Skip to main content

Advertisement

Log in

Targeted therapy for oesophageal cancer: an overview

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Oesophageal cancer (OC), is an aggressive cancer constituting a major cause of cancer-related deaths worldwide. Recent advances in surgical techniques, incorporation of new therapeutic approaches—adjuvant/neoadjuvant chemoradiotherapy—and integration of new cytotoxic drugs into the management of oesophageal cancer have increased the response rate percentages to 40–50%, with minor impact on the overall survival. The need for an efficacious therapy with minimal toxicity along with a better understanding of molecular pathways of oesophageal carcinogenesis has led to the development of novel anticancer agents. These agents have targeted mechanisms of action such as: (1) inhibitors of the ErbB receptor family, (2) vascular endothelial growth factor (VEGF) inhibitors, (3) selective inhibitors of cycloxygenase-2, (4) matrix metalloproteinase inhibitors, (5) cell-cycle regulators, and (6) promoters of apoptosis. The incorporation of these agents into combined modality treatment schedules for advanced and early stage tumors together with the identification of patients who will most likely benefit will provide novel opportunities in the treatment of oesophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ajani, J. A., van Cutsem, E., Moiseyenko, V., Tjulandin, S., Fodor, M., Majlis, A., et al. (2003). Docetaxel, cisplatin, 5-fluorouracil compare to cisplatin and 5-fluorouracil for chemotherapy-naive patients with metastatic or locally recurrent, unresectable gastic carcinoma: Interim results of a randomized phase III trial (V325). Proceedings of the American Society of Clinical Oncology, 22, 229–237.

    Google Scholar 

  2. Blot, W. J., & McLaughlin, J. K. (1999). The changing epidemiology of oesophageal cancer. Seminars in Oncology, 26, 2–8.

    PubMed  CAS  Google Scholar 

  3. Enzinger, P. C., & Mayer, R. J. (2003). Esophageal cancer. New England Journal of Medicine, 349, 2241–2252.

    PubMed  CAS  Google Scholar 

  4. Mendelsohn, J., & Baselga, J. (2000). The EGF receptor family as targets for cancer therapy. Oncogene, 19, 6550–6565.

    PubMed  CAS  Google Scholar 

  5. Lemmon, M. A., & Schlessinger, J. (1994). Regulation of signal transduction and signal diversity by receptor oligomerization. Trends in Biochemical Sciences, 19, 459–463.

    PubMed  CAS  Google Scholar 

  6. Schlessinger, J. (2000). Cell signalling by receptor tyrosine kinases. Cell, 103, 211–225.

    PubMed  CAS  Google Scholar 

  7. Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews. Molecular Cell Biology, 2, 127–137.

    PubMed  CAS  Google Scholar 

  8. Iihara, K., Shiozaki, H., Tahara, H., Kobayashi, K., Inoue, M., Tamura, S., et al. (1993). Prognostic significance of transforming growth factor-alpha in human esophageal carcinoma. Implication for the autocrine proliferation. Cancer, 71, 2902–2909.

    PubMed  CAS  Google Scholar 

  9. Ozawa, S., Ueda, M., Ando, N., et al. (1987). High incidence of EGF receptor hyperproduction in esophageal squamous-cell carcinomas. International Journal of Cancer, 39, 333–337.

    CAS  Google Scholar 

  10. Ozawa, S., Ueda, M., Ando, N., Shimizu, N., & Abe, O. (1989). Prognostic significance of epidermal growth factor receptor in esophageal squamous cell carcinomas. Cancer, 63, 2169–2173.

    PubMed  CAS  Google Scholar 

  11. Shimada, Y., Imamura, M., Watanabe, G., Ushida, S., Harada, H., Makino, T., et al. (1999). Prognostic factors of esophageal squamous cell carcinoma from the perspective of molecular biology. British Journal of Cancer, 80, 1281–1288.

    PubMed  CAS  Google Scholar 

  12. Kitagawa, Y., Ueda, M., Ando, N., Ozawa, S., Shimizu, N., & Kitajima, M. (1996). Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clinical Cancer Research, 2, 909–914.

