Skip to main content

Advertisement

Log in

Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer cells and tissues exhibit genome wide hypomethylation and regional hypermethylation. CpG-methylation of DNA (MeCpG-DNA) is defined as the formation of a C–C covalent bond between the 5′-C of cytosine and the –CH3 group of S-adenosylmethionine. Removal of the sole –CH3 group from the methylated cytosine of DNA is one of the many ways of DNA-demethylation, which contributes to activation of transcription. The mechanism of demethylation, the candidate enzyme(s) exhibiting direct demethylase activity and associated cofactors are not firmly established. Genome-wide hypomethylation can be obtained in several ways by inactivation of DNMT enzyme activity, including covalent trapping of DNMT by cytosine base analogues. Removal of methyl layer could also be occurred by excision of the 5-methyl cytosine base by DNA glycosylases. The importance of truly chemically defined direct demethylation of intact DNA in regulation of gene expression, development, cell differentiation and transformation are discussed in this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293, 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  2. Surani, M. A. (2002). Immaculate misconception—Genetics. Nature, 416, 491–493.

    Article  PubMed  CAS  Google Scholar 

  3. Judson, H., Hayward, B. E., Sheridan, E., & Bonthron, D. T. (2002). A global disorder of imprinting in the human female germ line. Nature, 416, 539–542.

    Article  PubMed  CAS  Google Scholar 

  4. Hata, K., Okano, M., Lei, H., & Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–1993.

    PubMed  CAS  Google Scholar 

  5. Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294, 2536–2539.

    Article  PubMed  CAS  Google Scholar 

  6. McLay, D. W., & Clarke, H.J. (2003). Remodelling the paternal chromatin at fertilization in mammals. Reproduction, 125, 625–633.

    Article  PubMed  CAS  Google Scholar 

  7. Haaf, T. (2006). Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Current Topics in Microbiology and Immunology, 310, 13–22.

    Article  PubMed  CAS  Google Scholar 

  8. Hove, J. R., Koster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., & Gharib, M. (2003). Intracardiac fluid forces are essential epigenetic factor for embryonic cardiogenesis. Nature, 421, 172–177.

    Article  PubMed  CAS  Google Scholar 

  9. Patra, S. K. (2008). Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochimica et Biophysica Acta. doi:10.1016/j.bbcan2007.11.002.

  10. Konner, M. (2002). Development: Weaving life’s pattern. Nature, 418, 279.

    Article  PubMed  CAS  Google Scholar 

  11. Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. New York: Macmillan.

    Google Scholar 

  12. Hotchkiss, R. D. (1948). The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. Journal of Biological Chemistry, 175, 315–332.

    CAS  PubMed  Google Scholar 

  13. Smith, S. S. (2000). Gilbert’s conjecture: The search for DNA (Cytosine-5) demethylase and the emergence of new functions for eukaryotic DNA (Cytosine-5) methyltransferases. Journal of Molecular Biology, 302, 1–7.

    Article  PubMed  CAS  Google Scholar 

  14. Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 2395–2402.

    Article  PubMed  CAS  Google Scholar 

  15. Patra, S. K., Patra, A., Zhao, H., & Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular Carcinogenesis, 33, 163–171.

    Article  PubMed  CAS  Google Scholar 

  16. Patra, S. K., Patra, A., Zhao, H., Carroll, P., & Dahiya, R. (2003). Methyl-CpG-DNA binding proteins in human prostate cancer: expression of CXXC sequence containing MBD1 and repression of MBD2 and MeCP2. Biochemical and Biophysical Research Communications, 302, 759–766.

    Article  PubMed  CAS  Google Scholar 

  17. Patra, S. K., Patra, A., & Dahiya, R. (2001). Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochemical and Biophysical Research Communications, 287, 705–713.

    Article  PubMed  CAS  Google Scholar 

  18. Bhattacharya, S. K., Ramchandani, S., Cervoni, N., & Szyf, M. (1999). A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 397, 579–783.

    Article  PubMed  CAS  Google Scholar 

  19. Ramchandani, S., Bhattacharya, S. K., Cervoni, N., & Szyf, M. (1999). DNA methylation is a reversible biological signal. Proceedings of the National Academy of Sciences of the USA, 96, 6107–6112.

    Article  PubMed  CAS  Google Scholar 

  20. Goel, A., Mathupala, S. P., & Pedersen, P. L. (2003). Glucose metabolism in cancer: Evidence that demethylation events play a role in activating type II hexokinase gene expression. Journal of Biological Chemistry, 278, 15333–15340.

    Article  PubMed  CAS  Google Scholar 

  21. Cervoni, N., & Szyf, M. (2001). Demethylase activity is directed by histone acetylation. Journal of Biological Chemistry, 276, 40778–40787.

