Cancer and Metastasis Reviews

, Volume 28, Issue 3–4, pp 345–353 | Cite as

The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette–Guérin (BCG) immunotherapy for urothelial carcinoma of the bladder

  • Henry M. Rosevear
  • Andrew J. Lightfoot
  • Michael A. O’Donnell
  • Thomas S. Griffith


Intravesical Mycobacterium bovis bacillus Calmette–Guérin (BCG) immunotherapy is a highly effective treatment for carcinoma in situ of the bladder, as well as high-risk nonmuscle invasive urothelial carcinoma of the bladder. Despite over 30 years of clinical experience with BCG, the therapy’s mechanism has remained enigmatic. Observations regarding the role of neutrophils in BCG immunotherapy have led to exciting discoveries regarding the potential role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in creating the therapeutic benefit of BCG immunotherapy. In this paper, we will review the scope of the disease, highlight our understanding of the role for BCG in urothelial carcinoma of the bladder, explain the recent discoveries regarding the role of neutrophils and TRAIL in therapy, and theorize on potential future areas of research.


BCG Neutrophil TRAIL Urothelial carcinoma Bladder cancer 


  1. 1.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics, 2008. CA: A Cancer Journal for Clinicians, 58, 71–96.CrossRefGoogle Scholar
  2. 2.
    Parkin, D. M. (2008). The global burden of urinary bladder cancer. Scandinavian Journal of Urology and Nephrology Supplementum, 42, 12–20.CrossRefGoogle Scholar
  3. 3.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., & Thun, M. J. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59, 225–249.CrossRefGoogle Scholar
  4. 4.
    Vainio, H., Heseltine, E., & Wilbourn, J. (1994). Priorities for future IARC monographs on the evaluation of carcinogenic risks to humans. Environmental Health Perspectives, 102, 590–591.CrossRefPubMedGoogle Scholar
  5. 5.
    Kirkali, Z., Chan, T., Manoharan, M., Algaba, F., Busch, C., Cheng, L., et al. (2005). Bladder cancer: Epidemiology, staging and grading, and diagnosis. Urology, 66, 4–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Lopez-Beltran, A., & Montironi, R. (2004). Non-invasive urothelial neoplasms: According to the most recent WHO classification. European Urology, 46, 170–176.CrossRefPubMedGoogle Scholar
  7. 7.
    Montironi, R., & Lopez-Beltran, A. (2005). The 2004 WHO classification of bladder tumors: A summary and commentary. International Journal of Surgical Pathology, 13, 143–153.CrossRefPubMedGoogle Scholar
  8. 8.
    Reuter, V. E. (2006). The pathology of bladder cancer. Urology, 67, 11–17. discussion 17–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Pavone-Macaluso, M., Lopez-Beltran, A., Aragona, F., Bassi, P., & Fitzpatrick, J. M. (2006). The pathology of bladder cancer: An update on selected issues. BJU International, 98, 1161–1165.CrossRefPubMedGoogle Scholar
  10. 10.
    Kretschmer, H. (1925). Haematuria: A clinical study based on 933 consecutive cases. Surgery, Gynecology and Obstetrics, 40, 683–686.Google Scholar
  11. 11.
    Montironi, R., Mazzucchelli, R., Scarpelli, M., Lopez-Beltran, A., & Cheng, L. (2008). Morphological diagnosis of urothelial neoplasms. Journal of Clinical Pathology, 61, 3–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Eble, J. (2004). World health organization classification of tumors: Pathology and genetics of tumors of the urinary system and male genital organs. Lyons: IARC.Google Scholar
  13. 13.
    Klein, E. A., et al. (2007). Epidemiology, etiology, and prevention of prostate cancer. In A. J. Wein, et al. (Eds.), Campbell-Walsh urology. Philadelphia: Saunders.Google Scholar
  14. 14.
    Droller, M. J. (1998). Bladder cancer: State-of-the-art care. CA: A Cancer Journal for Clinicians, 48, 269–284.CrossRefGoogle Scholar
  15. 15.
    Kaye, K. W., & Lange, P. H. (1982). Mode of presentation of invasive bladder cancer: Reassessment of the problem. Journal of Urology, 128, 31–33.PubMedGoogle Scholar
  16. 16.
