kitayama, J., Yamaguchi, H., Yamashita, H., Mori, K., Watanabe, T., et al. (2004). Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. FEBS Letters, 577, 333–338.PubMedGoogle Scholar
  211. 211.
    Hart, S., Fischer, O. M., Prenzel, N., Zwick-Wallasch, E., Schneider, M., Hennighausen, L., et al. (2005). GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways. Biological Chemistry, 386, 845–855.PubMedGoogle Scholar
  212. 212.
    Shida, D., Fang, X., Kordula, T., Takabe, K., Lepine, S., Alvarez, S. E., et al. (2008). Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Research, 68, 6569–6577.PubMedGoogle Scholar
  213. 213.
    Balthasar, S., Bergelin, N., Lof, C., Vainio, M., Andersson, S., & Tornquist, K. (2008). Interactions between sphingosine-1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid carcinoma cells. Endocrine-Related Cancer, 15, 521–534.PubMedGoogle Scholar
  214. 214.
    Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H., & Collard, J. G. (1998). Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO Journal, 17, 4066–4074.PubMedGoogle Scholar
  215. 215.
    Li, M. H., Sanchez, T., Yamase, H., Hla, T., Oo, M. L., Pappalardo, A., et al. (2009). S1P/S1P1 signaling stimulates cell migration and invasion in Wilms tumor. Cancer Letters, 276, 171–179.PubMedGoogle Scholar
  216. 216.
    Devine, K. M., Smicun, Y., Hope, J. M., & Fishman, D. A. (2008). S1P induced changes in epithelial ovarian cancer proteolysis, invasion, and attachment are mediated by Gi and Rac. Gynecologic Oncology, 110, 237–245.PubMedGoogle Scholar
  217. 217.
    Rachfal, A. W., & Brigstock, D. R. (2005). Structural and functional properties of CCN proteins. Vitamins and Hormones, 70, 69–103.PubMedGoogle Scholar
  218. 218.
    Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307.PubMedGoogle Scholar
  219. 219.
    Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40, 294–309.PubMedGoogle Scholar
  220. 220.
    Ahmad, M., Long, J. S., Pyne, N. J., & Pyne, S. (2006). The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins & Other Lipid Mediators, 79, 278–286.Google Scholar
  221. 221.
    Schwalm, S., Doll, F., Romer, I., Bubnova, S., Pfeilschifter, J., & Huwiler, A. (2008). Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochemical and Biophysical Research Communications, 368, 1020–1025.PubMedGoogle Scholar
  222. 222.
    Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B., & Cuvillier, O. (2008). Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Research, 68, 8635–8642.PubMedGoogle Scholar
  223. 223.
    Schnitzer, S. E., Weigert, A., Zhou, J., & Brune, B. (2009). Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells. Molecular Cancer Research, 7, 393–401.PubMedGoogle Scholar
  224. 224.
    Liu, F., Verin, A. D., Wang, P., Day, R., Wersto, R. P., Chrest, F. J., et al. (2001). Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. American Journal of Respiratory Cell and Molecular Biology, 24, 711–719.PubMedGoogle Scholar
  225. 225.
    Heo, K., Park, K. A., Kim, Y. H., Kim, S. H., Oh, Y. S., Kim, I. H., et al. (2009). Sphingosine 1-phosphate induces vascular endothelial growth factor expression in endothelial cells. BMB Reports, 42, 685–690.PubMedGoogle Scholar
  226. 226.
    Sun, H. Y., Wei, S. P., Xu, R. C., Xu, P. X., & Zhang, W. C. (2010). Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: novel insights into angiogenesis. Biochemical and Biophysical Research Communications, 395, 361–366.PubMedGoogle Scholar
  227. 227.
    Igarashi, J., Erwin, P. A., Dantas, A. P., Chen, H., & Michel, T. (2003). VEGF induces S1P1 receptors in endothelial cells: implications for cross-talk between sphingolipid and growth factor receptors. Proceedings of the National Academy of Sciences of the United States of America, 100, 10664–10669.PubMedGoogle Scholar
  228. 228.
