Cancer and Metastasis Reviews

, Volume 28, Issue 1–2, pp 77–83 | Cite as

Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility

  • T. Y. Kim
  • D. Vigil
  • C. J. Der
  • R. L. Juliano


DLC-1 was originally identified as a potential tumor suppressor. One of the key biochemical functions of DLC-1 is to serve as a GTPase activating protein (GAP) for members of the Rho family of GTPases, particularly Rho A-C and Cdc 42. Since these GTPases are critically involved in regulation of the cytoskeleton and cell migration, it seems clear that DLC-1 will also influence these processes. In this review we examine basic aspects of the actin cyoskeleton and how it relates to cell motility. We then delineate the characteristics of DLC-1 and other members of its family, and describe how they may have multiple effects on the regulation of cell polarity, actin organization, and cell migration.


DLC-1 Cell migration Cell invasion 


  1. 1.
    Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMedCrossRefGoogle Scholar
  2. 2.
    Simpson, K. J., Selfors, L. M., Bui, J., Reynolds, A., Leake, D., Khvorova, A., et al. (2008). Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biology, [epub ahead of print]
  3. 3.
    Vicente-Manzanares, M., Webb, D. J., & Horwitz, A. R. (2005). Cell migration at a glance. Journal of Cell Science, 118(Pt 21), 4917–4919.PubMedCrossRefGoogle Scholar
  4. 4.
    Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302(5651), 1704–1709.PubMedCrossRefGoogle Scholar
  5. 5.
    Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of Cellular Physiology, 213(3), 565–573.PubMedCrossRefGoogle Scholar
  6. 6.
    Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRefGoogle Scholar
  7. 7.
    Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedCrossRefGoogle Scholar
  8. 8.
    Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.PubMedCrossRefGoogle Scholar
  9. 9.
    Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.PubMedCrossRefGoogle Scholar
  10. 10.
    Larsen, M., Artym, V. V., Green, J. A., & Yamada, K. M. (2006). The matrix reorganized: extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology, 18(5), 463–471.PubMedCrossRefGoogle Scholar
  11. 11.
    Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(Pt3), 416–420.PubMedCrossRefGoogle Scholar
  12. 12.
    Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 17(5), 246–250.PubMedCrossRefGoogle Scholar
  13. 13.
    Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt3), 443–446.PubMedCrossRefGoogle Scholar
  14. 14.
    Moissoglu, K., & Schwartz, M. A. (2006). Integrin signalling in directed cell migration. Biology of the Cell, 98(9), 547–555.PubMedCrossRefGoogle Scholar
  15. 15.
    Ridley, A. J., & Hall, A. (2004). Snails, Swiss, and serum: the solution for Rac ‘n’ Rho. Cell, 116(2 Suppl), S23–25, 22 p following S25.PubMedCrossRefGoogle Scholar
  16. 16.
    Wennerberg, K., & Der, C. J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). Journal of Cell Science, 117(Pt 8), 1301–1312.PubMedCrossRefGoogle Scholar
  17. 17.
    Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116(2), 167–179.PubMedCrossRefGoogle Scholar
  18. 18.
    Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., & Hahn, K. M. (2004). Activation of endogenous Cdc42 visualized in living cells. Science, 305(5690), 1615–1619.PubMedCrossRefGoogle Scholar
  19. 19.
    Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440(7087), 1069–1072.PubMedCrossRefGoogle Scholar
  20. 20.
    Weaver, A. M., Young, M. E., Lee, W. L., & Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Current Opinion in Cell Biology, 15(1), 23–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Bensenor, L. B., Kan, H. M., Wang, N., Wallrabe, H., Davidson, L. A., Cai, Y., et al. (2007). IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. Journal of Cell Science, 120(Pt 4), 658–669.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang, T. Y., DerMardirossian, C., & Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology, 18(1), 26–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773(5), 642–652.PubMedGoogle Scholar
  24. 24.
    Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews Cancer, 6(6), 459–471.PubMedCrossRefGoogle Scholar
  25. 25.
    Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A., & Bear, J. E. (2007). Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell, 128(5), 915–929.PubMedCrossRefGoogle Scholar
  26. 26.
    Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J., & Gertler, F. B. (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annual Review of Cell and Developmental Biology, 19, 541–564.PubMedCrossRefGoogle Scholar
  27. 27.
    Fukata, Y., Amano, M., & Kaibuchi, K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 22(1), 32–39.PubMedCrossRefGoogle Scholar
  28. 28.
    Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Science, 120(Pt 20), 3491–3499.PubMedCrossRefGoogle Scholar
  29. 29.
    Watanabe, N., & Higashida, C. (2004). Formins: processive cappers of growing actin filaments. Experimental Cell Research, 301(1), 16–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Nayal, A., Webb, D. J., Brown, C. M., Schaefer, E. M., Vicente-Manzanares, M., & Horwitz, A. R. (2006). Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. Journal of Cell Biology, 173(4), 587–589.PubMedCrossRefGoogle Scholar
  31. 31.
    Nishiya, N., Kiosses, W. B., Han, J., & Ginsberg, M. H. (2005). An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nature Cell Biology, 7(4), 343–352.PubMedCrossRefGoogle Scholar
  32. 32.
    Dow, L. E., & Humbert, P. O. (2007). Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. International Review of Cytology, 262, 253–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Myers, K. R., & Casanova, J. E. (2008). Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends in Cell Biology, 18(4), 184–192.PubMedCrossRefGoogle Scholar
  34. 34.
    Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E., & Schwartz, M. A. (2007). Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biology, 9(12), 1381–1391.PubMedCrossRefGoogle Scholar
  35. 35.
    Palamidessi, A., Frittoli, E., Garre, M., Faretta, M., Mione, M., Testa, I., et al. (2008). Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell, 134(1), 135–147.PubMedCrossRefGoogle Scholar
  36. 36.
    Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.PubMedCrossRefGoogle Scholar
  37. 37.
    Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews. Molecular Cell Biology, 6(2), 167–180.PubMedCrossRefGoogle Scholar
  38. 38.
    Bernards, A., & Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends in Cell Biology, 14(7), 377–385.PubMedCrossRefGoogle Scholar
  39. 39.
    Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Kandpal, R. P. (2006). Rho GTPase activating proteins in cancer phenotypes. Current Protein & Peptide Science, 7(4), 355–365.CrossRefGoogle Scholar
  41. 41.
    Chang, J. H., Gill, S., Settleman, J., & Parsons, S. J. (1995). c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. Journal of Cell Biology, 130(2), 355–368.PubMedCrossRefGoogle Scholar
  42. 42.
    Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22(11), 1439–1444.CrossRefGoogle Scholar
  43. 43.
    Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedCrossRefGoogle Scholar
  44. 44.
    Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.PubMedCrossRefGoogle Scholar
  45. 45.
    Yuan, B. Z., Jefferson, A. M., Baldwin, K. T., Thorgeirsson, S. S., Popescu, N. C., & Reynolds, S. H. (2004). DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene, 23(7), 1405–1411.PubMedCrossRefGoogle Scholar
  46. 46.
    Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhou, X., Thorgeirsson, S. S., & Popescu, N. C. (2004). Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene, 23(6), 1308–1313.PubMedCrossRefGoogle Scholar
  48. 48.
    Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.PubMedCrossRefGoogle Scholar
  49. 49.
    Li, H., Fung, K. L., Jin, D. Y., Chung, S. S., Ching, Y. P., Ng, I. O., et al. (2007). Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins, 67(4), 1154–1166.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim, T. Y., Healy, K. D., Der, C. J., Sciaky, N., Bang, Y. J., Juliano, R. L. (2008). Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration. Journal of Biological Chemistry, [epub ahead of print]
  51. 51.
    Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.PubMedCrossRefGoogle Scholar
  52. 52.
    Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.PubMedCrossRefGoogle Scholar
  53. 53.
    Gay, N. J., & Keith, F. J. (1991). Drosophila Toll and IL-1 receptor. Nature, 351(6325), 355–356.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.PubMedGoogle Scholar
  55. 55.
    Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRefGoogle Scholar
  56. 56.
    Kim, T. Y., Lee, J. W., Kim, H. P., Jong, H. S., Kim, T. Y., Jung, M., et al. (2007). DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 355(1), 72–77.PubMedCrossRefGoogle Scholar
  57. 57.
    Syed, V., Mukherjee, K., Lyons-Weiler, J., Lau, K. M., Mashima, T., Tsuruo, T., et al. (2005). Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene, 24(10), 1774–1787.PubMedCrossRefGoogle Scholar
  58. 58.
    Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.PubMedCrossRefGoogle Scholar
  59. 59.
    Euer, N., Schwirzke, M., Evtimova, V., Burtscher, H., Jarsch, M., Tarin, D., et al. (2002). Identification of genes associated with metastasis of mammary carcinoma in metastatic versus non-metastatic cell lines. Anticancer Research, 22(2A), 733–740.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. Y. Kim
    • 1
    • 2
  • D. Vigil
    • 1
    • 2
  • C. J. Der
    • 1
    • 2
  • R. L. Juliano
    • 1
    • 2
  1. 1.Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillUSA
  2. 2.Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations