Cancer and Metastasis Reviews

, Volume 30, Issue 2, pp 239–251 | Cite as

The role of nuclear pore complex in tumor microenvironment and metastasis

  • Tatsuyoshi Funasaka
  • Richard W. Wong


One of the main reasons for cancer mortality is caused by the highly invasive behavior of cancer cells, which often due to aggressive metastasis. Metastasis is mediated by various growth factors and cytokines, operating through numerous signaling pathways. Remarkably, all these metastatic signaling pathways must enter the nucleus through a single gatekeeper, the nuclear pore complex (NPC). NPCs are the only gateway between the cytoplasm and the nucleus. NPCs are among the largest proteinaceous assemblies in the cell and are composed of multiple copies of around 30 different proteins called nucleoporins. Here, we review what is currently known about the NPC, and its role in the mechanisms of tumor progression. We will also explore potential strategies to target metastatic pathways by manipulating the karyopherins (importins/exportins) of nucleocytoplasmic traffic through NPCs.


Nuclear pore complex Tumor microenvironment Metastasis Nucleoporins EGFR TGF beta Smad Beta-catenin NF kappa B HIF-1 microRNA 



The authors regret the many publications we were unable to cite due to lack of space. This work was supported by the Program for Improvement of the Research Environment for Young Researchers from the Special Coordination Funds for Promoting Science and Technology (SCF), Grants-in-Aid for Scientific Research on Innovative Areas and Young Scientists from MEXT Japan, and by grants from the Asahi Glass Foundation, the Mochida Memorial Foundation, the Suzuken Memorial Foundation, the Kowa Life Science Foundation, the Takeda Science Foundation, the Astellas Foundation, and the Novartis Foundation (Japan) to RW.


  1. 1.
    Murphy, P. M. (2001). Chemokines and the molecular basis of cancer metastasis. The New England Journal of Medicine, 345, 833–835.PubMedGoogle Scholar
  2. 2.
    Khan, N., & Mukhtar, H. (2010). Cancer and metastasis: Prevention and treatment by green tea. Cancer and Metastasis Reviews, 29, 435–445.PubMedGoogle Scholar
  3. 3.
    Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Natural Medicines, 12, 895–904.Google Scholar
  4. 4.
    Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.PubMedGoogle Scholar
  5. 5.
    Chiang, A. C., & Massague, J. (2008). Molecular basis of metastasis. The New England Journal of Medicine, 359, 2814–2823.PubMedGoogle Scholar
  6. 6.
    Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.Google Scholar
  7. 7.
    Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Cancer and Metastasis Reviews, 8, 98–101.Google Scholar
  8. 8.
    Funasaka, T., & Raz, A. (2007). The role of autocrine motility factor in tumor and tumor microenvironment. Cancer and Metastasis Reviews, 26, 725–735.PubMedGoogle Scholar
  9. 9.
    Krug, E. L., Mjaatvedt, C. H., & Markwald, R. R. (1987). Extracellular matrix from embryonic myocardium elicits an early morphogenetic event in cardiac endothelial differentiation. Developmental Biology, 120, 348–355.PubMedGoogle Scholar
  10. 10.
    Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anat Basel, 154, 8–20.PubMedGoogle Scholar
  11. 11.
    Finger, E. C., & Giaccia, A. J. (2010). Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer and Metastasis Reviews, 29, 285–293.PubMedGoogle Scholar
  12. 12.
    Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13, 7003–7011.PubMedGoogle Scholar
  13. 13.
    Margulis, A., Zhang, W., Alt-Holland, A., Crawford, H. C., Fusenig, N. E., & Garlick, J. A. (2005). E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Research, 65, 1783–1791.PubMedGoogle Scholar
  14. 14.
    Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28, 15–33.PubMedGoogle Scholar
  15. 15.
    Dumont, N., Bakin, A. V., & Arteaga, C. L. (2003). Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. The Journal of Biological Chemistry, 278, 3275–3285.PubMedGoogle Scholar
  16. 16.
    Strambio-De-Castillia, C., Niepel, M., & Rout, M. P. (2010). The nuclear pore complex: Bridging nuclear transport and gene regulation. Nature Reviews. Molecular Cell Biology, 11, 490–501.PubMedGoogle Scholar
  17. 17.
    Xu, S., & Powers, M. A. (2009). Nuclear pore proteins and cancer. Seminars in Cell & Developmental Biology, 20, 620–630.Google Scholar
  18. 18.
    Tran, E. J., & Wente, S. R. (2006). Dynamic nuclear pore complexes: Life on the edge. Cell, 125, 1041–1053.PubMedGoogle Scholar
  19. 19.
    Hetzer, M. W. (2010). The nuclear envelope. Cold Spring Harb Perspect Biol, 2, a000539.PubMedGoogle Scholar
  20. 20.
    Hetzer, M. W., & Wente, S. R. (2009). Border control at the nucleus: Biogenesis and organization of the nuclear membrane and pore complexes. Developmental Cell, 17, 606–616.PubMedGoogle Scholar
  21. 21.
    Lim, R. Y., Aebi, U., & Fahrenkrog, B. (2008). Towards reconciling structure and function in the nuclear pore complex. Histochemistry and Cell Biology, 129, 105–116.PubMedGoogle Scholar
  22. 22.
    Schwartz, T. U. (2005). Modularity within the architecture of the nuclear pore complex. Current Opinion in Structural Biology, 15, 221–226.PubMedGoogle Scholar
  23. 23.
    Rout, M. P., Aitchison, J. D., Suprapto, A., Hjertaas, K., Zhao, Y., & Chait, B. T. (2000). The yeast nuclear pore complex: Composition, architecture, and transport mechanism. The Journal of Cell Biology, 148, 635–651.PubMedGoogle Scholar
  24. 24.
    Blobel, G. (2010) Three-dimensional organization of chromatids by nuclear envelope-associated structures. Cold Spring Harb Symp Quant Biol.Google Scholar
  25. 25.
    Brown, J. A., Bharathi, A., Ghosh, A., Whalen, W., Fitzgerald, E., & Dhar, R. (1995). A mutation in the Schizosaccharomyces pombe rae1 gene causes defects in poly(A) + RNA export and in the cytoskeleton. The Journal of Biological Chemistry, 270, 7411–7419.PubMedGoogle Scholar
  26. 26.
    Kraemer, D., & Blobel, G. (1997). mRNA binding protein mrnp 41 localizes to both nucleus and cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 94, 9119–9124.PubMedGoogle Scholar
  27. 27.
    Murphy, R., Watkins, J. L., & Wente, S. R. (1996). GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Molecular Biology of the Cell, 7, 1921–1937.PubMedGoogle Scholar
  28. 28.
    Bailer, S. M., Siniossoglou, S., Podtelejnikov, A., Hellwig, A., Mann, M., & Hurt, E. (1998). Nup116p and nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor gle2p. The EMBO Journal, 17, 1107–1119.PubMedGoogle Scholar
  29. 29.
    Pritchard, C. E., Fornerod, M., Kasper, L. H., & van Deursen, J. M. (1999). RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. The Journal of Cell Biology, 145, 237–254.PubMedGoogle Scholar
  30. 30.
    Ren, Y., Seo, H. S., Blobel, G., & Hoelz, A. (2010). Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1. Proceedings of the National Academy of Sciences of the United States of America, 107, 10406–10411.PubMedGoogle Scholar
  31. 31.
    Paoli, M. (2001). Protein folds propelled by diversity. Progress in Biophysics and Molecular Biology, 76, 103–130.PubMedGoogle Scholar
  32. 32.
    Blower, M. D., Nachury, M., Heald, R., & Weis, K. (2005). A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell, 121, 223–234.PubMedGoogle Scholar
  33. 33.
    Wong, R. W. (2010). Interaction between Rae1 and cohesin subunit SMC1 is required for proper spindle formation. Cell Cycle, 9, 198–200.PubMedGoogle Scholar
  34. 34.
    Wong, R. W. (2010). An update on cohesin function as a ‘molecular glue’ on chromosomes and spindles. Cell Cycle, 9, 1754–1758.PubMedGoogle Scholar
  35. 35.
    Wong, R. W., & Blobel, G. (2008). Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proceedings of the National Academy of Sciences of the United States of America, 105, 15441–15445.PubMedGoogle Scholar
  36. 36.
    Wong, R. W., Blobel, G., & Coutavas, E. (2006). Rae1 interaction with NuMA is required for bipolar spindle formation. Proceedings of the National Academy of Sciences of the United States of America, 103, 19783–19787.PubMedGoogle Scholar
  37. 37.
    Guttinger, S., Laurell, E., & Kutay, U. (2009). Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nature Reviews. Molecular Cell Biology, 10, 178–191.PubMedGoogle Scholar
  38. 38.
    Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10, 529–541.PubMedGoogle Scholar
  39. 39.
    Moore, M. A. (2010). A cancer fate in the hands of a samurai. Natural Medicines, 16, 963–965.Google Scholar
  40. 40.
    Moore, M. A., Chung, K. Y., Plasilova, M., Schuringa, J. J., Shieh, J. H., Zhou, P., et al. (2007). NUP98 dysregulation in myeloid leukemogenesis. Annals of the New York Academy of Sciences, 1106, 114–142.PubMedGoogle Scholar
  41. 41.
    Radu, A., Moore, M. S., & Blobel, G. (1995). The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell, 81, 215–222.PubMedGoogle Scholar
  42. 42.
    Fontoura, B. M., Blobel, G., & Matunis, M. J. (1999). A conserved biogenesis pathway for nucleoporins: Proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. The Journal of Cell Biology, 144, 1097–1112.PubMedGoogle Scholar
  43. 43.
    Vasu, S., Shah, S., Orjalo, A., Park, M., Fischer, W. H., & Forbes, D. J. (2001). Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export. The Journal of Cell Biology, 155, 339–354.PubMedGoogle Scholar
  44. 44.
    Griffis, E. R., Altan, N., Lippincott-Schwartz, J., & Powers, M. A. (2002). Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Molecular Biology of the Cell, 13, 1282–1297.PubMedGoogle Scholar
  45. 45.
    Wu, X., Kasper, L. H., Mantcheva, R. T., Mantchev, G. T., Springett, M. J., & van Deursen, J. M. (2001). Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proceedings of the National Academy of Sciences of the United States of America, 98, 3191–3196.PubMedGoogle Scholar
  46. 46.
    Blevins, M. B., Smith, A. M., Phillips, E. M., & Powers, M. A. (2003). Complex formation among the RNA export proteins Nup98, Rae1/Gle2, and TAP. The Journal of Biological Chemistry, 278, 20979–20988.PubMedGoogle Scholar
  47. 47.
    Jeganathan, K. B., Baker, D. J., & van Deursen, J. M. (2006). Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition. Cell Cycle, 5, 366–370.PubMedGoogle Scholar
  48. 48.
    Jeganathan, K. B., Malureanu, L., & van Deursen, J. M. (2005). The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature, 438, 1036–1039.PubMedGoogle Scholar
  49. 49.
    Wozniak, R., Burke, B., & Doye, V. (2010). Nuclear transport and the mitotic apparatus: An evolving relationship. Cellular and Molecular Life Sciences, 67, 2215–2230.PubMedGoogle Scholar
  50. 50.
    Cross, M.K., & Powers, M.A. (2011) Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK. Mol Biol Cell. in press.Google Scholar
  51. 51.
    Nakamura, T., Largaespada, D. A., Lee, M. P., Johnson, L. A., Ohyashiki, K., Toyama, K., et al. (1996). Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nature Genetics, 12, 154–158.PubMedGoogle Scholar
  52. 52.
    Borrow, J., Shearman, A. M., Stanton, V. P., Jr., Becher, R., Collins, T., Williams, A. J., et al. (1996). The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nature Genetics, 12, 159–167.PubMedGoogle Scholar
  53. 53.
    Moore, M. A. (2005). Converging pathways in leukemogenesis and stem cell self-renewal. Experimental Hematology, 33, 719–737.PubMedGoogle Scholar
  54. 54.
    Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H. R., & Cordes, V. C. (2004). Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Molecular Biology of the Cell, 15, 4261–4277.PubMedGoogle Scholar
  55. 55.
    Byrd, D. A., Sweet, D. J., Pante, N., Konstantinov, K. N., Guan, T., Saphire, A. C., et al. (1994). Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. The Journal of Cell Biology, 127, 1515–1526.PubMedGoogle Scholar
  56. 56.
    Cordes, V. C., Reidenbach, S., Rackwitz, H. R., & Franke, W. W. (1997). Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. The Journal of Cell Biology, 136, 515–529.PubMedGoogle Scholar
  57. 57.
    Fontoura, B. M., Dales, S., Blobel, G., & Zhong, H. (2001). The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proceedings of the National Academy of Sciences of the United States of America, 98, 3208–3213.PubMedGoogle Scholar
  58. 58.
    Frosst, P., Guan, T., Subauste, C., Hahn, K., & Gerace, L. (2002). Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. The Journal of Cell Biology, 156, 617–630.PubMedGoogle Scholar
  59. 59.
    Lee, S. H., Sterling, H., Burlingame, A., & McCormick, F. (2008). Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes & Development, 22, 2926–2931.Google Scholar
  60. 60.
    Nakano, H., Funasaka, T., Hashizume, C., & Wong, R. W. (2010). Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis. The Journal of Biological Chemistry, 285, 10841–10849.PubMedGoogle Scholar
  61. 61.
    Strambio-de-Castillia, C., Blobel, G., & Rout, M. P. (1999). Proteins connecting the nuclear pore complex with the nuclear interior. The Journal of Cell Biology, 144, 839–855.PubMedGoogle Scholar
  62. 62.
    Cooper, C. S., Park, M., Blair, D. G., Tainsky, M. A., Huebner, K., Croce, C. M., et al. (1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature, 311, 29–33.PubMedGoogle Scholar
  63. 63.
    Park, M., Dean, M., Cooper, C. S., Schmidt, M., O’Brien, S. J., Blair, D. G., et al. (1986). Mechanism of met oncogene activation. Cell, 45, 895–904.PubMedGoogle Scholar
  64. 64.
    Peschard, P., & Park, M. (2007). From Tpr-Met to Met, tumorigenesis and tubes. Oncogene, 26, 1276–1285.PubMedGoogle Scholar
  65. 65.
    Macaulay, C., Meier, E., & Forbes, D. J. (1995). Differential mitotic phosphorylation of proteins of the nuclear pore complex. The Journal of Biological Chemistry, 270, 254–262.PubMedGoogle Scholar
  66. 66.
    Martinez, N., Alonso, A., Moragues, M. D., Ponton, J., & Schneider, J. (1999). The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Research, 59, 5408–5411.PubMedGoogle Scholar
  67. 67.
    Gould, V. E., Martinez, N., Orucevic, A., Schneider, J., & Alonso, A. (2000). A novel, nuclear pore-associated, widely distributed molecule overexpressed in oncogenesis and development. The American Journal of Pathology, 157, 1605–1613.PubMedGoogle Scholar
  68. 68.
    Gould, V. E., Orucevic, A., Zentgraf, H., Gattuso, P., Martinez, N., & Alonso, A. (2002). Nup88 (karyoporin) in human malignant neoplasms and dysplasias: Correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis. Human Pathology, 33, 536–544.PubMedGoogle Scholar
  69. 69.
    Agudo, D., Gomez-Esquer, F., Martinez-Arribas, F., Nunez-Villar, M. J., Pollan, M., & Schneider, J. (2004). Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. International Journal of Cancer, 109, 717–720.Google Scholar
  70. 70.
    Bastos, R., Ribas de Pouplana, L., Enarson, M., Bodoor, K., & Burke, B. (1997). Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. The Journal of Cell Biology, 137, 989–1000.PubMedGoogle Scholar
  71. 71.
    van Deursen, J., Boer, J., Kasper, L., & Grosveld, G. (1996). G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. The EMBO Journal, 15, 5574–5583.PubMedGoogle Scholar
  72. 72.
    Walther, T. C., Pickersgill, H. S., Cordes, V. C., Goldberg, M. W., Allen, T. D., Mattaj, I. W., et al. (2002). The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. The Journal of Cell Biology, 158, 63–77.PubMedGoogle Scholar
  73. 73.
    von Moeller, H., Basquin, C., & Conti, E. (2009). The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nature Structural & Molecular Biology, 16, 247–254.Google Scholar
  74. 74.
    Napetschnig, J., Kassube, S. A., Debler, E. W., Wong, R. W., Blobel, G., & Hoelz, A. (2009). Structural and functional analysis of the interaction between the nucleoporin Nup214 and the DEAD-box helicase Ddx19. Proceedings of the National Academy of Sciences of the United States of America, 106, 3089–3094.PubMedGoogle Scholar
  75. 75.
    von Lindern, M., Fornerod, M., van Baal, S., Jaegle, M., de Wit, T., Buijs, A., et al. (1992). The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Molecular and Cellular Biology, 12, 1687–1697.Google Scholar
  76. 76.
    von Lindern, M., van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Molecular and Cellular Biology, 12, 3346–3355.Google Scholar
  77. 77.