    PubMed  CAS  Google Scholar 

  13. Itakura, Y., Sasano, H., Shiga, C., Furukawa, Y., Shiga, K., Mori, S., et al. (1994). Epidermal growth factor receptor overexpression in esophageal carcinoma. An immunohistochemical study correlated with clinicopathologic findings and DNA amplification. Cancer, 74, 795–804.

    PubMed  CAS  Google Scholar 

  14. Sudo, T., Mimori, K., Nagahara, H., et al. (2007). Identification of EGFR mutations in esophageal cancer. European Journal of Surgical Oncology, 33, 44–48.

    PubMed  CAS  Google Scholar 

  15. Guo, M., Liu, S., & Lu, F. (2006). Gefitinib-sensitizing mutations in esophageal carcinoma. New England Journal of Medicine, 354, 2193–2194.

    PubMed  CAS  Google Scholar 

  16. Hickey, K., Grehan, D., Reid, I. M., O’ Briain, S., Walsh, T. N., & Hennessy, T. P. (1994). Expression of epidermal growth factor receptor and proliferating cell nuclear antigen predicts response of esophageal squamous cell carcinoma to chemoradiotherapy. Cancer, 74, 1693–1698.

    PubMed  CAS  Google Scholar 

  17. Kawaguchi, Y., Kono, K., Mimura, K., Sugai, H., Akaike, H., & Fugii, H. (2007). Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma. International Journal of Cancer, 120, 781–787.

    CAS  Google Scholar 

  18. Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., et al. (2004). Cetuximab monotherapy and cetuximab plus irinotecan-refractory metastatic colorectal cancer. New England Journal of Medicine, 351, 337–345.

    PubMed  CAS  Google Scholar 

  19. Saltz, L. B., Meropol, N. J., Loehrer, P. J., Needle, M. N., Kopit, J., & Mayer, R. J. (2004). Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. Journal of Clinical Oncology, 22, 1201–1208.

    PubMed  CAS  Google Scholar 

  20. Bonner, J. A. (2004). Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: A phase III study of high dose radiation therapy with or without cetuximab. Journal of Clinical Oncology, 22, 5507.

    Google Scholar 

  21. Vermorken, J. B., Trigo, J., Hitt, R., Koralewski, P., Diaz-Rubio, E., Rolland, F., et al. (2007). Open-label, uncontrolled, multicentre phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. Journal of Clinical Oncology, 25, 2171–2177.

    PubMed  CAS  Google Scholar 

  22. Chung, K. Y., Shia, J., Kemeny, N. E., Shah, M., Schwartz, G. K., Tse, A., et al. (2005). Cetuximab shows activity in colorectal cancer patients with tumours that do not express the epidermal growth factor receptor by immunohistochemistry. Journal of Clinical Oncology, 23, 1803–1810.

    PubMed  CAS  Google Scholar 

  23. Cohenuram, M., & Saif, M. W. (2007). Panitumumab the first fully human monoclonal antibody: From the bench to the clinic. Anticancer Drugs, 18, 7–15.

    PubMed  CAS  Google Scholar 

  24. Khazaeli MB, Lobuglio AF, Falcey JW, et al. (2000). Low immunogenicity of a chimeric monoclonal antibody (MAb), IMC-C225, used to treat epidermal growth factor receptor-positive tumors. Proceedings of the American Society of Clinical Oncology, 16, Abstr 808.

    Google Scholar 

  25. Vanhoefer, U., Tewes, M., Rojo, F., Dirsch, O., Schleucher, N., Rosen, O., et al. (2004). Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. Journal of Clinical Oncology, 22, 175–184.

    PubMed  CAS  Google Scholar 

  26. Hecht JR, Patnaik A, Malik I, et al. (2004). ABX-EGF monotherapy in patients (pts) with metastatic colorectal cancer (mCRC): An updated analysis. Proceedings of the American Society of Clinical Oncology , 22, Abstr 3511.

    Google Scholar 

  27. Ciardiello, F., & Tortora, G. (2002). Anti-epidermal growth factor receptors in cancer therapy. Expert Opinion on Investigational Drugs, 11, 755–768.

    PubMed  CAS  Google Scholar 

  28. Perez-Soler, R. (2004). Phase II clinical trial data with the epidermal growth factor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clinical Lung Cancer, 6, 20–23.

    Article  Google Scholar 

  29. Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966.