    Chae, S. S., Paik, J. H., Furneaux, H., & Hla, T. (2004). Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. The Journal of Clinical Investigation, 114, 1082–1089.PubMedGoogle Scholar
  229. 229.
    Krump-Konvalinkova, V., Yasuda, S., Rubic, T., Makarova, N., Mages, J., Erl, W., et al. (2005). Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 546–552.PubMedGoogle Scholar
  230. 230.
    Visentin, B., Vekich, J. A., Sibbald, B. J., Cavalli, A. L., Moreno, K. M., Matteo, R. G., et al. (2006). Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell, 9, 225–238.PubMedGoogle Scholar
  231. 231.
    Klionsky, D. J., & Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science, 290, 1717–1721.PubMedGoogle Scholar
  232. 232.
    Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132, 27–42.PubMedGoogle Scholar
  233. 233.
    Eisenberg-Lerner, A., Bialik, S., Simon, H. U., & Kimchi, A. (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death and Differentiation, 16, 966–975.PubMedGoogle Scholar
  234. 234.
    Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8, 741–752.PubMedGoogle Scholar
  235. 235.
    Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y., & Kondo, S. (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Research, 64, 4286–4293.PubMedGoogle Scholar
  236. 236.
    Lavieu, G., Scarlatti, F., Sala, G., Levade, T., Ghidoni, R., Botti, J., et al. (2007). Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy, 3, 45–47.PubMedGoogle Scholar
  237. 237.
    Scarlatti, F., Bauvy, C., Ventruti, A., Sala, G., Cluzeaud, F., Vandewalle, A., et al. (2004). Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. Journal of Biological Chemistry, 279, 18384–18391.PubMedGoogle Scholar
  238. 238.
    Lepine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., & Spiegel, S. (2010). Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death and Differentiation, 18, 350–361.PubMedGoogle Scholar
  239. 239.
    Chang, C. L., Ho, M. C., Lee, P. H., Hsu, C. Y., Huang, W. P., & Lee, H. (2009). S1P(5) is required for sphingosine 1-phosphate-induced autophagy in human prostate cancer PC-3 cells. American Journal of Physiology. Cell Physiology, 297, C451–C458.PubMedGoogle Scholar
  240. 240.
    Huang, Y. L., Huang, W. P., & Lee, H. (2011). Roles of sphingosine 1-phosphate on tumorigenesis. World Journal of Biological Chemistry, 2, 25–34.PubMedGoogle Scholar
  241. 241.
    He, G., & Karin, M. (2011). NF-kappaB and STAT3—key players in liver inflammation and cancer. Cell Research, 21, 159–168.PubMedGoogle Scholar
  242. 242.
    Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews. Cancer, 9, 798–809.PubMedGoogle Scholar
  243. 243.
    Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 7, 41–51.PubMedGoogle Scholar
  244. 244.
    Hedvat, M., Huszar, D., Herrmann, A., Gozgit, J. M., Schroeder, A., Sheehy, A., et al. (2009). The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell, 16, 487–497.PubMedGoogle Scholar
  245. 245.
    Gough, D. J., Corlett, A., Schlessinger, K., Wegrzyn, J., Larner, A. C., & Levy, D. E. (2009). Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science, 324, 1713–1716.PubMedGoogle Scholar
  246. 246.
    Pelletier, S., Duhamel, F., Coulombe, P., Popoff, M. R., & Meloche, S. (2003). Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Molecular and Cellular Biology, 23, 1316–1333.PubMedGoogle Scholar
  247. 247.
    Wu, E. H., Lo, R. K., & Wong, Y. H. (2003). Regulation of STAT3 activity by G16-coupled receptors. Biochemical and Biophysical Research Communications, 303, 920–925.PubMedGoogle Scholar
  248. 248.
    Ferrand, A., Kowalski-Chauvel, A., Bertrand, C., Escrieut, C., Mathieu, A., Portolan, G., et al. (2005). A novel mechanism for JAK2 activation by a G protein-coupled receptor, the CCK2R: implication of this signaling pathway in pancreatic tumor models. Journal of Biological Chemistry, 280, 10710–10715.PubMedGoogle Scholar
  249. 249.