    Kemp, T. J., Ludwig, A. T., Earel, J. K., Moore, J. M., Vanoosten, R. L., Moses, B., et al. (2005). Neutrophil stimulation with Mycobacterium bovis bacillus Calmette–Guerin (BCG) results in the release of functional soluble TRAIL/Apo-2L. Blood, 106, 3474–3482.CrossRefPubMedGoogle Scholar
  17. 17.
    Botteman, M. F., Pashos, C. L., Redaelli, A., Laskin, B., & Hauser, R. (2003). The health economics of bladder cancer: A comprehensive review of the published literature. Pharmacoeconomics, 21, 1315–1330.CrossRefPubMedGoogle Scholar
  18. 18.
    Hollenbeck, B. K., Ye, Z., Dunn, R. L., Montie, J. E., & Birkmeyer, J. D. (2009). Provider treatment intensity and outcomes for patients with early-stage bladder cancer. Journal of the National Cancer Institute, 101, 571–580.CrossRefPubMedGoogle Scholar
  19. 19.
    Morales, A., Eidinger, D., & Bruce, A. W. (1976). Intracavitary bacillus Calmette–Guerin in the treatment of superficial bladder tumors. Journal of Urology, 116, 180–183.PubMedGoogle Scholar
  20. 20.
    Belldegrun, A. S., Franklin, J. R., O'Donnell, M. A., Gomella, L. G., Klein, E., Neri, R., et al. (1998). Superficial bladder cancer: The role of interferon-alpha. Journal of Urology, 159, 1793–1801.CrossRefPubMedGoogle Scholar
  21. 21.
    Weiss, G. R., O'Donnell, M. A., Loughlin, K., Zonno, K., Laliberte, R. J., & Sherman, M. L. (2003). Phase 1 study of the intravesical administration of recombinant human interleukin-12 in patients with recurrent superficial transitional cell carcinoma of the bladder. Journal of Immunotherapy, 26, 343–348.CrossRefPubMedGoogle Scholar
  22. 22.
    Joudi, F. N., Smith, B. J., & O'Donnell, M. A. (2006). Final results from a national multicenter phase II trial of combination bacillus Calmette–Guerin plus interferon alpha-2B for reducing recurrence of superficial bladder cancer. Urologic Oncology, 24, 344–348.PubMedGoogle Scholar
  23. 23.
    Babjuk, M., Oosterlinck, W., Sylvester, R., Kaasinen, E., Bohle, A., & Palou-Redorta, J. (2008). EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. European Urology, 54, 303–314.CrossRefPubMedGoogle Scholar
  24. 24.
    Herr, H. W., Laudone, V. P., Badalament, R. A., Oettgen, H. F., Sogani, P. C., Freedman, B. D., et al. (1988). Bacillus Calmette–Guerin therapy alters the progression of superficial bladder cancer. Journal of Clinical Oncology, 6, 1450–1455.PubMedGoogle Scholar
  25. 25.
    Pawinski, A., Sylvester, R., Kurth, K. H., Bouffioux, C., van der Meijden, A., Parmar, M. K., et al. (1996). A combined analysis of European organization for research and treatment of cancer, and medical research council randomized clinical trials for the prophylactic treatment of stage TaT1 bladder cancer. European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical Research Council Working Party on Superficial Bladder Cancer. Journal of Urology, 156, 1934–1940. discussion 1940–1931.CrossRefPubMedGoogle Scholar
  26. 26.
    Sylvester, R. J., van der Meijden, A. P., Witjes, J. A., & Kurth, K. (2005). Bacillus Calmette–Guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: A meta-analysis of the published results of randomized clinical trials. Journal of Urology, 174, 86–91. discussion 91–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Herr, H. W., Schwalb, D. M., Zhang, Z. F., Sogani, P. C., Fair, W. R., Whitmore, W. F., Jr., et al. (1995). Intravesical bacillus Calmette–Guerin therapy prevents tumor progression and death from superficial bladder cancer: Ten-year follow-up of a prospective randomized trial. Journal of Clinical Oncology, 13, 1404–1408.PubMedGoogle Scholar
  28. 28.
