Cancer and Metastasis Reviews

, 27:665 | Cite as

Combining anatomic and molecularly targeted imaging in the diagnosis and surveillance of embryonal tumors of the nervous and endocrine systems in children

  • M. Sue O’Dorisio
  • Geetika Khanna
  • David Bushnell


Combining anatomical and functional imaging can improve sensitivity and accuracy of tumor diagnosis and surveillance of pediatric malignancies. MRI is the state-of-the-art modality for demonstrating the anatomical location of brain tumors with contrast enhancement adding additional information regarding whether the tumor is neuronal or glial. Addition of SPECT imaging using a peptide that targets the somatostatin receptor (Octreoscan) can now differentiate medulloblastoma from a cerebellar pilocytic astrocytoma. Combined MRI and Octreoscan is now the most sensitive and accurate imaging modality for differentiating recurrent medulloblastoma from scar tissue. CT is the most common imaging modality for demonstrating the anatomical location of tumors in the chest and abdomen. Addition of SPECT imaging with either MIBG or Octreoscan has been shown to add important diagnostic information on the nature of tumors in chest and abdomen and is often more sensitive than CT for identification of metastatic lesions in bone or liver. Combined anatomical and functional imaging is particularly helpful in neuroblastoma and in neuroendocrine tumors such as gastrinoma and carcinoid. Functional imaging with MIBG and Octreoscan is predictive of response to molecularly targeted therapy with 131I-MIBG and 90Y-DOTA-tyr3-Octreotide. Dosimetry using combined anatomical and functional imaging is being developed for patient-specific dosing of targeted radiotherapy and as an extremely sensitive monitor of response to therapy. Both MIBG and Octreotide are now being adapted to PET imaging which will greatly improve the utility of PET in medulloblastoma as well as increase the sensitivity for detection of metastatic lesions in neuroblastoma and neuroendocrine tumors.


Medulloblastoma Neuroblastoma Neuroendocrine tumors Pediatric Diagnostic imaging Surveillance imaging PET SPECT MRI CT 


  1. 1.
    Heideman, R. L., Packer, R. J., Albright, L. A., Freeman, C. R., & Rorke, L. B. (1997). In P. A. Pizzo, & D. G. Poplack (Eds.), Principles and practice of pediatric oncology pp. 633–697. Philadelphia: Lippincott-Raven.Google Scholar
  2. 2.
    Hirakawa, K., Suzuki, K., Ueda, S., & Handa, J. (1986). Fetal origin of the medulloblastoma: Evidence from growth analysis of two cases. Acta Neuropathologica (Berl), 70(3–4), 227–234.CrossRefGoogle Scholar
  3. 3.
    Yachnis, A. T., Rorke, L. B., & Trojanowski, J. Q. (1994). Cerebellar dysplasias in humans: Development and possible relationship to glial and primitive neuroectodermal tumors of the cerebellar vermis. Journal of Neuropathology and Experimental Neurology, 53(1), 61–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Scherini, E., & Bernocchi, G. (1994). CisDDP treatment and development of the rat cerebellum. Progress in Neurobiology, 42(2), 161–196.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, L., & Goldman, J. E. (1996). Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron, 16(1), 47–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Rubinstein, L. J. (1985). Embryonal central neuroepithelial tumors and their differentiating potential. A cytogenetic view of a complex neuro-oncological problem. Journal of Neurosurgery, 62(6), 795–805.PubMedGoogle Scholar
  7. 7.
    Bailey, P., & Cushing, H. (1925). Medulloblastoma cerebelli: A common type of midcerebellar glioma of childhood. Archives of Neurology and Psychiatry, 14, 192–224.Google Scholar
  8. 8.
    Trojanowski, J. Q., Tohyama, T., & Lee, V. M. (1992). Medulloblastomas and related primitive neuroectodermal brain tumors of childhood recapitulate molecular milestones in the maturation of neuroblasts. Molecular and Chemical Neuropathology, 17(2), 121–135.PubMedGoogle Scholar
  9. 9.
    Packer, R. J. (1999). Childhood medulloblastoma: Progress and future challenges. Brain & Development, 21(2), 75–81.CrossRefGoogle Scholar
  10. 10.
    Gurney, J. G., Kadan-Lottick, N. S., Packer, R. J., Neglia, J. P., Sklar, C. A., Punyko, J. A., et al. (2003). Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer, 97(3), 663–673.PubMedCrossRefGoogle Scholar
  11. 11.
    Fangusaro, J., Finlay, J., Sposto, R., Ji, L., Saly, M., Zacharoulis, S., et al. (2007). Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): Report of the Head Start I and II experience. Pediatr Blood Cancer.Google Scholar
  12. 12.
    Bull, K. S., Spoudeas, H. A., Yadegarfar, G., & Kennedy, C. R. (2007). Reduction of health status 7 years after addition of chemotherapy to craniospinal irradiation for medulloblastoma: A follow-up study in PNET 3 trial survivors on behalf of the CCLG (formerly UKCCSG). Journal of Clinical Oncology, 25(27), 4239–4245.PubMedCrossRefGoogle Scholar
  13. 13.
    Polkinghorn, W. R., & Tarbell, N. J. (2007). Medulloblastoma: Tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol, 4(5), 295–304.PubMedCrossRefGoogle Scholar
  14. 14.
    Dennis, M., Spiegler, B. J., Hetherington, C. R., & Greenberg, M. L. (1996). Neuropsychological sequelae of the treatment of children with medulloblastoma. Journal of Neuro-oncology, 29(1), 91–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoppe-Hirsch, E., Brunet, L., Laroussinie, F., Cinalli, G., Pierre-Kahn, A., Renier, D., et al. (1995). Intellectual outcome in children with malignant tumors of the posterior fossa: Influence of the field of irradiation and quality of surgery. Child’s Nervous System, 11(6), 340–345.PubMedCrossRefGoogle Scholar
  16. 16.
    David, K. M., Casey, A. T., Hayward, R. D., Harkness, W. F., Phipps, K., & Wade, A. M. (1997). Medulloblastoma: Is the 5-year survival rate improving? A review of 80 cases from a single institution. Journal of Neurosurgery, 86(1), 13–21.PubMedGoogle Scholar
  17. 17.
    Khanna, G., O’Dorisio, M. S., Menda, Y., Glasier, C., Deyoung, B., Smith, B. J., et al. (2007). Somatostatin receptor scintigraphy in surveillance of pediatric brain malignancies. Pediatric Blood and Cancer, 50, 561–566.CrossRefGoogle Scholar
  18. 18.
    Biegel, J. A. (1997). Genetics of pediatric central nervous system tumors. Journal of Pediatric Hematology Oncology, 19(6), 492–501.CrossRefGoogle Scholar
  19. 19.
    Wilgenbus, K. K., Seranski, P., Brown, A., Leuchs, B., Mincheva, A., Lichter, P., et al. (1997). Molecular characterization of a genetically unstable region containing the SMS critical area and a breakpoint cluster for human PNETs. Genomics, 42(1), 1–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Bigner, S. H., & Schrock, E. (1997). Molecular cytogenetics of brain tumors. Journal of Neuropathology and Experimental Neurology, 56(11), 1173–1181.PubMedCrossRefGoogle Scholar
  21. 21.
    MacGregor, D. N., & Ziff, E. B. (1990). Elevated c-myc expression in childhood medulloblastomas. Pediatric Research, 28(1), 63–68 Ref Type: Abstract.PubMedCrossRefGoogle Scholar
  22. 22.
    Fruhwald, M. C., O’Dorisio, M. S., Rush, L. J., Reiter, J. L., Smiraglia, D. J., Wenger, G., et al. (2000). Gene amplification in PNETs/medulloblastomas: Mapping of a novel amplified gene within the MYCN amplicon. Journal of Medical Genetics, 37(7), 501–509.PubMedCrossRefGoogle Scholar
  23. 23.