    PubMed  CAS  Google Scholar 

  30. Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J. Y., et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. Journal of Clinical Oncology, 21, 2237–2246.

  31. Taira, N., Doihara, H., Oota, T., Hara, F., Shien, T., Takahashi, H., et al. (2006). Gefitinib, an epidermal growth factor receptor blockade agent, shows additional or synergistic effects on the radiosensitivity of esophageal cancer cells in vitro. Acta Medica Okayama, 60, 25–34.

    PubMed  CAS  Google Scholar 

  32. Russo, S. M., Seay, L. L., Raisch, K. P., et al. (2004). EGFR-specific tyrosine kinase inhibitor, Erlotinib, sensitizes esophageal carcinoma cells to ionizing radiation. Presented at: Radiation Research Society Meeting. St Louis.

  33. Russo, S. M., Raisch, K. P., Seay, L. L., et al. (2003). Epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib, as a radiosensitizer for patients with respectable esophageal cancer. Presented at: International Conference on Molecular Targets and Cancer Therapeutics. Boston.

  34. Raisch, K. P., Russo, S. M., Seay, L. L., et al. (2003). EGFR-specific tyrosine kinase inhibitor, erlotinib, in combination with ionizing radiation for the treatment of esophageal carcinoma cells. Presented at: International Conference on Molecular Targets and Cancer Therapeutics. Boston.

  35. Hara, F., Aoe, M., Doihara, H., Taira, N., Shien, T., Takahashi, H., et al. (2005). Antitumor effect of gefitinib (‘Iresa’) on esophageal squamous cell carcinoma cell lines in vitro and in vivo. Cancer Letters, 226, 37–47.

    PubMed  CAS  Google Scholar 

  36. Hirata, A., Ogawa, S., Kometani, T., Kuwano, T., Naito, S., Kuwano, M., et al. (2002). ZD1839 (Iressa) induces antioangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Research, 62, 2554–2560.

    PubMed  CAS  Google Scholar 

  37. Ferry, D. R., Anderson, M., Beddows, K., et al. (2004). Phase II trial of gefitinib (ZD1839) in advanced adenocarcinoma of the esophagus incorporating biopsy before and after gefitinib. Proceedings of the American Society of Clinical Oncology, 23, 317, Abstr 4021.

    Google Scholar 

  38. van Groeningen, C., Richel, D., Giaccone, G., et al. (2004). Gefitinib phase II study in second-line treatment of advanced esophageal cancer. Proceedings of the American Society of Clinical Oncology, 23, Abstr 4022.

    Google Scholar 

  39. Adelstein, D. J., Rybicki, L. A., Carrol, M. A., Rice, T. W., & Mekhail, T. (2005). Phase II trial gefitinib for recurrent or metastatic esophageal or gastroesophageal junction (GEJ) cancer. Proceedings of the American Society of Clinical Oncology, 23, Abstr 4054.

    Google Scholar 

  40. Tew, W. P., Shah, M., Swhartz, G., Kelsen, D., & Ilson, D. H. (2005) Phase II trial of erlotinib for second-line treatment of advanced esophageal cancer. Program and Abstracts of the American Society of Clinical Oncology 2005 Gastrointestinal Cancers Symposium, 85, Abstr 5.

  41. Dragovich, T., Mccoy, S., Urba, S. G., Zanner, K. S., Fenoglio-Preiser, C. M., Blanke, C. D., et al. (2005). SWOG 0127 phase II trial of erlotinib in GEJ and gastric adenocarcinomas. Program and Abstracts of the American Society of Clinical Oncology 2005 Gastrointestinal Cancers Symposium, 107, Abstr 49.

  42. Dobelbower, M. C., Russo, S. M., Raisch, K. P., Seay, L. L., Clemons, L. K., Suter, S., et al. (2006). Epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib, and concurrent 5-fluorouracil, cisplatin and radiotherapy for patients with esophageal cancer: A phase I study. Anticancer Drugs, 17, 95–102.

    PubMed  CAS  Google Scholar 

  43. Janmaat, M. L., Gallegos-Ruiz, M. I., Rodriguez, J. A., Meijer, G. A., Vervenne, W. L., Richel, D. J., et al. (2006). Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. Journal of Clinical Oncology, 24, 1612–1619.

    PubMed  CAS  Google Scholar 

  44. Personeni, N. (2006). Epidermal growth factor receptor gene copy number in esophageal cancer and outcome prediction to gefitinib: Does intratumoral heterogeneity matter? Journal of Clinical Oncology, 24, 5465.

    PubMed  Google Scholar 

  45. Personeni, N. (2007). Outcome prediction to erlotinib in gastroesophageal adenocarcinomas: Can we improve epidermal growth factor receptor and phosphor-AKT testing? Journal of Clinical Oncology, 25, 910.

    PubMed  Google Scholar 

  46. Teraishi, F., Kagawa, S., Watanabe, T., Tango, Y., Kawashima, T., Umeoka, T., et al. (2005). ZD1839 (Gefitinib, ‘Iresa’), an epidermal growth factor receptor-tyrosine inhibitor, enhances the anti-cancer effects of TRAIL in human esophageal squamous cell carcinoma. FEBS Letters, 579, 4069–4075.

    PubMed  CAS  Google Scholar 

  47. Guo, M., Liu, S., Herman, J. G., & Lu, F. (2006). Gefitinib-sensitizing mutation in esophageal carcinoma cell line Kyse450. Cancer Biology and Therapy, 5, 152–155.

    Article  PubMed  CAS  Google Scholar 

  48. Guo, M., Liu, S., & Lu, F. (2006). Gefitinib-sensitizing mutations in esophageal carcinoma. New England Journal of Medicine, 354, 2193–2194.

    PubMed  CAS  Google Scholar 

  49. Sudo, T., Mimori, K., Nagahara, H., Utsunomiya, T., Fujita, H., Tanaka, Y., et al. (2007). Identification of EGFR mutations in esophageal cancer. European Journal of Surgical Oncology, 33, 44–48.

    PubMed  CAS  Google Scholar 

  50. Kwak, E. L., Jankowski, J., Thayer, S. P., Lauwers, G. Y., Brannigan, B. W., Harris, P. L., et al. (2006). Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clinical Cancer Research, 12, 4283–4287.

    PubMed  CAS  Google Scholar 

  51. Xia, W., Mullin, R. J., Keith, B. R., Liu, L. H., Ma, H., Rusnak, D. W., et al. (2002). Antitumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene, 21, 6255–6263.

    PubMed  CAS  Google Scholar 

  52. Rusnak, D. W., Lackey, K., Affleck, K., Wood, E. R., Alligood, K. J., Rhodes, N., et al. (2001). The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW572016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Molecular Cancer Therapeutics, 1, 85–94.

    PubMed  CAS  Google Scholar 

  53. Ako, E., Yamashita, Y., Ohira, M., Yamazaki, M., Hori, T., Kubo, N., et al. (2007). The pan-erB tyrosine kinase inhibitor CI-1033 inhibits human esophageal cancer cells in vitro and in vivo. Oncology Reports, 17, 887–893.

    PubMed  CAS  Google Scholar 

  54. De Potter, C. R. (1994). The neu oncogene: More than a prognostic indicator? Human Pathology, 25, 1264–1268.

    PubMed  Google Scholar 

  55. Olayioye, M. A., Neve, R. M., Lane, H. A., & Hynes, N. E. (2000). The ErbB signalling network receptor heterodimerization in development and cancer. EMBO Journal, 19, 3159–3167.

    PubMed  CAS  Google Scholar 

  56. Graus-Porta, D., Beerli, R. R., Daly, J. M., & Hynes, N. E. (1997). ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signalling. EMBO Journal, 16, 1647–1655.

    PubMed  CAS  Google Scholar 

  57. Kelsen, D., Ilson, D., Lipton, R., Baylor, L., & Minsky, B. (1999) A phase I trial of radiation therapy (RT) plus concurrent fixed dose cisplatin (C) with escalating doses of paclitaxel (P) as a 96 hour continuous infusion in patients (pts) with localized esophageal cancer (EC). Proceedings of the American Society of Clinical Oncology, 18, Abstr 1039.

  58. Ross, J. S., & McKenna, B. J. (2001). The HER-2/neu oncogene in tumors of the gastrointestinal tract. Cancer Investigation, 19, 554–568.