    Hall, M. C., Chang, S. S., Dalbagni, G., Pruthi, R. S., Seigne, J. D., Skinner, E. C., et al. (2007). Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update. Journal of Urology, 178, 2314–2330.CrossRefPubMedGoogle Scholar
  29. 29.
    Spiess, P. E., & Grossman, H. B. (2006). Fluorescence cystoscopy: Is it ready for use in routine clinical practice? Current Opinion in Urology, 16, 372–376.CrossRefPubMedGoogle Scholar
  30. 30.
    Kriegmair, M., Baumgartner, R., Knuchel, R., Stepp, H., Hofstadter, F., & Hofstetter, A. (1996). Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. Journal of Urology, 155, 105–109. discussion 109–110.CrossRefPubMedGoogle Scholar
  31. 31.
    Lamm, D. L. (1992). Long-term results of intravesical therapy for superficial bladder cancer. Urologic Clinics of North America, 19, 573–580.PubMedGoogle Scholar
  32. 32.
    Bohle, A., Jocham, D., & Bock, P. R. (2003). Intravesical bacillus Calmette–Guerin versus mitomycin C for superficial bladder cancer: A formal meta-analysis of comparative studies on recurrence and toxicity. Journal of Urology, 169, 90–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Lamm, D. L., van der Meijden, P. M., Morales, A., Brosman, S. A., Catalona, W. J., Herr, H. W., et al. (1992). Incidence and treatment of complications of bacillus Calmette–Guerin intravesical therapy in superficial bladder cancer. Journal of Urology, 147, 596–600.PubMedGoogle Scholar
  34. 34.
    Bhan, R., Pisharodi, L. R., Gudlaugsson, E., & Bedrossian, C. (1998). Cytological, histological, and clinical correlations in intravesical bacillus Calmette–Guerin immunotherapy. Annals of Diagnostic Pathology, 2, 55–60.CrossRefPubMedGoogle Scholar
  35. 35.
    Anonymous. (1998). Case records of the Massachusetts General Hospital Weekly Clinicopathological exercises Case 29. New England Journal of Medicine, 339, 831.Google Scholar
  36. 36.
    Elkabani, M., Greene, J. N., Vincent, A. L., VanHook, S., & Sandin, R. L. (2000). Disseminated Mycobacterium bovis after intravesicular bacillus Calmette–Guérin treatments for bladder cancer. Cancer Control: Journal of the Moffitt Cancer Center, 7, 476–481.Google Scholar
  37. 37.
    Nadasy, K. A., Patel, R. S., Emmett, M., Murillo, R. A., Tribble, M. A., Black, R. D., et al. (2008). Four cases of disseminated Mycobacterium bovis infection following intravesical BCG instillation for treatment of bladder carcinoma. Southern Medical Journal, 101, 91–95.PubMedGoogle Scholar
  38. 38.
    Saint, F., Patard, J. J., Irani, J., Salomon, L., Hoznek, A., Legrand, P., et al. (2001). Leukocyturia as a predictor of tolerance and efficacy of intravesical BCG maintenance therapy for superficial bladder cancer. Urology, 57, 617–621. discussion 621–612.CrossRefPubMedGoogle Scholar
  39. 39.
    Torrence, R. J., Kavoussi, L. R., Catalona, W. J., & Ratliff, T. L. (1988). Prognostic factors in patients treated with intravesical bacillus Calmette–Guerin for superficial bladder cancer. Journal of Urology, 139, 941–944.PubMedGoogle Scholar
  40. 40.
    Watanabe, E., Matsuyama, H., Matsuda, K., Ohmi, C., Tei, Y., Yoshihiro, S., et al. (2003). Urinary interleukin-2 may predict clinical outcome of intravesical bacillus Calmette–Guerin immunotherapy for carcinoma in situ of the bladder. Cancer Immunology and Immunotherapy, 52, 481–486.CrossRefPubMedGoogle Scholar
  41. 41.
    Saint, F., Patard, J. J., Maille, P., Soyeux, P., Hoznek, A., Salomon, L., et al. (2002). Prognostic value of a T helper 1 urinary cytokine response after intravesical bacillus Calmette–Guerin treatment for superficial bladder cancer. Journal of Urology, 167, 364–367.CrossRefPubMedGoogle Scholar
  42. 42.
    Shintani, Y., Sawada, Y., Inagaki, T., Kohjimoto, Y., Uekado, Y., & Shinka, T. (2007). Intravesical instillation therapy with bacillus Calmette–Guerin for superficial bladder cancer: Study of the mechanism of bacillus Calmette–Guerin immunotherapy. International Journal of Urology, 14, 140–146.CrossRefPubMedGoogle Scholar
  43. 43.
    Yarbro, C., Frogge, M., & Goodman, M. (2006). Cancer nursing: Principles and practice, 6th edn. Sudburry, Massachusetts: Jones and Bartlett Publishers.Google Scholar
  44. 44.
    Ludwig, A. T., Moore, J. M., Luo, Y., Chen, X., Saltsgaver, N. A., O'Donnell, M. A., et al. (2004). Tumor necrosis factor-related apoptosis-inducing ligand: A novel mechanism for bacillus Calmette–Guerin-induced antitumor activity. Cancer Research, 64, 3386–3390.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao, W., Schorey, J. S., Groger, R., Allen, P. M., Brown, E. J., & Ratliff, T. L. (1999). Characterization of the fibronectin binding motif for a unique mycobacterial fibronectin attachment protein, FAP. Journal of Biological Chemistry, 274, 4521–4526.CrossRefPubMedGoogle Scholar
  46. 46.
    Kavoussi, L. R., Brown, E. J., Ritchey, J. K., & Ratliff, T. L. (1990). Fibronectin-mediated Calmette–Guerin bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumor response. Journal of Clinical Investigation, 85, 62–67.CrossRefPubMedGoogle Scholar
  47. 47.
    Becich, M. J., Carroll, S., & Ratliff, T. L. (1991). Internalization of bacille Calmette–Guerin by bladder tumor cells. Journal of Urology, 145, 1316–1324.PubMedGoogle Scholar
  48. 48.
    Luo, Y., Szilvasi, A., Chen, X., DeWolf, W. C., & O'Donnell, M. A. (1996). A novel method for monitoring Mycobacterium bovis BCG trafficking with recombinant BCG expressing green fluorescent protein. Clinical and Diagnostic Laboratory Immunology, 3, 761–768.PubMedGoogle Scholar
  49. 49.
    Schamhart, D. H., de Boer, E. C., de Reijke, T. M., & Kurth, K. (2000). Urinary cytokines reflecting the immunological response in the urinary bladder to biological response modifiers: Their practical use. European Urology, 37(Suppl 3), 16–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Thalmann, G. N., Sermier, A., Rentsch, C., Mohrle, K., Cecchini, M. G., & Studer, U. E. (2000). Urinary interleukin-8 and 18 predict the response of superficial bladder cancer to intravesical therapy with bacillus Calmette–Guerin. Journal of Urology, 164, 2129–2133.CrossRefPubMedGoogle Scholar
  51. 51.
    de Boer, E. C., de Jong, W. H., van der Meijden, A. P., Steerenberg, P. A., Witjes, F., Vegt, P. D., et al. (1991). Leukocytes in the urine after intravesical BCG treatment for superficial bladder cancer. A flow cytofluorometric analysis. Urologic Research, 19, 45–50.CrossRefGoogle Scholar
  52. 52.
    de Reijke, T. M., de Boer, E. C., Kurth, K. H., & Schamhart, D. H. (1996). Urinary cytokines during intravesical bacillus Calmette–Guerin therapy for superficial bladder cancer: Processing, stability and prognostic value. Journal of Urology, 155, 477–482.CrossRefPubMedGoogle Scholar
  53. 53.
    Bohle, A., Nowc, C., Ulmer, A. J., Musehold, J., Gerdes, J., Hofstetter, A. G., et al. (1990). Elevations of cytokines interleukin-1, interleukin-2 and tumor necrosis factor in the urine of patients after intravesical bacillus Calmette–Guerin immunotherapy. Journal of Urology, 144, 59–64.PubMedGoogle Scholar
  54. 54.
    Jackson, A. M., Alexandroff, A. B., Kelly, R. W., Skibinska, A., Esuvaranathan, K., Prescott, S., et al. (1995). Changes in urinary cytokines and soluble intercellular adhesion molecule-1 (ICAM-1) in bladder cancer patients after bacillus Calmette–Guerin (BCG) immunotherapy. Clinical and Experimental Immunology, 99, 369–375.PubMedCrossRefGoogle Scholar
  55. 55.
    Luo, Y., Chen, X., Downs, T. M., DeWolf, W. C., & O'Donnell, M. A. (1999). IFN-alpha 2B enhances Th1 cytokine responses in bladder cancer patients receiving Mycobacterium bovis bacillus Calmette–Guerin immunotherapy. Journal of Immunology, 162, 2399–2405.Google Scholar
  56. 56.
    Armitage, R. J. (1994). Tumor necrosis factor receptor superfamily members and their ligands. Current Opinion in Immunology, 6, 407–413.CrossRefPubMedGoogle Scholar
  57. 57.
    Martinez-Lorenzo, M. J., Alava, M. A., Gamen, S., Kim, K. J., Chuntharapai, A., Pineiro, A., et al. (1998). Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. European Journal of Immunology, 28, 2714–2725.CrossRefPubMedGoogle Scholar
  58. 58.
    Cha, S. S., Kim, M. S., Choi, Y. H., Sung, B. J., Shin, N. K., Shin, H. C., et al. (1999). 2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. Immunity, 11, 253–261.CrossRefPubMedGoogle Scholar
  59. 59.
    Hymowitz, S. G., Christinger, H. W., Fuh, G., Ultsch, M., O'Connell, M., Kelley, R. F., et al. (1999). Triggering cell death: The crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Molecular Cell, 4, 563–571.CrossRefPubMedGoogle Scholar
  60. 60.
    Hymowitz, S. G., O'Connell, M. P., Ultsch, M. H., Hurst, A., Totpal, K., Ashkenazi, A., et al. (2000). A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry, 39, 633–640.CrossRefPubMedGoogle Scholar
  61. 61.
    Bodmer, J. L., Meier, P., Tschopp, J., & Schneider, P. (2000). Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. Journal of Biological Chemistry, 275, 20632–20637.CrossRefPubMedGoogle Scholar
  62. 62.
    Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 3, 673–682.CrossRefPubMedGoogle Scholar
  63. 63.
    Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., & Ashkenazi, A. (1996). Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. Journal of Biological Chemistry, 271, 12687–12690.CrossRefPubMedGoogle Scholar
  64. 64.
    Griffith, T. S., Chin, W. A., Jackson, G. C., Lynch, D. H., & Kubin, M. Z. (1998). Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. Journal of Immunology, 161, 2833–2840.Google Scholar
  65. 65.
    Griffith, T. S., Rauch, C. T., Smolak, P. J., Waugh, J. Y., Boiani, N., Lynch, D. H., et al. (1999). Functional analysis of TRAIL receptors using monoclonal antibodies. Journal of Immunology, 162, 2597–2605.Google Scholar
  66. 66.
    Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., & Goodwin, R. G. (1997). The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity, 7, 813–820.CrossRefPubMedGoogle Scholar
  67. 67.
    Griffith, T. S., & Lynch, D. H. (1998). TRAIL: A molecule with multiple receptors and control mechanisms. Current Opinion in Immunology, 10, 559–563.CrossRefPubMedGoogle Scholar
  68. 68.
    Emery, J. G., McDonnell, P., Burke, M. B., Deen, K. C., Lyn, S., Silverman, C., et al. (1998). Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. Journal of Biological Chemistry, 273, 14363–14367.CrossRefPubMedGoogle Scholar
  69. 69.
    Walczak, H., Degli-Esposti, M. A., Johnson, R. S., Smolak, P. J., Waugh, J. Y., Boiani, N., et al. (1997). TRAIL-R2: A novel apoptosis-mediating receptor for TRAIL. EMBO Journal, 16, 5386–5397.CrossRefPubMedGoogle Scholar
  70. 70.
    Pang, A. S., & Morales, A. (1982). BCG induced murine peritoneal exudate cells: Cytotoxic activity against a syngeneic bladder tumor cell line. Journal of Urology, 127, 1225–1229.PubMedGoogle Scholar
  71. 71.
    Song, K., Chen, Y., Goke, R., Wilmen, A., Seidel, C., Goke, A., et al. (2000). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. Journal of Experimental Medicine, 191, 1095–1104.CrossRefPubMedGoogle Scholar
  72. 72.
    Lamhamedi-Cherradi, S. E., Zheng, S. J., Maguschak, K. A., Peschon, J., & Chen, Y. H. (2003). Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL−/− mice. Nature Immunology, 4, 255–260.CrossRefPubMedGoogle Scholar
  73. 73.
    Mi, Q. S., Ly, D., Lamhamedi-Cherradi, S. E., Salojin, K. V., Zhou, L., Grattan, M., et al. (2003). Blockade of tumor necrosis factor-related apoptosis-inducing ligand exacerbates type 1 diabetes in NOD mice. Diabetes, 52, 1967–1975.CrossRefPubMedGoogle Scholar
  74. 74.
    Lamhamedi-Cherradi, S. E., Zheng, S., Tisch, R. M., & Chen, Y. H. (2003). Critical roles of tumor necrosis factor-related apoptosis-inducing ligand in type 1 diabetes. Diabetes, 52, 2274–2278.CrossRefPubMedGoogle Scholar
  75. 75.
    Brown, A. E., Holzer, T. J., & Andersen, B. R. (1987). Capacity of human neutrophils to kill mycobacterium tuberculosis. Journal of Infectious Disease, 156, 985–989.Google Scholar
  76. 76.
    Fulton, S. A., Reba, S. M., Martin, T. D., & Boom, W. H. (2002). Neutrophil-mediated mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infection and Immunity, 70, 5322–5327.CrossRefPubMedGoogle Scholar
  77. 77.
    Appelberg, R., Castro, A. G., Gomes, S., Pedrosa, J., & Silva, M. T. (1995). Susceptibility of beige mice to mycobacterium avium: Role of neutrophils. Infection and Immunity, 63, 3381–3387.PubMedGoogle Scholar
  78. 78.
    Koga, Y., Matsuzaki, A., Suminoe, A., Hattori, H., & Hara, T. (2004). Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): A novel mechanism of antitumor effect by neutrophils. Cancer Research, 64, 1037–1043.CrossRefPubMedGoogle Scholar
  79. 79.
    Kamohara, H., Matsuyama, W., Shimozato, O., Abe, K., Galligan, C., Hashimoto, S., et al. (2004). Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology, 111, 186–194.CrossRefPubMedGoogle Scholar
  80. 80.
    Bisiaux, A., Thiounn, N., Timsit, M. O., Eladaoui, A., Chang, H. H., Mapes, J., et al. (2009). Molecular analyte profiling of the early events and tissue conditioning following intravesical bacillus Calmette–Guerin therapy in patients with superficial bladder cancer. Journal of Urology, 181, 1571–1580.CrossRefPubMedGoogle Scholar
  81. 81.
    Alexandroff, A. B., Jackson, A. M., O'Donnell, M. A., & James, K. (1999). BCG immunotherapy of bladder cancer: 20 years on. Lancet, 353, 1689–1694.CrossRefPubMedGoogle Scholar
  82. 82.
    Simons, M. P., Moore, J. M., Kemp, T. J., & Griffith, T. S. (2007). Identification of the mycobacterial subcomponents involved in the release of tumor necrosis factor-related apoptosis-inducing ligand from human neutrophils. Infection and Immunity, 75, 1265–1271.CrossRefPubMedGoogle Scholar
  83. 83.
    Jones, B. W., Means, T. K., Heldwein, K. A., Keen, M. A., Hill, P. J., Belisle, J. T., et al. (2001). Different Toll-like receptor agonists induce distinct macrophage responses. Journal of Leukocyte Biology, 69, 1036–1044.PubMedGoogle Scholar
  84. 84.
    Suttmann, H., Riemensberger, J., Bentien, G., Schmaltz, D., Stockle, M., Jocham, D., et al. (2006). Neutrophil granulocytes are required for effective bacillus Calmette–Guerin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Research, 66, 8250–8257.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Henry M. Rosevear
    • 1
  • Andrew J. Lightfoot
    • 1
  • Michael A. O’Donnell
    • 1
  • Thomas S. Griffith
    • 1
  1. 1.Department of UrologyUniversity of IowaIowa CityUSA

Personalised recommendations