    Article  PubMed  CAS  Google Scholar 

  22. Cervoni, N., Bhattacharya, S. K., & Szyf, M. (1999). DNA demethylase is a processive enzyme. Journal of Biological Chemistry, 274, 8363–8366.

    Article  PubMed  CAS  Google Scholar 

  23. Guo, Y., Pakneshan, P., Gladu, J., Slak, A., Szyf, M., & Rabbani, S. A. (2002). Regulation of DNA methylation in human breast cancer—Effect on the urokinase-type plasminogen activator gene production and tumor invasion. Journal of Biological Chemistry, 277, 41571–41579.

    Article  PubMed  CAS  Google Scholar 

  24. Wade, P. A., Gregonne, A., Jones, P. L., Ballester, E., Aubry, F., & Wolf, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23, 61–66.

    Google Scholar 

  25. Ng, H. H., Zhang, Y., Hendrich, B., Johnson, C. A., Turner, B. M., Erdjument-Bromage, H., Tempst, P., Reinberg, D., & Bird, A. (1999). MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genetics, 23, 58–61.

    PubMed  CAS  Google Scholar 

  26. Fujita, H., Fuji, R., Aratani, S., Amano, T., Fukamizu, A., & Nakajima, T. (2003). Antithetic effects of MBD2a on gene regulation. Molecular and Cellular Biology, 23, 2645–2657.

    Article  PubMed  CAS  Google Scholar 

  27. Kress, C., Thomassin, H., & Grange, T. (2006). Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proceedings of the National Academy of Sciences of the USA, 103, 11112–11117.

    Article  PubMed  CAS  Google Scholar 

  28. Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S. K., Handa, V., et al. (2007). Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 445, 671–675.

    Article  PubMed  CAS  Google Scholar 

  29. Thomassin, H., Flavin, M., Espinas, M.-L., & Grange, T. (2001). Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO Journal, 20, 1974–1983.

    Article  PubMed  CAS  Google Scholar 

  30. Kress, C., Thomassin, H., & Grange, T. (2001). Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Letters, 494, 135–140.

    Article  PubMed  CAS  Google Scholar 

  31. Jost, J.-P., Thiry, S., & Sigman, M. (2002). 5-Methyldeoxycytidine monophosphate deaminase and 5-methylcytidyl-DNA deaminase activities are present in human mature sperm cells. FEBS Letters, 519, 128–134.

    Article  PubMed  CAS  Google Scholar 

  32. Surani, M. A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature, 414, 122–128.

    Article  PubMed  CAS  Google Scholar 

  33. Patra, S. K., & Bettuzzi, S. (2007). Epigenetic DNA methylation regulation of genes coding for lipid raft-associated components: A role for raft proteins in cell transformation and cancer progression (Review). Oncology Reports, 17, 1279–1290.

    PubMed  CAS  Google Scholar 

  34. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews (Genetics), 3, 416–428.

    CAS  Google Scholar 

  35. Hendrich, B., & Bird, A. (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and Cellular Biology, 18, 6538–6547.

    PubMed  CAS  Google Scholar 

  36. Tan, C. P., & Nakielny, S. (2006). Control of the DNA methylation system component MBD2 by protein arginine methylation. Molecular and Cellular Biology, 26, 7224–7235.

    Article  PubMed  CAS  Google Scholar 

  37. Wade, P. A. (2001). Methyl CpG-binding proteins and transcriptional repression. BioEssays, 23, 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, J.-H., Voo, K. S., & Skalnik, D. G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. Journal of Biological Chemistry, 276, 44669–44676.

    Article  PubMed  CAS  Google Scholar 

  39. Feng, Q., & Zhang, Y. (2001). The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & Development, 15, 827–832.

    CAS  Google Scholar 

  40. Lopez-Serra, L., Ballestar, E., Fraga, M. F., Alaminos, M., Setien, F., & Esteller, M. (2006). A profile of Methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG-islands of tumor suppressor genes in human cancer. Cancer Research, 66, 8342–8346.

    Article  PubMed  CAS  Google Scholar 

  41. Lembo, F., Pero, R., Angrisano, T., Vitiello, C., Iuliano, R., Bruni, C. B., et al. (2003). MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Molecular and Cellular Biology, 23, 1656–1665.

    Article  PubMed  CAS  Google Scholar 

  42. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., et al. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119, 941–953.

    Article  PubMed  CAS  Google Scholar 

  43. Kubicek, S., & Jenuwein, T. (2004). A crack in histone lysine methylation. Cell, 119, 903–906.

    Article  PubMed  CAS  Google Scholar 

  44. Ehrlich, M. (2006). Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Current Topics in Microbiology and Immunology, 310, 251–274.

    Article  PubMed  CAS  Google Scholar 

  45. Rodriguez, J., Frigola, J., Vendrell, E., Risques, R. A., Fraga, M. F., Morales, C., et al. (2006). Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Research, 66, 8462–9468.

    Article  PubMed  CAS  Google Scholar 

  46. Bruniquel, D., & Schwartz, R. H. (2003). Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nature Immunology, 4, 235–240.

    Article  PubMed  CAS  Google Scholar 

  47. Santos, F., Hendrich, B., Reik, W., & Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Developments in Biologicals, 241, 172–182.

    Article  CAS  Google Scholar 

  48. Li, E., Bestor, T. H., & Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  49. Lewin, B. (1995). GENE-V. In B.Lewin (Ed.) Systems that safeguard DNA (pp. 605–629). Oxford, NY: Oxford University Press.

    Google Scholar 

  50. Hoeijmakers, J. H. J. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411, 366–374.

    Article  PubMed  CAS  Google Scholar 

  51. Richmond, T. H., & Davey, C. A. (2003). The structure of DNA in the nucleosome core. Nature, 423, 145–150.

    Article  PubMed  CAS  Google Scholar 

  52. Horn, P. J., & Peterson, C. L. (2002). Chromatin higher order folding: Wrapping up transcription. Science, 297, 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  53. Quina, A. S., Buschbeck, M., & Di Croce, L. (2006). Chromatin structure and epigenetics. Biochemical Pharmacology, 72, 1563–1569.

    Article  PubMed  CAS  Google Scholar 

  54. Vargason, J. M., Eichman, B. F., & Ho, P. S. (2000). The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nature Structural Biology, 7, 758–761.

    Article  PubMed  CAS  Google Scholar 

  55. Mayer-Jung, C., Moras, D., & Timsit, Y. (1998). Hydration and recognition of methylated CpG steps in DNA. EMBO Journal, 17, 2709–2718.

    Article  PubMed  CAS  Google Scholar 

  56. Schübeler, D., Lorincz, M. C., Cimbora, D. M., Telling, A., Feng, Y.-Q., Bouhassira, E. E., et al. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Molecular and Cellular Biology, 20, 9103–9112.

    Article  PubMed  Google Scholar 

  57. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M., & Ceder, H. (2003). The role of DNA methylation in setting up chromatin structure during development. Nature Genetics, 34, 187–192.

    Article  PubMed  CAS  Google Scholar 

  58. Okitsu, C. Y., & Hsieh, C. L. (2007). DNA methylation dictates histone H3K4 methylation. Molecular and Cellular Biology, 27, 2746–2757.

    Article  PubMed  CAS  Google Scholar 

  59. Irvine, R. A., Lin, I. G., & Hsieh, C.-L. (2002). DNA methylation has a local effect on transcription and histone acetylation. Molecular and Cellular Biology, 22, 6689–6696.

    Article  PubMed  CAS  Google Scholar 

  60. Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.

    Article  PubMed  CAS  Google Scholar 

  61. Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120, 169–181.

    Article  PubMed  CAS  Google Scholar 

  62. Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., et al. (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proceedings of the National Academy of Sciences of the USA, 101, 7357–7362.

    Article  PubMed  CAS  Google Scholar 

  63. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407–411.

    Article  PubMed  CAS  Google Scholar 

  64. Schneider, R. A., Bannister, J., Myers, F. A., Thorne, A. W., Crane-Robinson, C., et al. (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biology, 6, 73–77.

    Article  PubMed  CAS  Google Scholar 

  65. Christensen, J., Agger, K., Cloos, P. A., Pasini, D., Rose, S., Sennels, L., et al. (2007). RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell, 128, 1063–1076.

    Article  PubMed  CAS  Google Scholar 

  66. Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural Molecular Biology, 11, 1068–1075.

    Article  PubMed  CAS  Google Scholar 

  67. Schübeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Development, 18, 1263–1271.

    Article  PubMed  Google Scholar 

  68. Parnell, T. J., & Geyer, P. K. (2000). Differences in insulator properties revealed by enhancer blocking assays on episomes. EMBO Journal, 19, 5864–5874.

    Article  PubMed  CAS  Google Scholar 

  69. Cook, P. R. (2003). Nongenic transcription, gene regulation and action at a distance. Cell Science, 116, 4483–4491.

    Article  CAS  Google Scholar 

  70. Blanton, J., Gaszner, M., & Schedl, P. (2003). Protein–protein interactions and the pairing of boundary elements in vivo. Genes and Development, 17, 664–675.

    Article  PubMed  CAS  Google Scholar 

  71. Zhao, K., Hart, C. M., & Laemmli, U. K. (1995). Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell, 81, 879–889.

    Article  PubMed  CAS  Google Scholar 

  72. Cai, H., & Levine, M. (1995). Modulation of enhancer–promoter interactions by insulators in the Drosophila embryo. Nature, 376, 533–536.

    Article  PubMed  CAS  Google Scholar 

  73. Ghosh, D., Gerasimova, T. I., & Corces, V. G. (2001). Interactions between the Su(Hw) and mod(mdg4) proteins required for gypsy insulator function. EMBO Journal, 20, 2518–2527.

    Article  PubMed  CAS  Google Scholar 

  74. Kellum, R., & Schedl, P. (1991). A position-effect assay for boundaries of higher order chromosomal domains. Cell, 64, 941–950.

    Article  PubMed  CAS  Google Scholar 

  75. Reither, S., Li, F., Gowher, H., & Jeltsch, A. (2003). Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: Covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. Journal of Molecular Biology, 329, 675–684.

    Article  PubMed  CAS  Google Scholar 

  76. Christman, J. K. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 21, 5483–5491.

    Article  PubMed  CAS  Google Scholar 

  77. Cedar, H., & Verdine, G. L. (1999). Gene expression: the amazing demethylase. Nature, 397, 568–569.

    Article  PubMed  CAS  Google Scholar 

  78. Cervoni, N., Detich, N., Seo, S. B., Chakravarti, D., & Szyf, M. (2002). The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. Journal of Biological Chemistry, 277, 25026–25031.

    Article  PubMed  CAS  Google Scholar 

  79. Weiss, A., & Cedar, H. (1997). The role of DNA demethylation during development. Genes Cells, 2, 481–486.

    Article  PubMed  CAS  Google Scholar 

  80. Roberts, R. J., & Cheng, X. (1998). Base flipping. Annual Review of Biochemistry, 67, 181–198.

    Article  PubMed  CAS  Google Scholar 

  81. Kapoor, A., Agius, F., & Zhu, J.-K. (2005). Preventing transcriptional gene silencing by active DNA demethylation. FEBS Letters, 579, 5889–5898.

    Article  PubMed  CAS  Google Scholar 

  82. Jost, J. P., & Bruhat, A. (1997). The formation of DNA methylation patterns and the silencing of genes. Progress in Nucleic Acid Research and Molecular Biology, 57, 217–248.

    Article  PubMed  CAS  Google Scholar 

  83. Jost, J. P., Siegmann, M., Sun, L. J., & Leung, R. (1995). Mechanisms of DNA demethylation in chicken embryos: purification and properties of a 5-methylcytosine-DNA glycosylase. Journal of Biological Chemistry, 270, 9734–9739.

    Article  PubMed  CAS  Google Scholar 

  84. Weiss, A., Keshet, I., Razin, A., & Cedar, H. (1996). DNA demethylation in vitro: Involvement of RNA. Cell, 86, 709–718.

    Article  PubMed  CAS  Google Scholar 

  85. Swisher, J. F. A., Rand, E., Cedar, H., & Pyle, A. M. (1998). Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts. Nucleic Acids Research, 26, 5573–5580.

    Article  PubMed  CAS  Google Scholar 

  86. Zhu, B., Zheng, Y., Angliker, H., Schwarz, S., Siegmann, M., Thiry, S., et al. (2000). 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Research, 28, 4157–4165.

    Article  PubMed  CAS  Google Scholar 

  87. Zhu, B., Zheng, Y., Hess, D., Angliker, H., Schwarz, S., Siegmann, M., et al. (2000). 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proceedings of the National Academy of Sciences of the USA, 97, 5135–5139.

    Article  PubMed  CAS  Google Scholar 

  88. Zhu, B., Benjamin, D., Zheng, Y., Angliker, H., Thiry, S., Siegmann, M., et al. (2001). Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proceedings of the National Academy of Sciences of the USA, 98, 5031–5036.

    Article  PubMed  CAS  Google Scholar 

  89. Jost, J. P. (1993). Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proceedings of the National Academy of Sciences of the USA, 90, 4684–4688.

    Article  PubMed  CAS  Google Scholar 

  90. Jost, J. P., Schwarz, S., Hess, D., Angliker, H., Fuller-Pace, F. V., Stahl, H. S., et al. (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein–RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Research, 27, 3245–3252.

    Article  PubMed  CAS  Google Scholar 

  91. Vairapandi, M., & Duker, N. J. (1993). Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase. Nucleic Acids Research, 21, 5323–5327.

    Article  PubMed  CAS  Google Scholar 

  92. Vairapandi, M., Liebermann, D. A., Hoffman, B., & Duker, N. J. (2000). Human DNA-demethylating activity: A glycosylase associated with RNA and PCNA. Journal of Cellular Biochemistry, 79, 249–260.

    Article  PubMed  CAS  Google Scholar 

  93. Maga, G., & Hubscher, U. (2003). Proliferating cell nuclear antigen (PCNA): a dancer with many partners. Journal of Cell Science, 116, 3051–3060.

    Article  PubMed  CAS  Google Scholar 

  94. Hsieh, C. L. (1999). Evidence that protein binding specifies sites of DNA demethylation. Molecular and Cellular Biology, 19, 46–56.

    PubMed  CAS  Google Scholar 

  95. Goelz, S. E., Vogelstein, B., Hamilton, S. R., & Feinberg, A. P. (1985). Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228, 187–190.

    Article  PubMed  CAS  Google Scholar 

  96. Gaudet, F., Hodgson, J. G., Eden, A., Jakson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300, 489–492.

    Article  PubMed  CAS  Google Scholar 

  97. Gjerset, R. A., & Martin Jr., D. W. (1982). Presence of DNA demethylating activity in the nucleus of murine erythroleukemic cells. Journal of Biological Chemistry, 257, 8581–8583.

    PubMed  CAS  Google Scholar 

  98. Ghoshal, K., Majumder, S., Datta, J., Motiwala, T., Bai, S., Sharma, S. M., et al. (2004). Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. Journal of Biological Chemistry, 279, 6783–6793.

    Article  PubMed  CAS  Google Scholar 

  99. Zhu, Y., Brown, H. N., Zhang, Y., Holford, T. R., & Zheng, T. (2005). Genotypes and haplotypes of the methyl-CpG-binding domain 2 modify breast cancer risk dependent upon menopausal status. Breast Cancer Research, 7, R745–R752.

    Article  PubMed  CAS  Google Scholar 

  100. Fang, J. Y., Cheng, Z. H., Chen, Y. X., Lu, R., Yang, L., Zhu, H. Y., et al. (2004). Expression of Dnmt1, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer. World Journal of Gastroenterologist, 10, 3394–3398.

    CAS  Google Scholar 

  101. Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., & Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 34, 145–147 (also, see supplementary data).

    Article  PubMed  CAS  Google Scholar 

  102. Berger, J., Sansom, O., Clarke, A., & Bird, A. (2007). MBD2 is required for correct spatial gene expression in the gut. Molecular and Cellular Biology, 27, 4049–4057.

    Article  PubMed  CAS  Google Scholar 

  103. Galetzka, D., Weis, E., Tralau, T., Seidmann, L., & Haaf, T. (2007). Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads. Molecular Reproduction and Development, 74, 233–241.

    Article  PubMed  CAS  Google Scholar 

  104. Mayer, W., Niveleau, A., Walter, J., Fundele, R., & Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature, 403, 501–502.

    Article  PubMed  CAS  Google Scholar 

  105. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., et al. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the USA, 98, 13734–13738.

    Article  PubMed  CAS  Google Scholar 

  106. Beaujean, N., Taylor, J. E., McGarry, M., Gardner, J. O., Wilmut, I., Loi, P., et al. (2004). The effect of interspecific oocytes on demethylation of sperm DNA. Proceedings of the National Academy of Sciences of the USA, 101, 7636–7640.

    Article  PubMed  CAS  Google Scholar 

  107. Kang, Y. K., Koo, D., Park, J. S., Choi, Y., Lee, K., & Han, Y. (2001). Influence of oocyte nuclei on demethylation of donor genome in cloned bovine embryos. FEBS Letters, 499, 55–58.

    Article  PubMed  CAS  Google Scholar 

  108. Wischnewski, F., Friese, O., Pantel, K., & Schwarzenbach, H. (2007). Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Molecular Cancer Research, 5, 749–759.

    Article  PubMed  CAS  Google Scholar 

  109. Bird, A. (2003). IL2 transcription unleashed by active DNA demethylation. Nature Immunology, 4, 208–209.

    Article  PubMed  CAS  Google Scholar 

  110. Erlanson, D., Dhen, L., & Verdin, G. L. (1993). Enzymatic DNA methylation through a locally unpaired intermediate. Journal of the American Chemical Society, 115, 12583–12584.

    Article  CAS  Google Scholar 

  111. Chen, L., MacMillan, A. M., Cheng, W., Ezaz-Nikpay, K., Lane, W. S., & Verdin, G. L. (1991). Direct identification of the active site nucleophile in a DNA (cytosine-5-methyltransferase). Biochemistry, 30, 11018–11025.

    Article  PubMed  CAS  Google Scholar 

  112. Santi, D. V., Garrett, C. E., & Barr, P. J. (1983). On the mechanism of inhibition of DNA-cytosine methyltransferase by cytosine analogs. Cell, 33, 9–10.

    Article  PubMed  CAS  Google Scholar 

  113. Wilson, V. L., & Jones, P. A. (1983). Inhibition of DNA methylation by chemical carcinogens in vitro. Cell, 32, 239–246.

    Article  PubMed  CAS  Google Scholar 

  114. Klimasauskas, S., Kumar, S., Robert, R. J., & Cheng, X. (1994). HhaI methyltransferase flips its target base out of the DNA helix. Cell, 76, 357–369.

    Article  PubMed  CAS  Google Scholar 

  115. Wu, P., Qiu, C., Sohail, A., Zhang, X., Bhagwat, A. S., & Cheng, X. (2003). Mismatch repair in methylated DNA: Structure and activity of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4. Journal of Biological Chemistry, 278, 5285–5291.