    PubMed  CAS  Google Scholar 

  59. De Castro, J., Gonzalez Baron, C. P., Gamallo, C., Ordonez, A., Espinosa E., et al. (1997). Predictive value of p53, E-Cadherin and erbB-2 in patients with squamous cell esophageal carcinoma. Proceedings of the Annual MeetingAmerican Society of Clinical Oncology, 16, Abstr 1018.

  60. Lam, K. Y., Tin, L., & Ma, L. (1998). C-erbB-2 protein expression in esophageal squamous epithelium from esophageal squamous cell carcinomas, with special reference to histological grade of carcinoma and pre-invasive lesions. European Journal of Surgical Oncology, 24, 431–435.

    PubMed  CAS  Google Scholar 

  61. Mimura, K., Kono, K., Hanawa, M., Mitsui, F., Sugai, H., Miyagawa, N., et al. (2005). Frequencies of HER-2/neu expression and gene amplification in patients with esophageal squamous cell carcinoma. British Journal of Cancer, 92, 1253–1260.

    PubMed  CAS  Google Scholar 

  62. Nakamura, T., Nekarda, H., Hoelscher, A. H., Bollschweiler, E., Harbeck, N., Becker, K., et al. (1994). Prognostic value of DNA ploidy and c-erbB-2 oncoprotein overexpression in adenocarcinoma of Barrett’s esophagus. Cancer, 73, 1785–1794.

    PubMed  CAS  Google Scholar 

  63. Brien, T. P., Odze, R. D., Sheehan, C. E., McKenna, B. J., & Ross, J. S. (2000). HER-2/neu gene amplification by Fish predicts poor survival in Barrett’s esophagus-associated adenocarcinoma. Human Pathology, 31, 35–39.

    PubMed  CAS  Google Scholar 

  64. Cobleigh, M. A., Vogel, C. L., Tripathy, D., Robert, N. J., Scholl, S., Fehrenbacher, L., et al. (1999). Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology, 17, 2639–2648.

    PubMed  CAS  Google Scholar 

  65. Romond, E. H., Perez, E. A., Bryant, J., Suman, V. J., Geyer, C. E., Jr, Davidson, N. E., et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New England Journal of Medicine, 353, 1673–1684.

    PubMed  CAS  Google Scholar 

  66. Kono, K., Takahashi, A., Ichihara, F., Sugai, H., Fujii, H., & Matsumoto, Y. (2002). Impaired antibody-dependent cellular cytotoxicity mediated by Herceptin in patients with gastric cancer. Cancer Research, 62, 5813–5817.

    PubMed  CAS  Google Scholar 

  67. Mimura, K., Kono, K., Hanawa, M., Kanzaki, M., Nakao, A., Ooi, A., et al. (2005). Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clinical Cancer Research, 11, 4898–4904.

    PubMed  CAS  Google Scholar 

  68. Sato, S., Kajiyama, Y., Sugano, M., Iwanuma, Y., Sonoue, H., Matsumoto, T., et al. (2005). Monoclonal antibody to Her-2/neu receptor enhances radiosensitivity of esophageal cancer cell lines expressing HER-2/neu oncoprotein. International Journal of Radiation Oncology, Biology, Physics, 61, 203–211.

    PubMed  CAS  Google Scholar 

  69. Pegram, M. D., Lopez, A., Konecny, G., & Slamon, D. J. (2000). Trastuzumab and chemotherapeutics: Drug interactions and synergies. Seminars in Oncology, 27, S21–S25.

    Google Scholar 

  70. Safran, H., Dipetrillo, T., Akerman, P., Ng, T., Evans, D., Steinhoff, M., et al. (2007). Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma. International Journal of Radiation Oncology, Biology, Physics, 67, 405–409.

    PubMed  CAS  Google Scholar 

  71. Kato, H., Yoshikawa, M., Miyazaki, T., Nakajima, M., Fukai, Y., Masuda, N., et al. (2002). Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1) in esophageal squamous cell carcinoma. Anticancer Research, 22, 3977–3984.

    PubMed  CAS  Google Scholar 

  72. Kleespies, A., Guba, M., Jauch, K. W., & Bruns, C. J. (2004). Vascular endothelial growth factor in esophageal cancer. Journal of Surgical Oncology, 87, 95–104.

    PubMed  CAS  Google Scholar 

  73. Ogata, Y., Fujita, H., Yamana, H., Sueyoshi, S., & Shirouzu, K. (2003). Expression of vascular endothelial growth factor as a prognostic factor in node-positive squamous cell carcinoma in the thoracic esophagus: Long term follow-up study. World Journal of Surgery, 27, 584–589.

    PubMed  Google Scholar 

  74. Couverland, A., Paraf, F., Gratio, V., Scoazec, J. Y., Hénin, D., Degott, C., et al. (2000). Angiogenesis in the neoplastic sequence of Barrett’s esophagus. Correlation with VEGF expression. Journal of Pathology, 192, 14–18.

    Google Scholar 

  75. Presta, L. G., Chen, H., O’Connor, S. J., Chisholm, V., Meng, Y. G., Krummen, L., et al. (1997). Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Research, 57, 4593–4599.

    PubMed  CAS  Google Scholar 

  76. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–2342.

    PubMed  CAS  Google Scholar 

  77. Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non small-cell lung cancer. New England Journal of Medicine, 355, 2542–2550.

    PubMed  CAS  Google Scholar 

  78. Shah, M. A., Ramanathan, R. K., Ilson, D. H., Levnor, A., D’Adamo, D., O’Reilly, E., et al. (2006). Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinomas. Journal of Clinical Oncology, 24, 5201–5206.

    PubMed  CAS  Google Scholar 

  79. Enzinger, P. C., Fidias, P., Meyerhardt, J., Stuart, K., Fuchs, C., Huberman, M., et al. (2006). Phase II study of Bevacizumab and Docetaxel in metastatic esophageal and gastric cancer. Proceedings of the American Society of Clinical Oncology GI Cancers Symposium, Abstr 68.

  80. Sunitinib FDA approval (2007). Avaible at www.fda.gov/cder/Offices/OODP/whatsnew/sunitinib.htm.

  81. Ratain, M. J., Eisen, T., Stadler, W. M., Flaherty, K. T., Kaye, S. B., Rosner, G. L., et al. (2006). Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 24, 2505–2512.

    PubMed  CAS  Google Scholar 

  82. Kane, R. C., Farrell, A. T., Saber, H., Tang, S., Williams, G., Jee, J. M., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.

    PubMed  CAS  Google Scholar 

  83. Kerins, D. M., Murray, R., & Fitzgerald, G. A. (1991). Prostacyclin and prostaglandin E1: Molecular mechanisms and therapeutic utility. Progress in Hemostasis and Thrombosis, 10, 307–337.

    PubMed  CAS  Google Scholar 

  84. Mestre, J. R., Subbaramaiah, K., Sacks, P. G., Schantz, S. P., Tanabe, T., Inoue, H., et al. Retinoids suppress epidermal growth factor-induced transcription of cyclooxygenase-2 in human oral squamous carcinoma cells. Cancer Research, 57, 2890–2895.

  85. Subbaramaiah, K., Altorki, N., Chung, W., Mestre, J. R., Sampat, A., & Dannenberg, A. J. (1999). Inhibition of cyclooxygenase-2 gene expression by p53. Journal of Biological Chemistry, 274, 10911–10915.

    PubMed  CAS  Google Scholar 

  86. Kelley, D. J., Mestre, J. R., Subbaramaiah, K., Sacks, P. G., Schantz, S. P., Tanabe, T., et al. (1997). Benzo[a]pyrene up-regulates cyclooxygenase-2 gene expression in oral epithelial cells. Carcinogenesis, 18, 795–799.

    PubMed  CAS  Google Scholar 

  87. Zimmermann, K. C., Sarbia, M., Weber, A. A., Borchard, F., Gabbert, H. E., & Schrör, K. (1999). Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Research, 59, 198–204.

    PubMed  CAS  Google Scholar 

  88. Yu, H. P., Xu, S. Q., Liu, L., Shi, L. Y., Cai, X. K., Lu, W. H., et al. (2003). Cyclooxygenase-2 expression in squamous dysplasia and squamous cell carcinoma of the esophagus. Cancer Letters, 198, 193–201.