    Ho, M. K., Su, Y., Yeung, W. W., & Wong, Y. H. (2009). Regulation of transcription factors by heterotrimeric G proteins. Current Molecular Pharmacology, 2, 19–31.PubMedGoogle Scholar
  250. 250.
    Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C., et al. (1999). Stat3 as an oncogene. Cell, 98, 295–303.PubMedGoogle Scholar
  251. 251.
    Devarajan, E., & Huang, S. (2009). STAT3 as a central regulator of tumor metastases. Current Molecular Medicine, 9, 626–633.PubMedGoogle Scholar
  252. 252.
    Lee, H., Deng, J., Kujawski, M., Yang, C., Liu, Y., Herrmann, A., et al. (2010). STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine, 16, 1421–1428.PubMedGoogle Scholar
  253. 253.
    Frias, M. A., James, R. W., Gerber-Wicht, C., & Lang, U. (2009). Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovascular Research, 82, 313–323.PubMedGoogle Scholar
  254. 254.
    Sekine, Y., Suzuki, K., & Remaley, A. T. (2011). HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion. Prostate, 71, 690–699.PubMedGoogle Scholar
  255. 255.
    Abbott, C. M., & Proud, C. G. (2004). Translation factors: in sickness and in health. Trends in Biochemical Sciences, 29, 25–31.PubMedGoogle Scholar
  256. 256.
    Ejiri, S. (2002). Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Bioscience, Biotechnology, and Biochemistry, 66, 1–21.PubMedGoogle Scholar
  257. 257.
    Al-Maghrebi, M., Anim, J. T., & Olalu, A. A. (2005). Up-regulation of eukaryotic elongation factor-1 subunits in breast carcinoma. Anticancer Research, 25, 2573–2577.PubMedGoogle Scholar
  258. 258.
    Leclercq, T. M., Moretti, P. A., Vadas, M. A., & Pitson, S. M. (2008). Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. Journal of Biological Chemistry, 283, 9606–9614.PubMedGoogle Scholar
  259. 259.
    Leclercq, T. M., Moretti, P. A., & Pitson, S. M. (2011). Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene, 30, 372–378.PubMedGoogle Scholar
  260. 260.
    Pitson, S. M., Xia, P., Leclercq, T. M., Moretti, P. A., Zebol, J. R., Lynn, H. E., et al. (2005). Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. The Journal of Experimental Medicine, 201, 49–54.PubMedGoogle Scholar
  261. 261.
    Shaw, R. J., & Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 441, 424–430.PubMedGoogle Scholar
  262. 262.
    Grey, A., Chen, Q., Callon, K., Xu, X., Reid, I. R., & Cornish, J. (2002). The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology, 143, 4755–4763.PubMedGoogle Scholar
  263. 263.
    Kluk, M. J., & Hla, T. (2001). Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circulation Research, 89, 496–502.PubMedGoogle Scholar
  264. 264.
    Chung, T., Crilly, K. S., Anderson, W. H., Mukherjee, J. J., & Kiss, Z. (1997). ATP-dependent choline phosphate-induced mitogenesis in fibroblasts involves activation of pp 70 S6 kinase and phosphatidylinositol 3′-kinase through an extracellular site. Synergistic mitogenic effects of choline phosphate and sphingosine 1-phosphate. Journal of Biological Chemistry, 272, 3064–3072.PubMedGoogle Scholar
  265. 265.
    Liu, G., Yang, K., Burns, S., Shrestha, S., & Chi, H. (2010). The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nature Immunology, 11, 1047–1056.PubMedGoogle Scholar
  266. 266.
    Maeurer, C., Holland, S., Pierre, S., Potstada, W., & Scholich, K. (2009). Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. Cellular Signalling, 21, 293–300.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jessie W. Yester
    • 1
  • Etsegenet Tizazu
    • 1
  • Kuzhuvelil B. Harikumar
    • 1
  • Tomasz Kordula
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations