Cancer and Metastasis Reviews

, Volume 30, Issue 2, pp 211–223 | Cite as

Microbial deprivation, inflammation and cancer



Dysregulated immune function is involved in the pathogenesis of many common human diseases. Living in urban, microbe-poor environment may have a profound influence on the immune function and eventually also on carcinogenesis. Unfortunately, few studies have thus far addressed the role of exposure to the environmental microbiota on the risk of cancer. Which mechanisms are broken in individuals prone to develop chronic inflammation in response to exposure that does not cause harm in others? Recent work in immunology has revealed that Th17 cells, a third subset of Th cells, and inflammatory cytokines, particularly IL-23, are closely linked with tumour-associated inflammation. Albeit the precise role of Th17 cells in cancer is still unclear and a matter of debate, accumulating evidence shows that Th17 cells are enriched in a wide range of human tumours, and that these tumour-derived Th17 cells may promote angiogenesis, tumour growth and inflammation. Regulatory T cells, in turn, appear to have counter-regulatory effects on Th17 cells and can inhibit their function. Thus, the regulatory network, induced and strengthened by continuous exposure to environmental microbiota, may play an important role in tumour immunobiology in preventing the establishment of chronic inflammation in its early phases. In addition, the discovery of the Toll-like receptor (TLR) system has brought micro-organisms to new light; continuous signalling via these TLRs and other receptors that sense microbial components is necessary for epithelial cell integrity, tissue repair, and recovery from injury. In this communication, we summarise the epidemiological data of living in environments with diverse microbial exposures and the risk of cancer, and discuss the related immunological mechanisms, focusing on the links between environmental microbiota, the Th17/IL-23 axis and cancer-associated inflammation.


Cancer Hygiene hypothesis Inflammation Microbes Environment IL-23 Th17 


Search strategy and data selection

Data were extracted from Medline and PubMed searches using keywords “cancer”, “occupation”, “farming”, “inflammation”, “Th17 cells”, “regulatory T cells”, “IL-17”, and “IL-23” in different combinations. In addition, manual searches were performed from references of relevant articles. Articles in the English language published in peer-reviewed journals only were considered. References were selected on the basis of relevance, quality and novelty.

Disclosure of potential conflicts of interest

No conflicts of interest to be declared.


This research was partly funded by the Academy of Finland (grant no. 122 117) and the Sigrid Juselius Foundation.


  1. 1.
    von Hertzen, L. C., Savolainen, J., Hannuksela, M., Klaukka, T., Lauerma, A., Mäkelä, M. J., et al. (2009). Scientific rationale for the Finnish Allergy Programme 2008–2018. Allergy, 64, 678–701.Google Scholar
  2. 2.
    Rook, G. A. W., Adams, V., Hunt, J., Palmer, R., Martinelli, R., & Rosa Brunet, L. (2004). Mycobacteria and other environmental organisms as immunomodulators for immunoreglatory disorders. Springer Semin Immunopathol, 25, 237–255.PubMedGoogle Scholar
  3. 3.
    Klein, G. (2002). Perspectives in studies of human tumor viruses. Frontiers in Bioscience, 7, d268–d274.PubMedGoogle Scholar
  4. 4.
    Coley, W. B. (1893). The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. The American Journal of the Medical Sciences, 105, 487–511.Google Scholar
  5. 5.
    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedGoogle Scholar
  6. 6.
    Enterline, P. E., Sykora, J. L., Keleti, G., & Lange, J. H. (1985). Endotoxin, cotton dust, and cancer. Lancet, 2, 934–935.PubMedGoogle Scholar
  7. 7.
    Rylander, R. (1009). Environmental exposures with decreased risks for lung cancer. International Journal of Epidemiology, 19, 567–572.Google Scholar
  8. 8.
    Mastrangelo, G., Marzia, V., & Marcer, G. (1996). Reduced lung cancer mortality in dairy farmers: Is endotoxin exposure the key factor? American Journal of Industrial Medicine, 30, 601–609.PubMedGoogle Scholar
  9. 9.
    Rapiti, E., Sperati, A., Fano, V., Dell’orco, V., & Forastiere, F. (1997). Mortality among workers at municipal waste incinerators in Rome: A retrospective cohort study. American Journal of Industrial Medicine, 31, 659–661.PubMedGoogle Scholar
  10. 10.
    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell, 118, 229–241.PubMedGoogle Scholar
  11. 11.
    Bollky, P. L., Bice, J. B., Sweet, I. R., Falk, B. A., Gebe, J. A., Clark, A. E., et al. (2009). The Toll-like receptor signalling molecule Myd88 contributes to pancreatic beta-cell homeostasis response to injury. PLoS ONE, 4, e5063.Google Scholar
  12. 12.
    Macedo, L., Pinhal-Enfield, G., Alshits, V., Elson, G., Cronstein, B. N., & Leibovich, S. J. (2007). Wound healing is impaired in MyD88-deficient mice. The American Journal of Pathology, 171, 1774–1788.PubMedGoogle Scholar
  13. 13.
    Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., et al. (2005). Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Natural Medicines, 11, 1173–1179.Google Scholar
  14. 14.
    Seki, E., Tsutsui, H., Iimuro, Y., Naka, T., Son, G., Akira, S., et al. (2005). Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology, 41, 443–450.PubMedGoogle Scholar
  15. 15.
    Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcino-genesis. Nature, 432, 324–331.PubMedGoogle Scholar
  16. 16.
    Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.PubMedGoogle Scholar
  17. 17.
    Vesterinen, E., Pukkala, E., Timonen, T., & Aromaa, A. (1993). Cancer incidence among 78,000 asthmatic patients. International Journal of Epidemiology, 22, 976–982.PubMedGoogle Scholar
  18. 18.
    Rubio, C. A., Kapraali, M., & Befrits, R. (2009). Further studies on the frequency of colorectal cancer in Crohn’s colitis: An 11-year survey in the Northwest Stockholm County. Anticancer Research, 29, 4291–4295.PubMedGoogle Scholar
  19. 19.
    Smyth, E. M., Grosser, T., Wang, M., Yu, Y., & FitzGerald, G. A. (2009). Prostanoids in health and disease. Journal of Lipid Research, 50, S423–S428.PubMedGoogle Scholar
  20. 20.
    Wang, M. T., Honn, K. V., & Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer and Metastasis Reviews, 26, 525–534.PubMedGoogle Scholar
  21. 21.
    Vakkila, J., & Lotze, M. T. (2004). Inflammation and necrosis promote tumour growth. Nature Reviews. Immunology, 4, 641–648.PubMedGoogle Scholar
  22. 22.
    Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454, 428–435.PubMedGoogle Scholar
  23. 23.
    Mantovani, A. (2005). Cancer: Inflammation by remote control. Nature, 435, 752–753.PubMedGoogle Scholar
  24. 24.
    Kuper, H., Adami, H. O., & Trichopoulos, D. (2000). Infections as a major preventable cause of human cancer. J Int Med, 248, 171–183.Google Scholar
  25. 25.
    Laakkonen, A., & Pukkala, E. (2008). Cancer incidence among Finnish farmers 1995–2005. Scandinavian Journal of Work, Environment & Health, 34, 73–79.Google Scholar
  26. 26.
    Mastrangelo, G., Grange, J. M., Fadda, E., Fedeli, U., Buja, A., & Lange, J. H. (2005). Lung cancer risk: Effect of dairy farming and the consequence of removing that occupational exposure. American Journal of Epidemiology, 161, 1037–1046.PubMedGoogle Scholar
  27. 27.
    Lange, J. H., Mastrangelo, G., Fedeli, U., Fadda, E., Rylander, R., & Lee, E. (2003). Endotoxin exposure and lung cancer mortality by type of farming: Is there a hidden dose-response relationship? Annals of Agricultural and Environmental Medicine, 10, 229–232.PubMedGoogle Scholar
  28. 28.
    Mastrangelo, G., Marzia, V., Milan, G., Fadda, E., & Fedeli, U. (2004). An exposure-dependent reduction of lung cancer risk in dairy farmers: A nested case-referent study. Indoor and Built Environment, 13, 335–343.Google Scholar
  29. 29.
    Andersen, A., Barlow, L., Engeland, A., Kjaerheim, K., Lynge, E., & Pukkala, E. (1999). Work-related cancer in the Nordic countries. Scandinavian Journal of Work, Environment & Health, 25(suppl 2), 1–116.Google Scholar
  30. 30.
    Turunen, A. W., Verkasalo, P. K., Kiviranta, H., Pukkala, E., Jula, A., Männistö, S., et al. (2008). Mortality in a cohort with high fish consumption. International Journal of Epidemiology, 37, 1008–1017.PubMedGoogle Scholar
  31. 31.
    Mastrangelo, G., Fadda, E., Rylander, R., Milan, G., Fedell, U., Rossi di Schio, M., et al. (2008). Lung and other cancer site mortality in a cohort of Italian cotton mill workers. Occupational and Environmental Medicine, 65, 697–700.PubMedGoogle Scholar
  32. 32.
    Lange, J. H., Mastrangelo, G., & Thomulka, K. W. (2003). Will sewage workers with endotoxin related symptoms have the benefit of reduced lung cancer? Occupational and Environmental Medicine, 60, 144–145.PubMedGoogle Scholar
  33. 33.
    Laakkonen, A., Verkasalo, P. K., Nevalainen, A., Kauppinen, T., Kyyrönen, P., & Pukkala, E. (2008). Mould, bacteria and cancer among Finns: An occupational cohort study. Occupational and Environmental Medicine, 65, 489–493.PubMedGoogle Scholar
  34. 34.
    Hassler, S., Soininen, L., Sjölander, P., & Pukkala, E. (2008). Cancer among the Sami—A review on the Norwegian, Swedish and Finnish Sami populations. International Journal of Circumpolar Health, 67, 421–432.PubMedGoogle Scholar
  35. 35.
    Vijh, A. K. (2004). Inverse trend between estimated worldwide frequency of major cancers and inferred infectious burdens of populations: possible role of adaptive immune system. Med Hypotheses, 62, 880–888.PubMedGoogle Scholar
  36. 36.
    Fox, J. G., Beck, P., Dangler, C. A., Whary, M. T., Wang, T. C., Shi, H. N., et al. (2000). Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces Helicobacter-induced gastric atrophy. Nat Med, 6, 536–542.PubMedGoogle Scholar
  37. 37.
    Fox, J. G., & Wang, T. G. (2007). Inflammation, atrophy and gastric cancer. Journal of Clinical Investigation, 117, 60–69.PubMedGoogle Scholar
  38. 38.
    Whary, M. T., Sundina, N., Bravo, L. E., Correa, P., Quinones, F., Caro, F., et al. (2005). Intestinal helminthiasis in Columbian children promotes a Th2 responses for gastric carcinogenesis. Cancer Epidemiol Biomark Prev, 14, 1464–1469.Google Scholar
  39. 39.
    Tedeschi, A., & Airaghi, L. (2006). Is affluence a risk factor for bronchial asthma and type 1 diabetes? Pediatric Allergy and Immunology, 17, 533–537.PubMedGoogle Scholar
  40. 40.
    Savu, A., Potter, J., Li, S., & Yasui, Y. (2008). Breast cancer and microbial cancer incidence in female populations around the world: A surprising hyperbolic association. International Journal of Cancer, 123, 1094–1099.Google Scholar
  41. 41.
    Maizels, R. M., & Yazdananbakhsh, M. (2003). Immune regulation by helminth parasites: Cellular and molecular mechanisms. Nature Reviews. Immunology, 3, 733–743.PubMedGoogle Scholar
  42. 42.
    Pinheiro, P., Sherman, R., Trapido, E., Fleming, L., Huang, Y., Gomez-Marin, O., et al. (2009). Cancer incidence in first generation US Hispanics: Cubans, Mexicans, Puerto Ricans, and New Latinos. Cancer Epidemiol Biomark Prev, 18, 2162–2196.Google Scholar
  43. 43.
    Kalyoncu, A. F., & Stålenheim, G. (1992). Serum IgE levels and allergic spectra in immigrants in Sweden. Allergy, 47, 277–280.PubMedGoogle Scholar
  44. 44.
    Pance, A., Reisser, D., & Jeannin, J. F. (2002). Antitumoral effects of lipid A: Preclinical and clinical studies. Journal of Investigative Medicine, 50, 173–178.PubMedGoogle Scholar
  45. 45.
    Reisser, D., Pance, A., & Jeannin, J. F. (2002). Mechanisms of the anti-tumoral effect of lipid A. Bioessays, 24, 284–289.PubMedGoogle Scholar
  46. 46.
    Parvez, S., Malik, K., Kang, A., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100, 1171–1185.PubMedGoogle Scholar
  47. 47.
    Fichera, G. A., & Giese, G. (1994). Non-immunologically mediated cytotoxicity of Lactobacillus casei and its derivative peptidoglycan against tumor cell lines. Cancer Letters, 85, 93–103.PubMedGoogle Scholar
  48. 48.
    Akaza, H., Iwasaki, A., Ohtani, M., Ikeda, N., Niijima, K., Toida, I., et al. (1993). Expression of antitumor responses. Role of attachment and viability of Bacillus Calmette-Guerin to bladder cancer cells. Cancer, 72, 558–563.PubMedGoogle Scholar
  49. 49.
    Zheng, R., Jie, S., Hanchuan, D., & Moucheng, W. (2005). Characterization and immunomodulating activities of polysaccharide from Lentinus edodes. International Immunopharmacology, 5, 811–820.PubMedGoogle Scholar
  50. 50.
    Krieg, A. M. (2008). Toll-like 9 (TLR 9) agonists in the treatment of cancer. Oncogene, 27, 161–167.PubMedGoogle Scholar
  51. 51.
    Juckett, D. A., Aylsworth, C. F., & Quensen, J. M. (2008). Intestinal protozoa are hypothesized to stimulate immunosurveillance against colon cancer. Med Hypotheses, 71, 104–110.PubMedGoogle Scholar
  52. 52.
    Otto, F., Schmid, P., MacKensen, A., Wehr, U., Seiz, A., Braun, M., et al. (1996). Phase II trial of intravenous endotoxin in patients with colorectal and non-small cell lung cancer. European Journal of Cancer, 32A, 1712–1718.PubMedGoogle Scholar
  53. 53.
    Grange, J. M., Bottasso, O., Standford, C. A., & Standford, J. L. (2008). The use of mycobacterial adjuvant-based agents for immunotherapy of cancer. Vaccine, 26, 4984–4990.PubMedGoogle Scholar
  54. 54.
    Andreani, V., Gatti, G., Simonella, L., Rivero, V., & Maccioni, M. (2007). Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo. Cancer Research, 67, 10519–10527.PubMedGoogle Scholar
  55. 55.
    da Silva Correia, J., Miranda, Y., Austin-Brown, N., Hsu, J., Mathison, J., Xiang, R., et al. (2006). Nod1-dependent control of tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 103, 1840–1845.PubMedGoogle Scholar
  56. 56.
    Klymkowsky, M. W., & Savanger, P. (2009). Epithelial-mesenchymal transition. A cancer researcher’s conceptual friend and foe. Am J Pathol, 174, 1588–1593.PubMedGoogle Scholar
  57. 57.
    Berx, G., Raspe, E., Christofori, G., Thiery, J. P., & Sleeman, J. P. (2007). Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clinical & Experimental Metastasis, 24, 587–597.Google Scholar
  58. 58.
    Ratajczak, M. Z., Shin, D. M., & Kucia, M. (2009). Very small embryonic/epiblast-like stem cells. A missing link to support the germ line hypothesis of cancer development? The American Journal of Pathology, 174, 1985–1992.PubMedGoogle Scholar
  59. 59.
    Chen, G. Y., & Núnez, G. (2009). Gut immunity: A NOD to the commensals. Current Biology, 19, R171–R174.PubMedGoogle Scholar
  60. 60.
    Cozen, W., Hamilton, A. S., Zhao, P., Salam, M., Deapen, D., Nathwani, B., et al. (2009). A protective role for early oral exposures in the etiology of young adult Hodgkin lymphoma. Blood, 114, 401419.Google Scholar
  61. 61.
    Cao, X. (2010). Regulatory T cells and immune tolerance to tumors. Immunol Res, 46(1–3), 79–93.PubMedGoogle Scholar
  62. 62.
    Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nature Reviews. Immunology, 6, 295–307.PubMedGoogle Scholar
  63. 63.
    Gallimore, A. M., & Simon, A. K. (2008). Positive and negative influences of regulatory T cells on tumour immunity. Oncogene, 27, 5886–5893.PubMedGoogle Scholar
  64. 64.
    Afzali, B., Lombardi, G., Lechler, R. I., & Lord, G. M. (2007). The role of T helper 17 (Th17) and regulatory T cells (T reg) in human organ transplantation and autoimmune diseases. Clinical and Experimental Immunology, 148, 32–46.PubMedGoogle Scholar
  65. 65.
    Boniface, K., Blom, B., Liu, Y. J., & de Waal, M. R. (2008). From interleukin-23 to T-helper 17 cells: Human T-helper cell differentiation revisited. Immunological Reviews, 226, 132–146.PubMedGoogle Scholar
  66. 66.
    Mizuno, T., Ando, T., Nobata, K., Tsuzuki, T., Maeda, O., Watanabe, O., et al. (2005). Interleukin-17 levels in Helicobacter pylori-infected gastric mucosa and pathologic sequelae of colonization. World Journal of Gastroenterology, 11, 6305–6311.PubMedGoogle Scholar
  67. 67.
    Zheng, Y., Danilenko, D. M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, J., et al. (2007). Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature, 445, 648–651.PubMedGoogle Scholar
  68. 68.
    McGeachy, M. J., Chen, Y., Tato, C. M., Laurence, A., Joyce-Saikh, B., Blumenschein, W. M., et al. (2009). The interleukin-23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunology, 10, 314–324.PubMedGoogle Scholar
  69. 69.
    Annunziato, F., & Romagnani, S. (2009). Do studies in humans better depict TH17 cells? Blood, 114, 2213–2219.PubMedGoogle Scholar
  70. 70.
    Wu, C., Wang, S., Wang, F., Chen, Q., Peng, S., Zhang, Y., et al. (2009). Increased frequencies of T helper type 17 cells in the peripheral blood of patients with acute myeloid leukaemia. Clinical and Experimental Immunology, 158, 1999–1204.Google Scholar
  71. 71.
    O’Carra, A., Stockinger, B., & Veldhoen, M. (2008). Differentiation of human Th17 cells does require TGF-β. Nature Immunology, 9, 588–590.Google Scholar
  72. 72.
    Zhou, L., Lopes, J. E., Chong, M., Ivanov, I., Min, R., Victora, G., et al. (2008). TGF-β induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORγt function. Nature, 453, 236–241.PubMedGoogle Scholar
  73. 73.
    Winer, S., Paltser, G., Chan, Y., Tsui, H., Engelman, E., Winer, D., et al. (2009). Obesity predisposes to Th17 bias. European Journal of Immunology, 39, 2629–2635.PubMedGoogle Scholar
  74. 74.
    van Kruijsdijk, R., van der Wall, E., & Visseren, F. (2009). Obesity and cancer: The role of dysfunctional adipose tissue. Cancer Epidemiol Biomark Prev, 18, 2569–2578.Google Scholar
  75. 75.
    Tato, C. M., & Cua, D. J. (2008). Reconciling id, ego, and superego within intreleukin-23. Immunological Reviews, 226, 103–111.PubMedGoogle Scholar
  76. 76.
    Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., et al. (2007). Phenotypic and functional features of human Th17 cells. The Journal of Experimental Medicine, 204, 1849–1861.PubMedGoogle Scholar
  77. 77.
    Kolls, J., & Linden, A. (2004). Interleukin-17 family members and inflammation. Immunity, 21, 467–476.PubMedGoogle Scholar
  78. 78.
    Radhakrishnan, C., Cabrera, R., Schenk, E., Nava-Parada, P., Bell, M., van Keulen, V., et al. (2008). Reprogrammed Foxp3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. Journal of Immunology, 181, 3137–3147.Google Scholar
  79. 79.
    Ayyoub, M., Deknuydt, F., Raimbaud, I., Dousset, C., Leveque, L., Bioley, G., et al. (2009). Human memory Foxp3+ Tregs secrete IL-17 ex vivo and constitutively express the Th17 lineage-specific transcription factor RORgamma t. Proceedings of the National Academy of Sciences of the United States of America, 106, 8635–8640.PubMedGoogle Scholar
  80. 80.
    Zheng, S., Wang, J., & Horwitz, D. (2008). Foxp3+ CD4 + CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. Journal of Immunology, 180, 7112–7116.Google Scholar
  81. 81.
    Martin-Orozco, N., & Dong, C. (2009). The IL-17/IL-23 axis of inflammation in cancer: Friend or foe? Curr Opin Investig Drugs, 10, 543–549.PubMedGoogle Scholar
  82. 82.
    Salama, P., Phillips, M., Grieu, F., Morris, M., Zeps, N., Joseph, D., et al. (2009). Tumor-infiltrating Foxp3 + T regulatory cells show strong prognostic significance in colorectal cancer. Journal of Clinical Oncology, 27, 186–192.PubMedGoogle Scholar
  83. 83.
    Kryczek, I., Banerjee, M., Cheng, P., Vatan, L., Szeliga, W., Wel, S., et al. (2009). Phenotype, distribution, generation, functional and clinical relevance of Th17 cells in the human tumor environments. Blood, 114, 1141–1149.PubMedGoogle Scholar
  84. 84.
    Muranski, P., Boni, A., Antony, P. A., Cassard, L., Irvine, K., Kaiser, A., et al. (2008). Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 112, 362–373.PubMedGoogle Scholar
  85. 85.
    Langowski, J. L., Zhang, X., Wu, L., Mattson, J. D., Chen, T., Smith, K., et al. (2006). IL-23 promotes tumour incidence and growth. Nature, 442, 461–465.PubMedGoogle Scholar
  86. 86.
    Martin-Orozco, N., Muranski, P., Chung, Y., Yang, X. O., Yamazaki, T., Lu, S., et al. (2009). T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity, 31, 787–798.PubMedGoogle Scholar
  87. 87.
    Su, X., Ye, J., Hsueh, E., Zhang, Y., Hoft, D., & Peng, G. (2010). Tumor microenvironment direct the recruitment and expansion of human Th17 cells. Journal of Immunology, 184, 1630–1641.Google Scholar
  88. 88.
    Loddenkemper, C., Schernus, M., Noutsias, M., Stein, H., Thiel, E., & Nagorsen, D. (2006). In situ analysis of Foxp3+ regulatory T cells in human colorectal cancer. Journal of Translational Medicine, 4, 52.PubMedGoogle Scholar
  89. 89.
    Tzankov, A., Meier, C., Hirschmann, P., Went, P., Pileri, S. A., & Dirnhofer, S. (2008). Correlation of high numbers of intratumoral Foxp3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica, 93, 193–200.PubMedGoogle Scholar
  90. 90.
    Haas, M., Dimmler, A., Hohenberger, W., Grabenbauer, G. G., Niedobitek, G., & Distel, L. V. (2009). Stromal regulatory T cells are associated with favourable prognosis in gastric cancer of the cardia. BMC Gastroenterology, 9, 65.PubMedGoogle Scholar
  91. 91.
    Erdman, S. E., Sohn, J. J., Rao, V. P., Nambiar, P. R., Ge, Z., Fox, J. G., et al. (2005). CD4 + CD25+ regulatory lymphocytes induce regression of intestinal tumors in Apc Min/+ mice. Cancer Research, 65, 3998–4004.PubMedGoogle Scholar
  92. 92.
    Mocellin, S., Marincola, F. M., & Young, H. A. (2005). Interleukin-10 and the immune response against cancer: A counterpoint. Journal of Leukocyte Biology, 78, 1043–1051.PubMedGoogle Scholar
  93. 93.
    Massague, J. (2008). TGFβ in cancer. Cell, 134, 215–230.PubMedGoogle Scholar
  94. 94.
    Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation and cancer. The Journal of Clinical Investigation, 117, 1175–1183.PubMedGoogle Scholar
  95. 95.
    Yang, L. (2010). TGFβ and cancer metastasis: An inflammation link. Cancer and Metastasis Reviews, 29, 263–271.PubMedGoogle Scholar
  96. 96.
    Clevers, H. (2004). At the crossroads of inflammation and cancer. Cell, 118, 671–674.PubMedGoogle Scholar
  97. 97.
    Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., et al. (2009). Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Natural Medicines, 15, 633–640.Google Scholar
  98. 98.
    Chizzolini, C., Chicheportiche, R., Alvarez, M., de Rham, C., Roux-Lombard, P., Ferrari-Llacraz, S., et al. (2008). Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood, 112, 3696–3703.PubMedGoogle Scholar
  99. 99.
    Boniface, K., Bak-Jensen, K. S., Li, Y., Blumenschein, W. M., McGearchy, M. J., McClanahan, T. K., et al. (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signalling. The Journal of Experimental Medicine, 206, 535–548.PubMedGoogle Scholar
  100. 100.
    Schelbanie, A. T., Tadmori, I., Jing, H., Vassiliou, E., & Ganea, D. (2004). Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. The FASEB Journal, 18, 1318–1320.Google Scholar
  101. 101.
    Schnurr, M., Toy, T., Shin, A., Wagner, M., Cebon, J., & Maraskovsky, E. (2005). Extracellular nucleotides signalling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: A novel role for the cAMP pathway. Blood, 105, 1582–1589.PubMedGoogle Scholar
  102. 102.
    Mulder, I., Schmidt, B., Stokes, C., Lewis, M., Bailey, M., Aminov, R., et al. (2009). Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biology, 7, 79.PubMedGoogle Scholar
  103. 103.
    Pagés, F., Galon, J., Dieu-Nosjean, M.-C., Tartour, E., Sautes-Fridman, C., & Fridman, W.-H. (2010). Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene, 29, 1093–1102.PubMedGoogle Scholar
  104. 104.
    Yang, L., & Moses, H. (2009). Transforming growth factor β: Tumor suppressor or promoter? Are host immune cells the answer? Cancer Research, 68, 9107–9111.Google Scholar
  105. 105.
    Budhu, A., Forgues, M., Ye, Q.-H., Jia, H.-L., He, P., Zanetti, K., et al. (2006). Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell, 10, 99–111.PubMedGoogle Scholar
  106. 106.
    Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagés, C., et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313, 1960–1964.PubMedGoogle Scholar
  107. 107.
    Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Natural Medicines, 14, 518–526.Google Scholar
  108. 108.
    Steidl, C., Lee, T., Shah, S., Farinha, P., Han, G., Nayar, T., et al. (2010). Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. New Engl J Med, 362, 875–885.PubMedGoogle Scholar
  109. 109.
    Hiraoka, K., Miyamoto, M., Suzuoki, M., Oshikiri, T., Nakakubo, Y., Itoh, T., et al. (2006). Concurrent infiltration by CD8+ T cells adn CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer, 94, 275–280.PubMedGoogle Scholar
  110. 110.
    Hubert, P., Jacobs, N., Caberg, J.-H., Boniver, J., & Delvenne, P. (2007). The cross-talk between dendritic and regulatory T cells: Good or evil? Journal of Leukocyte Biology, 82, 781–794.PubMedGoogle Scholar
  111. 111.
    Koch, M., Tucker-Heard, G., Perdue, N., Killebrew, J., Urdahl, K., & Campbell, D. (2009). The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunology, 10, 595–602.PubMedGoogle Scholar
  112. 112.
    Barnes, M., & Powrie, F. (2009). Hybrid T reg cells: Steel frames and plastic exteriors. Nature Immunology, 10, 563–564.PubMedGoogle Scholar
  113. 113.
    Kullberg, M., Jancovic, D., Gorelick, P., Caspar, P., Letterio, J., Cheever, A., et al. (2002). Bacteria-tiggered CD4+ T regulatory cells suppress Helicobacter hepaticus-induced colitis. The Journal of Experimental Medicine, 196, 505–515.PubMedGoogle Scholar
  114. 114.
    Erdman, S., Rao, V., Olipitz, W., Taylor, C., Jackson, E., Levkovich, T., et al. (2010). Unifying roles for regulatory T cells and inflammation in cancer. International Journal of Cancer, 126, 1651–1665.Google Scholar
  115. 115.
    Erdman, S., & Poutahidis, T. (2010). Cancer inflammation and regulatory T cells. International Journal of Cancer, 127, 768–779.Google Scholar
  116. 116.
    Erdman, S., & Putahidis, T. (2010). Roles for inflammation and regulatory T cells in colon cancer. Toxicologic Pathology, 38, 76–87.PubMedGoogle Scholar
  117. 117.
    Fidler, I. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 1–6.Google Scholar
  118. 118.
    Mantovani, A. (2009). Inflaming metastasis. Nature, 457, 36–37.PubMedGoogle Scholar
  119. 119.
    Bettelli, E., Oukka, M., & Kuchroo, V. K. (2007). Th17 cells in the circle of immunity and autoimmunity. Nature Immunology, 8, 345–350.PubMedGoogle Scholar
  120. 120.
    Rao, V., Poutahidas, T., Fox, J., & Erdman, S. (2007). Breast cancer: Should gastrointestinal bacteria be on our radar screen? Cancer Research, 67, 847–850.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Leena C. von Hertzen
    • 1
  • H. Joensuu
    • 2
  • T. Haahtela
    • 1
  1. 1.Skin and Allergy HospitalHelsinki University Central HospitalHelsinkiFinland
  2. 2.Department of OncologyHelsinki University Central HospitalHelsinkiFinland

Personalised recommendations