    Fagerlund, R., Melen, K., Cao, X., & Julkunen, I. (2008). NF-kappaB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules. Cellular Signalling, 20, 1442–1451.PubMedGoogle Scholar
  78. 78.
    Weis, K. (2003). Regulating access to the genome: Nucleocytoplasmic transport throughout the cell cycle. Cell, 112, 441–451.PubMedGoogle Scholar
  79. 79.
    Lu, X., & Kang, Y. (2010). Epidermal growth factor signalling and bone metastasis. British Journal of Cancer, 102, 457–461.PubMedGoogle Scholar
  80. 80.
    Wang, Y. N., Yamaguchi, H., Hsu, J. M., & Hung, M. C. (2010). Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene, 29, 3997–4006.PubMedGoogle Scholar
  81. 81.
    Hynes, N. E., & MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology, 21, 177–184.PubMedGoogle Scholar
  82. 82.
    Citri, A., & Yarden, Y. (2006). EGF-ERBB signalling: Towards the systems level. Nature Reviews. Molecular Cell Biology, 7, 505–516.PubMedGoogle Scholar
  83. 83.
    Lo, H. W., Ali-Seyed, M., Wu, Y., Bartholomeusz, G., Hsu, S. C., & Hung, M. C. (2006). Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. Journal of Cellular Biochemistry, 98, 1570–1583.PubMedGoogle Scholar
  84. 84.
    Vrailas-Mortimer, A. D., Majumdar, N., Middleton, G., Cooke, E. M., & Marenda, D. R. (2007). Delta and Egfr expression are regulated by Importin-7/Moleskin in Drosophila wing development. Developmental Biology, 308, 534–546.PubMedGoogle Scholar
  85. 85.
    Giri, D. K., Ali-Seyed, M., Li, L. Y., Lee, D. F., Ling, P., Bartholomeusz, G., et al. (2005). Endosomal transport of ErbB-2: Mechanism for nuclear entry of the cell surface receptor. Molecular and Cellular Biology, 25, 11005–11018.PubMedGoogle Scholar
  86. 86.
    Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews. Cancer, 9, 274–284.PubMedGoogle Scholar
  87. 87.
    Padua, D., & Massague, J. (2009). Roles of TGFbeta in metastasis. Cell Research, 19, 89–102.PubMedGoogle Scholar
  88. 88.
    Massague, J. (2008). TGFbeta in Cancer. Cell, 134, 215–230.PubMedGoogle Scholar
  89. 89.
    Miyazono, K. (2009). Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proceedings of the Japan Academy. Series B: Physical and Biological Sciences, 85, 314–323.Google Scholar
  90. 90.
    Roberts, A. B., Flanders, K. C., Heine, U. I., Jakowlew, S., Kondaiah, P., Kim, S. J., et al. (1990). Transforming growth factor-beta: Multifunctional regulator of differentiation and development. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 327, 145–154.PubMedGoogle Scholar
  91. 91.
    Kang, Y. (2006). Pro-metastasis function of TGFbeta mediated by the Smad pathway. Journal of Cellular Biochemistry, 98, 1380–1390.PubMedGoogle Scholar
  92. 92.
    Korpal, M., & Kang, Y. (2010). Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. European Journal of Cancer, 46, 1232–1240.PubMedGoogle Scholar
  93. 93.
    Kang, J. S., Liu, C., & Derynck, R. (2009). New regulatory mechanisms of TGF-beta receptor function. Trends in Cell Biology, 19, 385–394.PubMedGoogle Scholar
  94. 94.
    Xu, L., Kang, Y., Col, S., & Massague, J. (2002). Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. Molecular Cell, 10, 271–282.PubMedGoogle Scholar
  95. 95.
    Sukegawa, J., & Blobel, G. (1993). A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell, 72, 29–38.PubMedGoogle Scholar
  96. 96.
    Marg, A., Shan, Y., Meyer, T., Meissner, T., Brandenburg, M., & Vinkemeier, U. (2004). Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. The Journal of Cell Biology, 165, 823–833.PubMedGoogle Scholar
  97. 97.
    Nakahara, S., Hogan, V., Inohara, H., & Raz, A. (2006). Importin-mediated nuclear translocation of galectin-3. The Journal of Biological Chemistry, 281, 39649–39659.PubMedGoogle Scholar
  98. 98.
    Nakahara, S., Oka, N., Wang, Y., Hogan, V., Inohara, H., & Raz, A. (2006). Characterization of the nuclear import pathways of galectin-3. Cancer Research, 66, 9995–10006.PubMedGoogle Scholar
  99. 99.
    Nakahara, S., & Raz, A. (2007). Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer and Metastasis Reviews, 26, 605–610.PubMedGoogle Scholar
  100. 100.
    Henderson, B. R., & Fagotto, F. (2002). The ins and outs of APC and beta-catenin nuclear transport. EMBO Reports, 3, 834–839.PubMedGoogle Scholar
  101. 101.
    Thorne, M. E., & Gottardi, C. J. (2005). Terminating Wnt signals: A novel nuclear export mechanism targets activated (beta)-catenin. The Journal of Cell Biology, 171, 761–763.PubMedGoogle Scholar
  102. 102.
    Chachami, G., Paraskeva, E., Mingot, J. M., Braliou, G. G., Gorlich, D., & Simos, G. (2009). Transport of hypoxia-inducible factor HIF-1alpha into the nucleus involves importins 4 and 7. Biochemical and Biophysical Research Communications, 390, 235–240.PubMedGoogle Scholar
  103. 103.
    Pemberton, L. F., & Paschal, B. M. (2005). Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic, 6, 187–198.PubMedGoogle Scholar
  104. 104.
    Mylonis, I., Chachami, G., Paraskeva, E., & Simos, G. (2008). Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor-1alpha by MAPK. The Journal of Biological Chemistry, 283, 27620–27627.PubMedGoogle Scholar
  105. 105.
    Mylonis, I., Chachami, G., Samiotaki, M., Panayotou, G., Paraskeva, E., Kalousi, A., et al. (2006). Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. The Journal of Biological Chemistry, 281, 33095–33106.PubMedGoogle Scholar
  106. 106.
    Ghosh, S., May, M. J., & Kopp, E. B. (1998). NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 16, 225–260.PubMedGoogle Scholar
  107. 107.
    Muller, P. A., van de Sluis, B., Groot, A. J., Verbeek, D., Vonk, W. I., Maine, G. N., et al. (2009). Nuclear-cytosolic transport of COMMD1 regulates NF-kappaB and HIF-1 activity. Traffic, 10, 514–527.PubMedGoogle Scholar
  108. 108.
    Johnson, C., Van Antwerp, D., & Hope, T. J. (1999). An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. The EMBO Journal, 18, 6682–6693.PubMedGoogle Scholar
  109. 109.
    Carlotti, F., Dower, S. K., & Qwarnstrom, E. E. (2000). Dynamic shuttling of nuclear factor kappa B between the nucleus and cytoplasm as a consequence of inhibitor dissociation. The Journal of Biological Chemistry, 275, 41028–41034.PubMedGoogle Scholar
  110. 110.
    Birbach, A., Gold, P., Binder, B. R., Hofer, E., de Martin, R., & Schmid, J. A. (2002). Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. The Journal of Biological Chemistry, 277, 10842–10851.PubMedGoogle Scholar
  111. 111.
    Shenouda, S. K., & Alahari, S. K. (2009). MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer and Metastasis Reviews, 28, 369–378.PubMedGoogle Scholar
  112. 112.
    Castanotto, D., Lingeman, R., Riggs, A. D., & Rossi, J. J. (2009). CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 106, 21655–21659.PubMedGoogle Scholar
  113. 113.
    Lee, S.J., Jiko, C., Yamashita, E., & Tsukihara, T. (2011) Selective nuclear export mechanism of small RNAs. Curr Opin Struct Biol. in press.Google Scholar
  114. 114.
    Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., & Lai, E. C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 130, 89–100.PubMedGoogle Scholar
  115. 115.
    Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682–688.PubMedGoogle Scholar
  116. 116.
    Gee, H.E., Camps, C., Buffa, F. M., Colella, S., Sheldon, H., Gleadle, J.M., Ragoussis, J., Harris, A.L. (2008) MicroRNA-10b and breast cancer metastasis. Nature, 455, E8-9; author reply E9.Google Scholar
  117. 117.
    Nakano, H., Wang, W., Hashizume, C., Funasaka, T., Sato, H., & Wong, R. W. (2011). Unexpected role of nucleoporins in coordination of cell progression. Cell Cycle 10, 425–433Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Frontier Science Organization, 1/F Cancer Research InstituteKanazawa UniversityKakuma-machi, KanazawaJapan

Personalised recommendations