    Goodrich, L. V., Milenkovic, L., Higgins, K. M., & Scott, M. P. (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science, 277(5329), 1109–1113.PubMedCrossRefGoogle Scholar
  24. 24.
    Pietsch, T., Waha, A., Koch, A., Kraus, J., Albrecht, S., Tonn, J., et al. (1997). Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Research, 57(11), 2085–2088.PubMedGoogle Scholar
  25. 25.
    Zakrzewska, M., Rieske, P., biec-Rychter, M., Zakrzewski, K., Polis, L., Fiks, T., et al. (2004). Molecular abnormalities in pediatric embryonal brain tumors-analysis of loss of heterozygosity on chromosomes 1, 5, 9, 10, 11, 16, 17 and 22. Clinical Neuropathology, 23(5), 209–217.PubMedGoogle Scholar
  26. 26.
    Wolter, M., Reifenberger, J., Sommer, C., Ruzicka, T., & Reifenberger, G. (1997). Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Research, 57(13), 2581–2585.PubMedGoogle Scholar
  27. 27.
    Uziel, T., Zindy, F., Xie, S., Lee, Y., Forget, A., Magdaleno, S., et al. (2005). The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes & Development, 19(22), 2656–2667.CrossRefGoogle Scholar
  28. 28.
    Zindy, F., Uziel, T., Ayrault, O., Calabrese, C., Valentine, M., Rehg, J. E., et al. (2007). Genetic alterations in mouse medulloblastomas and generation of tumors de novo from primary cerebellar granule neuron precursors. Cancer Research, 67(6), 2676–2684.PubMedCrossRefGoogle Scholar
  29. 29.
    Muhlisch, J., Bajanowski, T., Rickert, C. H., Roggendorf, W., Wurthwein, G., Jurgens, H., et al. (2007). Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses. Journal of Neuro-oncology, 83(1), 17–29.PubMedCrossRefGoogle Scholar
  30. 30.
    Sardi, I., Cavalieri, D., & Massimino, M. (2007). Emerging treatments and gene expression profiling in high-risk medulloblastoma. Paediatric Drugs, 9(2), 81–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Brodeur, G. M., & Maris, J. M. (2001). In P. A. Pizzo, & D. G. Poplack (Eds.), Principles and practice of pediatric oncology pp. 895–937. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  32. 32.
    Thiele, C. J. (1991). Biology of pediatric peripheral neuroectodermal tumors. Cancer Metastasis Reviews, 10(4), 311–319.PubMedCrossRefGoogle Scholar
  33. 33.
    Dehner, L. P. (1993). Primitive neuroectodermal tumor and Ewing’s sarcoma. American Journal of Surgical Pathology, 17(1), 1–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Kitlinska, J., Abe, K., Kuo, L., Pons, J., Yu, M., Li, L., et al. (2005). Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. Cancer Research, 65(5), 1719–1728.PubMedCrossRefGoogle Scholar
  35. 35.
    Matthay, K. K., Villablanca, J. G., Seeger, R. C., Stram, D. O., Harris, R. E., Ramsay, N. K., et al. (1999). Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. New England Journal of Medicine, 341(16), 1165–1173.PubMedCrossRefGoogle Scholar
  36. 36.
    Altungoz, O., Aygun, N., Tumer, S., Ozer, E., Olgun, N., & Sakizli, M. (2007). Correlation of modified Shimada classification with MYCN and 1p36 status detected by fluorescence in situ hybridization in neuroblastoma. Cancer Genetics and Cytogenetics, 172(2), 113–119.PubMedCrossRefGoogle Scholar
  37. 37.
    Gurcan, M. N., Pan, T., Shimada, H., & Saltz, J. (2006). Image analysis for neuroblastoma classification: Segmentation of cell nuclei. Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 1, 4844–4847.CrossRefGoogle Scholar
  38. 38.
    Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., & Bishop, J. M. (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science, 224(4653), 1121–1124.PubMedCrossRefGoogle Scholar
  39. 39.
    Sano, H., Bonadio, J., Gerbing, R. B., London, W. B., Matthay, K. K., Lukens, J. N., et al. (2006). International neuroblastoma pathology classification adds independent prognostic information beyond the prognostic contribution of age. European Journal of Cancer, 42(8), 1113–1119.PubMedCrossRefGoogle Scholar
  40. 40.
    Modlin, I. M., Kidd, M., Latich, I., Zikusoka, M. N., Eick, G. N., Mane, S. M., et al. (2006). Genetic differentiation of appendiceal tumor malignancy: A guide for the perplexed. Annals of Surgery, 244(1), 52–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Stinner, B., & Rothmund, M. (2005). Neuroendocrine tumours (carcinoids) of the appendix. Best Pract Res Clin Gastroenterol, 19(5), 729–738.PubMedCrossRefGoogle Scholar
  42. 42.
    Khanna, G., O’Dorisio, M. S., Menda, Y., Kirby, P., Kao, S., & Sato, Y. (2007). Gastroenteropancreatic Neuroendocrine Tumors in Children and Young Adults. Pediatric Radiology, 38, 251–259.PubMedCrossRefGoogle Scholar
  43. 43.
    SEER Cancer Statistics Review, 1973–2004. 1-11-2006. Ref Type: ReportGoogle Scholar
  44. 44.
    Vinik, A. I., Thompson, N., Eckhauser, F., & Moattari, A. R. (1989). Clinical features of carcinoid syndrome and the use of somatostatin analogue in its management. Acta Oncologica, 28(3), 389–402.PubMedCrossRefGoogle Scholar
  45. 45.
    Lamberts, S. W., Pieters, G. F., Metselaar, H. J., Ong, G. L., Tan, H. S., & Reubi, J. C. (1988). Development of resistance to a long-acting somatostatin analogue during treatment of two patients with metastatic endocrine pancreatic tumours. Acta Endocrinologica (Copenh), 119(4), 561–566.Google Scholar
  46. 46.
    McDermott, E. W., Guduric, B., & Brennan, M. F. (1994). Prognostic variables in patients with gastrointestinal carcinoid tumours. British Journal of Surgery, 81(7), 1007–1009.PubMedCrossRefGoogle Scholar
  47. 47.
    Broaddus, R. R., Herzog, C. E., & Hicks, M. J. (2003). Neuroendocrine tumors (carcinoid and neuroendocrine carcinoma) presenting at extra-appendiceal sites in childhood and adolescence. Archives of Pathology and Laboratory Medicine, 127(9), 1200–1203.PubMedGoogle Scholar
  48. 48.
    Pashankar, F. D., O’Dorisio, M. S., & Menda, Y. (2005). MIBG and somatostatin receptor analogs in children: Current concepts on diagnostic and therapeutic use. Journal of Nuclear Medicine, 46(Suppl 1), 55S–61S.PubMedGoogle Scholar
  49. 49.
    Kloppel, G. PAHP. (2004). The gastroenteropancreatic neuroendocrine cell system and its tumors: The WHO classification. Annals of the New York Academy of Sciences, 1014, 13–27 Ref Type: Generic.PubMedCrossRefGoogle Scholar
  50. 50.
    Rindi, G., Kloppel, G., Alhman, H., Caplin, M., Couvelard, A., de Herder, W. W., et al. (2006). TNM staging of foregut (neuro)endocrine tumors: A consensus proposal including a grading system. Virchows Archives, 449(4), 395–401.CrossRefGoogle Scholar
  51. 51.
    Modlin, I. M., Lye, K. D., & Kidd, M. (2003). A 5-decade analysis of 13,715 carcinoid tumors. Cancer, 97(4), 934–959.PubMedCrossRefGoogle Scholar
  52. 52.
