Cancer and Metastasis Reviews

, 28:291 | Cite as

Urothelial carcinoma: Stem cells on the edge

  • William D. Brandt
  • William Matsui
  • Jonathan E. Rosenberg
  • Xiaobing He
  • Shizhang Ling
  • Edward M. Schaeffer
  • David M. Berman


Tumors are heterogeneous collections of cells with highly variable abilities to survive, grow, and metastasize. This variability likely stems from epigenetic and genetic influences, either stochastic or hardwired by cell type-specific lineage programs. That differentiation underlies tumor cell heterogeneity was elegantly demonstrated in hematopoietic tumors, in which rare primitive cells (cancer stem cells (CSCs)) resembling normal hematopoietic stem cells are ultimately responsible for tumor growth and viability. Because of the compelling clinical implications CSCs pose—across the entire spectrum of cancers—investigators applied the CSC model to cancers arising in tissues with crudely understood differentiation programs. Instead of relying on differentiation, these studies used empirically selected markers and statistical arguments to identify CSCs. The empirical approach has stimulated important questions about “stemness” in cancer cells as well as the validity and stoichiometry of CSC assays. The recent identification of urothelial differentiation programs in urothelial carcinomas (UroCas) supports the idea that solid epithelial cancers (carcinomas) develop and differentiate analogously to normal epithelia and provides new insights about the spatial localization and molecular makeup of carcinoma CSCs. Importantly, CSCs from invasive UroCas (UroCSCs) appear well situated to exchange important signals with adjacent stroma, to escape immune surveillance, and to survive cytotoxic therapy. These signals have potential roles in treatment resistance and many participate in druggable cellular pathways. In this review, we discuss the implications of these findings in understanding CSCs and in better understanding how UroCas form, progress, and should be treated.


Differentiation Cancer stem cell Stroma Bladder Wnt Carcinoma in situ 



Our work is supported by NIH Grant Numbers R01DK072000, P01CA077664; The Bladder Cancer Research Center at Johns Hopkins University, and Stemline Therapeutics.


UroCSC research in DMB's laboratory was partially supported by Stemline Therapeutics which licenses associated inventions from the Johns Hopkins University. DMB and the University are entitled to royalty payments from this arrangement. DMB is also a paid consultant to Stemline Therapeutics and owns Stemline Therapeutics stock options. The terms of this arrangement are managed by the Johns Hopkins University in accordance with its conflict of interest policies.


  1. 1.
    Campbell, L. L., & Polyak, K. (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19), 2332–2338.PubMedGoogle Scholar
  2. 2.
    Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194(4260), 23–28.PubMedGoogle Scholar
  3. 3.
    He, X., Marchionni, L., Hansel, D. E., et al. (2009). Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells, 27(7), 1487–1495.PubMedGoogle Scholar
  4. 4.
    Chan, K., Espinosa, I., Chao, M., et al. (2009). Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America.Google Scholar
  5. 5.
    Kurzrock, E. A., Lieu, D. K., Degraffenried, L. A., et al. (2008). Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol, 294(6), F1415–F1421.PubMedGoogle Scholar
  6. 6.
    Southam, C., & Brunschwig, A. (1961). Quantitative studies of autotransplantation of human cancer. Cancer, 14, 971–978.Google Scholar
  7. 7.
    Weissman, I. L., & Shizuru, J. A. (2008). The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood, 112(9), 3543–3553.PubMedGoogle Scholar
  8. 8.
    Bedi, A., Zehnbauer, B. A., Collector, M. I., et al. (1993). BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood, 81(11), 2898–2902.PubMedGoogle Scholar
  9. 9.
    Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.PubMedGoogle Scholar
  10. 10.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMedGoogle Scholar
  11. 11.
    Reya, T., Morrison, S. J., Clarke, M. F., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMedGoogle Scholar
  12. 12.
    Krivtsov, A. V., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442(7104), 818–822.PubMedGoogle Scholar
  13. 13.
    Krivtsov, A. V., Feng, Z., & Armstrong, S. A. (2009). Transformation from committed progenitor to leukemia stem cells. Annals of the New York Academy of Sciences, 1176, 144–149.PubMedGoogle Scholar
  14. 14.
    Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344.PubMedGoogle Scholar
  15. 15.
    Kelly, P. N., Dakic, A., Adams, J. M., et al. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.PubMedGoogle Scholar
  16. 16.
    Michor, F., Hughes, T. P., Iwasa, Y., et al. (2005). Dynamics of chronic myeloid leukaemia. Nature, 435(7046), 1267–1270.PubMedGoogle Scholar
  17. 17.
    le Coutre, P., Tassi, E., Varella-Garcia, M., et al. (2000). Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood, 95(5), 1758–1766.PubMedGoogle Scholar
  18. 18.
    Graham, S. M., Jørgensen, H. G., Allan, E., et al. (2002). Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood, 99(1), 319–325.PubMedGoogle Scholar
  19. 19.
    Matsui, W., Huff, C. A., Wang, Q., et al. (2004). Characterization of clonogenic multiple myeloma cells. Blood, 103(6), 2332–2336.PubMedGoogle Scholar
  20. 20.
    Matsui, W., Wang, Q., Barber, J. P., et al. (2008). Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Research, 68(1), 190–197.PubMedGoogle Scholar
  21. 21.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMedGoogle Scholar
  22. 22.
    Shipitsin, M., Campbell, L. L., Argani, P., et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell, 11(3), 259–273.PubMedGoogle Scholar
  23. 23.
    Eramo, A., Lotti, F., Sette, G., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.PubMedGoogle Scholar
  24. 24.
    Dalerba, P., Dylla, S. J., Park, I.-K., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.PubMedGoogle Scholar
  25. 25.
    O’brien, C. A., Pollett, A., Gallinger, S., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMedGoogle Scholar
  26. 26.
    Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMedGoogle Scholar
  27. 27.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.PubMedGoogle Scholar
  28. 28.
    Alvero, A. B., Chen, R., Fu, H.-H., et al. (2009). Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle, 8(1), 158–166.PubMedGoogle Scholar
  29. 29.
    Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 973–978.PubMedGoogle Scholar
  30. 30.
    Quintana, E., Shackleton, M., Sabel, M. S., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.PubMedGoogle Scholar
  31. 31.
    Kennedy, J. A., Barabé, F., Poeppl, A. G., et al. (2007). Comment on "Tumor growth need not be driven by rare cancer stem cells". Science, 318(5857), 1722. Author reply.PubMedGoogle Scholar
  32. 32.
    Donjacour, A. A., & Cunha, G. R. (1991). Stromal regulation of epithelial function. Cancer Treatment and Research, 53, 335–364.PubMedGoogle Scholar
  33. 33.
    Malanchi, I., & Huelsken, J. (2009). Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 21(1), 41–46.PubMedGoogle Scholar
  34. 34.
    Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.PubMedGoogle Scholar
  35. 35.
    Joseph, N. M., & Morrison, S. J. (2005). Toward an understanding of the physiological function of mammalian stem cells. Dev Cell, 9(2), 173–183.PubMedGoogle Scholar
  36. 36.
    Daniel, V. C., Marchionni, L., Hierman, J. S., et al. (2009). A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Research, 69(8), 3364–3373.PubMedGoogle Scholar
  37. 37.
    Jin, L., Hope, K. J., Zhai, Q., et al. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12(10), 1167–1174.PubMedGoogle Scholar
  38. 38.
    Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563.PubMedGoogle Scholar
  39. 39.
    Tlsty, T. D., & Coussens, L. M. (2006). Tumor stroma and regulation of cancer development. Annual Review of Pathology, 1, 119–150.PubMedGoogle Scholar
  40. 40.
    Lin, W.-W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117(5), 1175–1183.PubMedGoogle Scholar
  41. 41.
    Walkley, C. R., Olsen, G. H., Dworkin, S., et al. (2007). A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell, 129(6), 1097–1110.PubMedGoogle Scholar
  42. 42.
    Olumi, A. F., Grossfeld, G. D., Hayward, S. W., et al. (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Research, 59(19), 5002–5011.PubMedGoogle Scholar
  43. 43.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedGoogle Scholar
  44. 44.
    Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer, 8(10), 755–768.PubMedGoogle Scholar
  45. 45.
    Hochedlinger, K., Blelloch, R., Brennan, C., et al. (2004). Reprogramming of a melanoma genome by nuclear transplantation. Genes and Development, 18(15), 1875–1885.PubMedGoogle Scholar
  46. 46.
    Bissell, M. J., & Labarge, M. A. (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cells, 7(1), 17–23.Google Scholar
  47. 47.
    Farsund, T. (1976). Kinetics of mouse urinary bladder epithelium. II. Changes in proliferation and nuclear DNA content during necrosis regeneration, and hyperplasia caused by a single dose of cyclophosphamide. Virchows Arch B Cell Pathol, 21(4), 279–298.PubMedGoogle Scholar
  48. 48.
    Lewis, S. A. (2000). Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol, 278(6), F867–F874.PubMedGoogle Scholar
  49. 49.
    Martin, B. F. (1972). Cell replacement and differentiation in transitional epithelium: a histological and autoradiographic study of the guinea-pig bladder and ureter. Journal of Anatomy, 112(Pt 3), 433–455.PubMedGoogle Scholar
  50. 50.
    Diggle, C. P., Cruickshank, S., Olsburgh, J. D., et al. (2003). Identification of genes up-regulated in urothelial tumors: the 67-kd laminin receptor and tumor-associated trypsin inhibitor. American Journal of Pathology, 163(2), 493–504.PubMedGoogle Scholar
  51. 51.
    Grossman, H. B., Lee, C., Bromberg, J., et al. (2000). Expression of the alpha6beta4 integrin provides prognostic information in bladder cancer. Oncology Reports, 7(1), 13–16.PubMedGoogle Scholar
  52. 52.
    Yang, Y. M., & Chang, J. W. (2008). Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Investigation, 26(7), 725–733.Google Scholar
  53. 53.
    Chu, P. G., & Weiss, L. M. (2002). Keratin expression in human tissues and neoplasms. Histopathology, 40(5), 403–439.PubMedGoogle Scholar
  54. 54.
    Baskin, L. S., Hayward, S. W., Young, P. F., et al. (1996). Ontogeny of the rat bladder: smooth muscle and epithelial differentiation. Acta Anatomica (Basel), 155(3), 163–171.Google Scholar
  55. 55.
    Wu, X. R., Manabe, M., Yu, J., et al. (1990). Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. Journal of Biological Chemistry, 265(31), 19170–19179.PubMedGoogle Scholar
  56. 56.
    De La Rosette, J., Smedts, F., Schoots, C., et al. (2002). Changing patterns of keratin expression could be associated with functional maturation of the developing human bladder. Journal of Urology, 168(2), 709–717.Google Scholar
  57. 57.
    Buller, R. E., Skilling, J. S., Sood, A. K., et al. (1998). Field cancerization: why late "recurrent" ovarian cancer is not recurrent. American Journal of Obstetrics and Gynecology, 178(4), 641–649.PubMedGoogle Scholar
  58. 58.
    Wang, J., Lin, L., Parkash, V., et al. (2003). Quantitative analysis of follicle-stimulating hormone receptor in ovarian epithelial tumors: a novel approach to explain the field effect of ovarian cancer development in secondary mullerian systems. International Journal of Cancer, 103(3), 328–334.Google Scholar
  59. 59.
    Woodruff, J. D., & Julian, C. G. (1969). Multiple malignancy in the upper genital canal. American Journal of Obstetrics and Gynecology, 103(6), 810–822.PubMedGoogle Scholar
  60. 60.
    Billerey, C., Chopin, D., Aubriot-Lorton, M. H., et al. (2001). Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. American Journal of Pathology, 158(6), 1955–1959.PubMedGoogle Scholar
  61. 61.
    van Rhijn, B. W. G., Montironi, R., Zwarthoff, E. C., et al. (2002). Frequent FGFR3 mutations in urothelial papilloma. Journal of Pathology, 198(2), 245–251.PubMedGoogle Scholar
  62. 62.
    Wu, X.-R. (2005). Urothelial tumorigenesis: a tale of divergent pathways. Nature Reviews Cancer, 5(9), 713–725.PubMedGoogle Scholar
  63. 63.
    Dyrskjøt, L., Kruhøffer, M., Thykjaer, T., et al. (2004). Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Research, 64(11), 4040–4048.PubMedGoogle Scholar
  64. 64.
    Zieger, K., Dyrskjøt, L., Wiuf, C., et al. (2005). Role of activating fibroblast growth factor receptor 3 mutations in the development of bladder tumors. Clinical Cancer Research, 11(21), 7709–7719.PubMedGoogle Scholar
  65. 65.
    Cordon-Cardo, C., Zhang, Z. F., Dalbagni, G., et al. (1997). Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Research, 57(7), 1217–1221.PubMedGoogle Scholar
  66. 66.
    Cote, R. J., Dunn, M. D., Chatterjee, S. J., et al. (1998). Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Research, 58(6), 1090–1094.PubMedGoogle Scholar
  67. 67.
    Grossman, H. B., Liebert, M., Antelo, M., et al. (1998). p53 and RB expression predict progression in T1 bladder cancer. Clinical Cancer Research, 4(4), 829–834.PubMedGoogle Scholar
  68. 68.
    Zhang, Z. T., Pak, J., Shapiro, E., et al. (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Research, 59(14), 3512–3517.PubMedGoogle Scholar
  69. 69.
    Puzio-Kuter, A. M., Castillo-Martin, M., Kinkade, C. W., et al. (2009). Inactivation of p53 and Pten promotes invasive bladder cancer. Genes and Development, 23(6), 675–680.PubMedGoogle Scholar
  70. 70.
    Burchill, S. A., Neal, D. E., & Lunec, J. (1994). Frequency of H-ras mutations in human bladder cancer detected by direct sequencing. British Journal of Urology, 73(5), 516–521.PubMedGoogle Scholar
  71. 71.
    Feinberg, A. P., Vogelstein, B., Droller, M. J., et al. (1983). Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science, 220(4602), 1175–1177.PubMedGoogle Scholar
  72. 72.
    Mo, L., Zheng, X., Huang, H.-Y., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. Journal of Clinical Investigation, 117(2), 314–325.PubMedGoogle Scholar
  73. 73.
    Grossman, H. B., Natale, R. B., Tangen, C. M., et al. (2003). Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. New England Journal of Medicine, 349(9), 859–866.PubMedGoogle Scholar
  74. 74.
    Collaboration ABCAM-a. (2005). Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. European Urology, 48(2), 202–205. discussion 5-6.Google Scholar
  75. 75.
    Sylvester, R., & Sternberg, C. (2000). The role of adjuvant combination chemotherapy after cystectomy in locally advanced bladder cancer: what we do not know and why. Annals of Oncology, 11(7), 851–856.PubMedGoogle Scholar
  76. 76.
    Collaboration ABCAM-a (2006) Adjuvant chemotherapy for invasive bladder cancer (individual patient data). Cochrane database of systematic reviews (online) (2):CD006018Google Scholar
  77. 77.
    Sternberg, C. N., de Mulder, P., Schornagel, J. H., et al. (2006). Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours. European Journal of Cancer, 42(1), 50–54.PubMedGoogle Scholar
  78. 78.
    von der Maase, H., Hansen, S. W., Roberts, J. T., et al. (2000). Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. Journal of Clinical Oncology, 18(17), 3068–3077.PubMedGoogle Scholar
  79. 79.
    von der Maase, H., Sengelov, L., Roberts, J. T., et al. (2005). Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. Journal of Clinical Oncology, 23(21), 4602–4608.PubMedGoogle Scholar
  80. 80.
    Gupta, P. B., Onder, T. T., Jiang, G., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659.PubMedGoogle Scholar
  81. 81.
    Yilmaz, O. H., Valdez, R., Theisen, B. K., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.PubMedGoogle Scholar
  82. 82.
    Janzen, V., & Scadden, D. T. (2006). Stem cells: good, bad and reformable. Nature, 441(7092), 418–419.PubMedGoogle Scholar
  83. 83.
    Zhang, J., Grindley, J. C., Yin, T., et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature, 441(7092), 518–522.PubMedGoogle Scholar
  84. 84.
    Liu, R., Wang, X., Chen, G. Y., et al. (2007). The prognostic role of a gene signature from tumorigenic breast-cancer cells. New England Journal of Medicine, 356(3), 217–226.PubMedGoogle Scholar
  85. 85.
    Wang, W., Goswami, S., Lapidus, K., et al. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research, 64(23), 8585–8594.PubMedGoogle Scholar
  86. 86.
    Dyrskjøt, L., Thykjaer, T., Kruhøffer, M., et al. (2003). Identifying distinct classes of bladder carcinoma using microarrays. Nature Genetics, 33(1), 90–96.PubMedGoogle Scholar
  87. 87.
    Wild, P. J., Herr, A., Wissmann, C., et al. (2005). Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clinical Cancer Research, 11(12), 4415–4429.PubMedGoogle Scholar
  88. 88.
    Zieger, K., Marcussen, N., Borre, M., et al. (2009). Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development. International Journal of Cancer, 125(9), 2095–2103.Google Scholar
  89. 89.
    Nusse, R. (2008). Wnt signaling and stem cell control. Cell Res, 18(5), 523–527.PubMedGoogle Scholar
  90. 90.
    Urakami, S., Shiina, H., Enokida, H., et al. (2006). Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clinical Cancer Research, 12(2), 383–391.PubMedGoogle Scholar
  91. 91.
    Bui, T. D., O'Brien, T., Crew, J., et al. (1998). High expression of Wnt7b in human superficial bladder cancer vs invasive bladder cancer. British Journal of Cancer, 77(2), 319–324.PubMedGoogle Scholar
  92. 92.
    Urakami, S., Shiina, H., Enokida, H., et al. (2006). Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clinical Cancer Research, 12(7 Pt 1), 2109–2116.PubMedGoogle Scholar
  93. 93.
    Stoehr, R., Krieg, R. C., Knuechel, R., et al. (2002). No evidence for involvement of beta-catenin and APC in urothelial carcinomas. International Journal of Oncology, 20(5), 905–911.PubMedGoogle Scholar
  94. 94.
    Kastritis, E., Murray, S., Kyriakou, F., et al. (2009). Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: evidence for Wnt pathway implication. International Journal of Cancer, 124(1), 103–108.Google Scholar
  95. 95.
    Stoehr, R., Wissmann, C., Suzuki, H., et al. (2004). Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Laboratory Investigation, 84(4), 465–478.PubMedGoogle Scholar
  96. 96.
    Wissmann, C., Wild, P. J., Kaiser, S., et al. (2003). WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. Journal of Pathology, 201(2), 204–212.PubMedGoogle Scholar
  97. 97.
    Tang, Y., Simoneau, A. R., Liao, W. X., et al. (2009). WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther, 8(2), 458–468.PubMedGoogle Scholar
  98. 98.
    Schinkel, A. H., & Jonker, J. W. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced Drug Delivery Reviews, 55(1), 3–29.PubMedGoogle Scholar
  99. 99.
    Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMedGoogle Scholar
  100. 100.
    Chiba, T., Kita, K., Zheng, Y.-W., et al. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44(1), 240–251.PubMedGoogle Scholar
  101. 101.
    Haraguchi, N., Utsunomiya, T., Inoue, H., et al. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 24(3), 506–513.PubMedGoogle Scholar
  102. 102.
    Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 781–786.PubMedGoogle Scholar
  103. 103.
    Mitsutake, N., Iwao, A., Nagai, K., et al. (2007). Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology, 148(4), 1797–1803.PubMedGoogle Scholar
  104. 104.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.PubMedGoogle Scholar
  105. 105.
    Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11154–11159.PubMedGoogle Scholar
  106. 106.
    Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., et al. (2004). A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14228–14233.PubMedGoogle Scholar
  107. 107.
    Oates, J., Grey, B., & Addla, S., et al. (2009). Hoechst 33342 side population identification is a conserved and unified mechanism in urological cancers. Stem Cells Dev.Google Scholar
  108. 108.
    Ning, Z.-F., Huang, Y.-J., Lin, T.-X., et al. (2009). Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24. Journal of International Medical Research, 37(3), 621–630.PubMedGoogle Scholar
  109. 109.
    Dylla, S. J., Beviglia, L., Park, I.-K., et al. (2008). Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE, 3(6), e2428.PubMedGoogle Scholar
  110. 110.
    Kastan, M. B., Schlaffer, E., Russo, J. E., et al. (1990). Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood, 75(10), 1947–1950.PubMedGoogle Scholar
  111. 111.
    Weishaupt, K. R., Gomer, C. J., & Dougherty, T. J. (1976). Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Research, 36(7 PT 1), 2326–2329.PubMedGoogle Scholar
  112. 112.
    Diehn, M., Cho, R. W., Lobo, N. A., et al. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 458(7239), 780–783.PubMedGoogle Scholar
  113. 113.
    Berberat, P. O., Dambrauskas, Z., Gulbinas, A., et al. (2005). Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clinical Cancer Research, 11(10), 3790–3798.PubMedGoogle Scholar
  114. 114.
    Eisele, L., Klein-Hitpass, L., Chatzimanolis, N., et al. (2007). Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia. Acta Haematologica, 117(1), 8–15.PubMedGoogle Scholar
  115. 115.
    Josson, S., Xu, Y., Fang, F., et al. (2006). RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Oncogene, 25(10), 1554–1559.PubMedGoogle Scholar
  116. 116.
    Schimmer, A. D. (2004). Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Research, 64(20), 7183–7190.PubMedGoogle Scholar
  117. 117.
    Todaro, M., Alea, M. P., Di Stefano, A. B., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402.PubMedGoogle Scholar
  118. 118.
    Conticello, C., Pedini, F., Zeuner, A., et al. (2004). IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. Journal of Immunology, 172(9), 5467–5477.Google Scholar
  119. 119.
    Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., et al. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer. Annals of the New York Academy of Sciences, 1171(1), 59–76.PubMedGoogle Scholar
  120. 120.
    Majeti, R., Chao, M. P., Alizadeh, A. A., et al. (2009). CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 138(2), 286–299.PubMedGoogle Scholar
  121. 121.
    Ritchie, D. S., & Smyth, M. J. (2009). A new therapeutic target for leukemia comes to the surface. Cell, 138(2), 226–228.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • William D. Brandt
    • 1
  • William Matsui
    • 2
  • Jonathan E. Rosenberg
    • 4
  • Xiaobing He
    • 1
  • Shizhang Ling
    • 1
  • Edward M. Schaeffer
    • 3
  • David M. Berman
    • 1
    • 2
    • 3
  1. 1.Department of PathologyThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of OncologyThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Department of UrologyThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  4. 4.Lank Center for Genitourinary CancerDana-Farber Cancer Institute and Harvard Medical SchoolBostonUSA

Personalised recommendations