    Article  PubMed  CAS  Google Scholar 

  116. Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857–869.

    Article  PubMed  CAS  Google Scholar 

  117. Claus, R., Almstedt, M., & Lubbert, M. (2005). Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Seminars in Oncology, 32, 511–520.

    Article  PubMed  CAS  Google Scholar 

  118. Wijermans, P., Lubbert, M., Verhoef, G., Bosly, A., Ravoet, C., Andre, M., et al. (2000). Low-Dose 5-Aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: A multicenter phase II study in elderly patients. Journal of Clinical Oncology, 18, 956–965.

    PubMed  CAS  Google Scholar 

  119. Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: past, present and future. Nature Reviews Drug Discovery, 5, 37–50.

    Article  PubMed  CAS  Google Scholar 

  120. Mihich, E., & Jaenisch, R. (2004). Sixteenth annual pezcoller symposium: Stem cells and epigenesis in cancer. Cancer Research, 64, 8474–8477.

    Article  PubMed  CAS  Google Scholar 

  121. Sato, N., Maehara, N., Su, G. H., & Goggins, M. (2003). Effects of 5-aza-2′-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. Journal of the National Cancer Institute, 95, 327–330.

    Article  PubMed  CAS  Google Scholar 

  122. Pulukuri, S. M., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67, 930–939.

    Article  PubMed  CAS  Google Scholar 

  123. Lucarelli, M., Fuso, A., Strom, R., & Scarpa, S. (2001). The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. Journal of Biological Chemistry, 276, 7500–7506.

    Article  PubMed  CAS  Google Scholar 

  124. El Kharroubi, A., Piras, G., & Stewart, C. L. (2001). DNA demethylation reactivates a subset of imprinted genes in uni-parental mouse embryonic fibroblasts. Journal of Biological Chemistry, 276, 8674–8680.

    Article  PubMed  Google Scholar 

  125. Santoso, B., Ortiz, B. D., & Winoto, A. (2000). Control of organ-specific demethylation by an element of the T-cell receptor-alpha locus control region. Journal of Biological Chemistry, 275, 1952–1858.

    Article  PubMed  CAS  Google Scholar 

  126. Ferguson, A. T., Vertino, P. M., Spitzner, J. R., Baylin, S. B., Muller, M. T., & Davidson, N. E. (1997). Role of estrogen receptor gene demethylation and DNA methyltransferase-DNA adduct formation in 5-aza-2′-deoxycytidine induced cytotoxicity in human breast cancer cells. Journal of Biological Chemistry, 272, 32260–32266.

    Article  PubMed  CAS  Google Scholar 

  127. Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase DNMT1 associates with histone deacetylase activity. Nature Genetics, 24, 88–91.

    Article  PubMed  CAS  Google Scholar 

  128. Wittschieben, B. O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., et al. (1999). A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Molecular Cell, 4, 123–128.

    Article  PubMed  CAS  Google Scholar 

  129. Scaltriti, M., Belloni, L., Caporali, A., Davalli, P., Remondini, D., Rizzi, F., et al. (2006). Molecular classification of green tea catechin-sensitive and green tea catechin-resistant prostate cancer in the TRAMP mice model by quantitative real-time PCR gene profiling. Carcinogenesis, 27, 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  130. Lund, P., Weisshaupt, K., Mikeska, T., Jammas, D., Chen, X., Kuban, R. J., et al. (2006). Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene, 25, 4890–4903.

    Article  PubMed  CAS  Google Scholar 

  131. Kundu, T. K., & Rao, M. R. S. (1999). CpG islands in chromatin organization and gene expression. Journal of Biochemistry, 125, 217–222.

    PubMed  CAS  Google Scholar 

  132. Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., & Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genetics, 2, e26. doi:10.1371/journal.pgen.0020026.

    Article  PubMed  CAS  Google Scholar 

  133. Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., et al. (2006). Computational prediction of methylation status in human genomic sequences. Proceedings of the National Academy of Sciences of the USA, 103, 10713–10716.

    Article  PubMed  CAS  Google Scholar 

  134. Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., et al. (2006). Large-scale structure of genomic methylation patterns. Genome Research, 16, 157–163.

    Article  PubMed  CAS  Google Scholar 

  135. Salisbury, C. M., & Cravatt, B. E. (2007). Activity based probes for profiling of histone deacetylase complexes. Proceedings of the National Academy of Sciences of the USA, 104, 1171–1176.

    Article  PubMed  CAS  Google Scholar 

  136. Delaval, K., Govin, J., Cerqueira, F., Rousseaux, S., Khochbin, S., & Feil, R. (2007). Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO Journal, 26, 720–729.