    Bonato, M., Cerati, M., Pagani, A., Papotti, M., Bosi, F., Bussolati, G., et al. (1992). Differential diagnostic patterns of lung neuroendocrine tumours. A clinico-pathological and immunohistochemical study of 122 cases. Virchows Archiv. A, Pathological Anatomy and Histopathology, 420(3), 201–211.PubMedCrossRefGoogle Scholar
  53. 53.
    Modlin, I. M., Kidd, M., Pfragner, R., Eick, G. N., & Champaneria, M. C. (2006). The functional characterization of normal and neoplastic human enterochromaffin cells. Journal of Clinical Endocrinology and Metabolism, 91(6), 2340–2348.PubMedCrossRefGoogle Scholar
  54. 54.
    Kulke, M. H., & Mayer, R. J. (1999). Carcinoid tumors. New England Journal of Medicine, 340(11), 858–868.PubMedCrossRefGoogle Scholar
  55. 55.
    Rindi, G., Capella, C., Bordi, C., & Solcia, E. (2002). Guidelines and minimal diagnostic criteria for the histological diagnosis of endocrine tumors of the gastroenteropancreatic type. Pathologica, 94(3), 142–147.PubMedGoogle Scholar
  56. 56.
    Fiocca, R., Rindi, G., Capella, C., Grimelius, L., Polak, J. M., Schwartz, T. W., et al. (1987). Glucagon, glicentin, proglucagon, PYY, PP and proPP-icosapeptide immunoreactivities of rectal carcinoid tumors and related non-tumor cells. Regulatory Peptide, 17(1), 9–29.CrossRefGoogle Scholar
  57. 57.
    Shankar, L. K., Hoffman, J. M., Bacharach, S., Graham, M. M., Karp, J., Lammertsma, A. A., et al. (2006). Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. Journal of Nuclear Medicine, 47(6), 1059–1066.PubMedGoogle Scholar
  58. 58.
    Ott, R. J., Tait, D., Flower, M. A., Babich, J. W., & Lambrecht, R. M. (1992). Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. British Journal of Radiology, 65(777), 787–791.PubMedGoogle Scholar
  59. 59.
    Maecke, H. R., Hofmann, M., & Haberkorn, U. (2005). (68)Ga-labeled peptides in tumor imaging. Journal of Nuclear Medicine, 46(Suppl 1), 172S–178S.PubMedGoogle Scholar
  60. 60.
    Nataf, V., Balard, M., de B, V., Kerrou, K., Gutman, F., Grahek, D., et al. (2006). Safety of 18F-DOPA Injection for PET of Carcinoid Tumor. Journal of Nuclear Medicine, 47(10), 1732.PubMedGoogle Scholar
  61. 61.
    Juweid, M. E., Wiseman, G. A., Vose, J. M., Ritchie, J. M., Menda, Y., Wooldridge, J. E., et al. (2005). Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. Journal of Clinical Oncology, 23(21), 4652–4661.PubMedCrossRefGoogle Scholar
  62. 62.
    Howard, J. P., Maris, J. M., Kersun, L. S., Huberty, J. P., Cheng, S. C., Hawkins, R. A., et al. (2005). Tumor response and toxicity with multiple infusions of high dose 131I-MIBG for refractory neuroblastoma. Pediatric Blood and Cancer, 44(3), 232–239.PubMedCrossRefGoogle Scholar
  63. 63.
    Rose, B., Matthay, K. K., Price, D., Huberty, J., Klencke, B., Norton, J. A., et al. (2003). High-dose 131I-metaiodobenzylguanidine therapy for 12 patients with malignant pheochromocytoma. Cancer, 98(2), 239–248.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Sue O’Dorisio
    • 1
  • Geetika Khanna
    • 2
  • David Bushnell
    • 2
  1. 1.Department of Pediatrics, Carver College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Department of Radiology, Carver College of MedicineUniversity of IowaIowa CityUSA

Personalised recommendations