    Article  PubMed  CAS  Google Scholar 

  137. Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., & Ceder, H. (1991). Demethylation of CpG islands in embryonic cells. Nature, 351, 239–241.

    Article  PubMed  CAS  Google Scholar 

  138. Paroush, Z., Keshet, I., Yisraeli, J., & Ceder, H. (1990). Dynamics of demethylation and activation of the alpha-actin gene in myoblasts. Cell, 63, 1229–1237.

    Article  PubMed  CAS  Google Scholar 

  139. Wiechen, K., Diatchenko, L., Agoulink, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down regulated in human ovarian carcinoma and Acts as candidate tumour suppressor gene. American Journal of Pathology, 159, 1635–1643.

    PubMed  CAS  Google Scholar 

  140. Cui, J., Rohr, L. R., Swanson, G., Speights, V. O., Maxwell, T., & Brothman, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate, 46, 249–256.

    Article  PubMed  CAS  Google Scholar 

  141. Liu, J., Ikeguchi, M., Nakamura, S., & Kaibara, N. (2002). Re-expression of the Cadherin–Catenin complex in lymph nodes with metastasis in advanced gastric cancer: the relationship with patient survival. Journal of Experimental and Clinical Cancer Research, 21, 65–71.

    Google Scholar 

  142. Foger, N., Marhaba, R., & Zoller, M. (2000). Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. Journal of Cell Science, 114, 1169–1178.

    Google Scholar 

  143. Kito, H., Suzuki, H., Ichikawa, T., Sekita, N., Kamia, N., Akakura, K., et al. (2001). Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate, 49, 110–115.

    Article  PubMed  CAS  Google Scholar 

  144. Lou, W., Krill, D., Dhir, R., Becich, M. J., Dong, J.-T., Frierson Jr., H. F., et al. (1999). Methylation of CD44 metastasis suppressor gene in human prostate cancer. Cancer Research, 59, 2329–2331.

    PubMed  CAS  Google Scholar 

  145. Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21, 4231–4236.

    Article  PubMed  CAS  Google Scholar 

  146. Hyman, R. (2002). Lack of a consistent relationship between demethylation of the CD44 promoter and CD44 expression. Immunogenetics, 53, 914–924.

    Article  PubMed  CAS  Google Scholar 

  147. Shiras, A., Bhosale, A., Patekar, A., Shepal, V., & Shastry, P. (2002). Differential expression of CD44(s) and variant isoforms v3, v10 in three-dimensional cultures of mouse melanoma cell lines. Clinical & Experimental Metastasis, 19, 445–455.

    Article  CAS  Google Scholar 

  148. Bankfalvi, A., KraBort, M., Buchwalow, I. B., Vegh, A., Felszeghy, E., & Piffko, J. (2002). Gains and loses of adhesion molecules (CD44, E-Cadherin, and b-Catenin) during oral carcinogenesis and tumour progression. Journal of Pathology, 198, 343–351.

    Article  PubMed  CAS  Google Scholar 

  149. Weber, G. F., Bronson, R. T., Ilagan, J., Cantor, H., Schmits, R., & Mak, T. W. (2002). Absence of the CD44 gene prevents sarcoma metastasis. Cancer Research, 62, 2281–2286.

    PubMed  CAS  Google Scholar 

  150. Verkaik, N. S., Trapman, J., Romijn, J. C., Van Der Kwast, T. H., & Van Steenbrugge, G. J. (1999). Down regulation of CD44 expression in human prostatic carcinoma cell lines is correlated with DNA hypermethylation. International Journal of Cancer, 80, 439–443.

    Article  CAS  Google Scholar 

  151. Kogerman, P., Sy, M.-S., & Culp, L. A. (1997). Counter-selection for over expressed human CD44s primary tumour versus lung metastases in mouse fibrosarcoma model. Oncogene, 15, 1407–1416.

    Article  PubMed  CAS  Google Scholar 

  152. Shiratori, H., Koshino, T., Uesugi, M., Nitto, H., & Saito, T. (2001). Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice. Cancer Letters, 170, 177–182.

    Article  PubMed  CAS  Google Scholar 

  153. Ribeiro-Filho, L. A., Franks, J., Sasaki, M., Shiina, H., Li, L.-C., Nojima, D., et al. (2002). CpG hypermethylation of promoter region and Inactivation of E-cadherin gene in human bladder cancer. Molecular Carcinogenesis, 34, 187–198.

    Article  PubMed  CAS  Google Scholar 

  154. Karube, H., Masuda, H., Ishii, Y., & Takayama, T. (2002). E-Cadherin expression is inversely proportional to tumour size in experimental liver metastasis. Journal of Surgical Research, 106, 173–178.

    Article  PubMed  CAS  Google Scholar 

  155. Alpaugh, M. L., Tomlinson, J. S., Kasraeian, S., & Barsky, S. H. (2002). Cooperative role of E-Cadherin sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumour emboli in inflammatory breast carcinoma. Oncogene, 21, 3631–3643.

    Article  PubMed  CAS  Google Scholar 

  156. Ikeguchi, M., Makino, M., & Kaibara, N. (2001). Clinical significance of E-Cadherin–Cateninn complex expression in metastatic foci of colorectal carcinoma. Journal of Surgical Research, 77, 201–207.

    CAS  Google Scholar 

  157. Kase, S., Sugio, K., Yamazaki, K., Okamoto, T., Yano, T., & Sugimachi, K. (2000). Expression of E-Cadherin and b-Catenin in human non-small cell lung cancer and the clinical significance. Clinical Cancer Research, 6, 4784–4796.

    Google Scholar 

  158. Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistant E-Cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.

    Article  PubMed  CAS  Google Scholar 

  159. Jiang, W. G., & Mansel, R. E. (2000). E-cadherin complex and its abnormalities in human breast cancer. Surgical Oncology, 9, 151–171.

    Article  PubMed  CAS  Google Scholar 

  160. Cavalli, L. R., Urban, C. A., Dai, D., de Assis, S., Tavares, D. C., Rone, J. D., et al. (2003). Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genetics and Cytogenetics, 146, 33–40.

    Article  PubMed  CAS  Google Scholar 

  161. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.

    Article  PubMed  CAS  Google Scholar 

  162. Dong, E., Guidotti, A., Grayson, D. R., & Costa, E. (2007). Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proceedings of the National Academy of Sciences of the USA, 104, 4676–4681.

    Article  PubMed  CAS  Google Scholar 

  163. Wong, I. H. (2001). Methylation profiling of human cancers in blood: molecular monitoring and prognostication (Review). International Journal of Oncology, 19, 1319–1324.

    PubMed  CAS  Google Scholar 

  164. Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction. Nature Reviews, Cancer, 6, 107–116.

    Article  CAS  Google Scholar 

  165. Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.

    Article  PubMed  CAS  Google Scholar 

  166. Zhu, X., Leav, I., Leung, Y. K., Wu, M., Liu, Q., Gao, Y., et al. (2004). Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. American Journal of Pathology, 164, 2003–2012.

    PubMed  CAS  Google Scholar 

  167. Zhu, J., & Yao, X. (2007). Use of DNA methylation for cancer detection and molecular classification. Journal of Biochemistry and Molecular Biology, 40, 135–141.

    PubMed  CAS  Google Scholar 

  168. Li, L. C., Okino, S. T., & Dahiya, R. (2004). DNA methylation in prostate cancer (Review). Biochimica et Biophysica Acta, 1704, 87–102.

    PubMed  CAS  Google Scholar 

  169. Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., et al. (2003). Tea polyphenol Epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer Cell lines. Cancer Research, 63, 7563–7570.

    PubMed  CAS  Google Scholar 

  170. Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. Journal of Biological Chemistry, 279, 31735–31744.

    Article  PubMed  CAS  Google Scholar 

  171. Peterson, C. L., & Logie, C. (2000). Recruitment of chromatin remodeling machines. Journal of Cellular Biochemistry, 78, 179–185.

    Article  PubMed  CAS  Google Scholar 

  172. Rhee, I., Jair, K.-W., Yen, R.-W. C., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  173. Razin, A., Cedar, H., & Riggs, A. D. (1984). DNA methylation, biochemistry, and biological significance. New York: Springer.

    Google Scholar 

  174. Adams, R. L. P., & Burdon, R. H. (1985). Molecular biology of DNA methylation. New York: Springer.

    Google Scholar 

  175. Jost, J.-P., & Saluz, H. P. (1993). DNA methylation: Molecular biology and biological significance. Berlin: Birkhäuser.

    Google Scholar 

  176. Shell, S., Park, S. M., Radjabi, A. R., Schickel, R., Kistner, E. O., Jewell, D. A., et al. (2007). Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the USA, 104, 11400–11405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was done in part at the McGill University, Montreal, Canada, during one of the authors (SKP) stay as academic trainee staff, supported by a fellowship from the National Cancer Institute of Canada (NCIC); and also done in part at the University of California at San Francisco, USA, during the stay of SKP and AP as postdoctoral scientists supported by fellowships from NIH, and thereafter from NCIRE, California, USA. Grant support for SB: ABO Project 2006, Venezia, Italy; AICR (UK) Grant No. 06-711; Istituto Nazionale Biostrutture e Biosistemi (INBB), Roma; Associazione Assistenza Tumori Alto Adige—Südtiroler Krebshilfe, Bolzano (Bozen), Italy. We apologize to those, whose work and related publications we have not been able to discuss and cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Patra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, S.K., Patra, A., Rizzi, F. et al. Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev 27, 315–334 (2008). https://doi.org/10.1007/s10555-008-9118-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9118-y

Keywords

Navigation