    PubMed  CAS  Google Scholar 

  89. Yu, H. P., Shi, L. Y., Lu, W. H., Su, Y. H., Li, Y. Y., & Xu, S. Q. (2004). Expression of cyclooxygenase-2 (COX-2) in human esophageal cancer and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Journal of Gastroenterology and Hepatology, 19, 638–642.

    PubMed  CAS  Google Scholar 

  90. Shamma, A., Yamamoto, H., Doki, Y., Okami, J., Kondo, M., Fujiwara, Y., et al. (2000). Up-regulation of cyclooxygenase-2 in squamous carcinogenesis of the esophagus. Clinical Cancer Research, 6, 1229–1238.

    PubMed  CAS  Google Scholar 

  91. Zhi, H., Wang, L., Zhang, J., Zhou, C., Ding, F., Luo, A., et al. (2006). Significance of COX-2 expression in human esophageal squamous cell carcinoma. Carcinogenesis, 27, 1214–1221.

    PubMed  CAS  Google Scholar 

  92. Bhandari, P., Bateman, A. C., Mehta, R. L., Stacey, B. S., Johnson, P., Cree, I. A., et al. (2006). Prognostic significance of cyclooxygenase-2 (COX-2) expression in patients with surgically respectable adenocarcinomas of the esophagus. BMC Cancer, 6, 134.

    PubMed  Google Scholar 

  93. Alici, S., Ugras, S., Bayram, I., & Izmirli, M. (2006). Prognostic factors and COX-2 expression in advanced stage esophageal squamous cell carcinoma. Advances in Therapy, 23, 672–679.

    PubMed  CAS  Google Scholar 

  94. Liu, J. F., Jamieson, G., Wu, T. C., Zhang, S. W., Wang, Q. Z., & Drew, P. (2006). Cyclooxygenase-2 expression in squamous cell carcinoma of the esophagus. Diseases of the Esophagus, 19, 350–354.

    PubMed  Google Scholar 

  95. Xi, H., Baldus, S. E., Warnecke-Eberz, U., Brabender, J., Neiss, S., Metzger, R., et al. (2005). High cyclooxygenase-2 expression following neoadjuvant radiochemotherapy is associated with minor histopathologic response and poor prognosis in esophageal cancer. Clinical Cancer Research, 11, 8341–8347.

    PubMed  CAS  Google Scholar 

  96. Takatori, H., Natsugoe, S., Okumura, H., Matsumoto, M., Ishigami, S., Owaki, T., et al. (2005). Predictive value of COX-2 for the effect of chemoradiotherapy on esophageal squamous cell carcinoma. Oncology Reports, 13, 697–701.

    PubMed  CAS  Google Scholar 

  97. France, M., Drew, P. A., Dodd, T., & Watson, D. I. (2004). Cyclo-oxygenase-2 expression in esophageal adenocarcinomas as a determinant of clinical outcome following esophagectomy. Diseases of the Esophagus, 17, 136–140.

    PubMed  CAS  Google Scholar 

  98. Buskens, C. J., Van Rees, B. P., Sivula, A., Reitsma, J. B., Haglund, C., Bosma, P. J., et al. (2002). Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinomas of the esophagus. Gastroenterology, 122, 1800–1807.

    PubMed  CAS  Google Scholar 

  99. Pai, R., Soreghan, B., Szabo, I. L., Pavelka, M., Baatar, D., & Tarnawski, A. S. (2002). Prostaglandin E2 transactivates RGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Medicine, 8, 289–293.

    PubMed  CAS  Google Scholar 

  100. Liu, X. H., Yao, S., Kirschenbaum, A., & Levine, A. C. (1998). NS398, a selective cycloogenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Research, 58, 4245–4249.

    PubMed  CAS  Google Scholar 

  101. Souza, R. F., Shewmake, K., Beer, D. G., Cryer, B., & Spechler, S. J. (2000). Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinomas cells. Cancer Research, 60, 5767–5772.

    PubMed  CAS  Google Scholar 

  102. Gallo, O., Franchi, A., Magnelli, L., Sardi, I., Vannacci, A., Boddi, V., et al. (2001). Cyclooxygenase -2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia, 3, 53–61.

    PubMed  CAS  Google Scholar 

  103. Kase, S., Osaki, M., Honjo, S., Adachi, H., Tsujitani, S., Kaibara, N., et al. (2003). Expression of cyclo-oxygenase-2 is correlated with high intratumoral microvessel density and low apoptotic index in human esophageal squamous cell carcinomas. Virchows Archiv, 442, 129–135.

    PubMed  CAS  Google Scholar 

  104. Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–3340.

    PubMed  CAS  Google Scholar 

  105. Corley, D. A., Kerlikowske, K., Verma, R., & Buffler, P. (2003). Protective association of aspirin/NSAIDs and esophageal cancer: A systematic review and meta-analysis. Gastroenterology, 124, 47–56.

    PubMed  CAS  Google Scholar 

  106. Kase, S., Osaki, M., Honjo, S., Takeda, A., Adachi, K., Araki, K., et al. (2004). A selective cyclooxygenase-2 inhibitor, NS398, inhibits cell growth and induces cell cycle arrest in the G2/m phase in human esophageal squamous cell carcinoma cells. Journal of Experimental & Clinical Cancer Research, 23, 301–307.

    CAS  Google Scholar 

  107. Li, M., Wu, X., & Xu, X. C. (2001). Induction of apoptosis by cyclo-oxygenase-2 inhibitor NS398 through a cytochrome C-dependent pathway in esophageal cancer cells. International Journal of Cancer, 93, 218–223.

    CAS  Google Scholar 

  108. Moore, R. J., Zweifel, B. S., Heuvelman, D. M., Leahy, K. M., Edwards, D. A., Woerner, B. M., et al. (2000). Enhanced antitumor activity by co-administration of celecoxib and the chemotherapeutic agents, cyclophosphamide and 5-FU. Proceedings of the American Association for Cancer Research, 41, 409.

    Google Scholar 

  109. Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., & Tofilon, P. J. (1999). Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. Journal of the National Cancer Institute, 91, 1501–1504.

    PubMed  CAS  Google Scholar 

  110. Dawson, S. J., Michael, M., Biagi, J., Foo, K. F., Jefford, M., Ngan, S. Y., et al. (2007). A phase I/II trial of celecixib with chemotherapy and radiotherapy in the treatment of patients with locally advanced eosophageal cancer. Investigational New Drugs, 25, 123–129.

    PubMed  CAS  Google Scholar 

  111. Govindan, R., Mcleod, H., Mantravadi, P., Fineberg, N., Helft, P., Kesler, K., et al. (2004). Cisplatin, fluouracil, celecoxib, and RT in respectable esophageal cancer: Preliminary results. Oncology, 14, 18–21.

    Google Scholar 

  112. Enzinnger, P., Mamon, H., & Choi, N. C., Bueno, R., Kulke, M., Fidias, P., et al. (2004). Phase II cisplatin, irinotecan, celecoxib and concurrent radiation therapy followed by surgery for locally ]advanced esophageal cancer. Presented at: ASCO Gastrointestinal Cancer Symposium.

  113. Yamashita, K., Mori, M., Kataoka, A., Inoue, H., & Sugimachi, K. (2001). The clinical significance of MMP-1 expression in oesophageal carcinoma. British Journal of Cancer, 84, 276–282.

    PubMed  CAS  Google Scholar 

  114. Li, J. R., Qi, F. Y., & Li, L. (2005). Correlation between expression of matrix metalloproteinase-2 and angiogenesis in esophageal carcinoma. Zhonghua Zhong Liu Za Zhi, 27, 96–98.

    PubMed  CAS  Google Scholar 

  115. Yamashita, K., Mori, M., Shiraishi, T., Shibuta, K., & Sugimachi, K. (2000). Clinical significance of matrix metalloproteinase-7 expression in esophageal carcinoma. Clinical Cancer Research, 6, 1169–1174.

    PubMed  CAS  Google Scholar 

  116. Gu, Z. D., Chen, K. N., Li, M., Gu, J., & Li, J. Y. (2005). Clinical significance of matrix metalloproteinase-9 expression in esophageal sqamous cell carcinoma. World Journal of Gastroenterology, 11, 871–874.

    PubMed  CAS  Google Scholar 

  117. Gu, Z. D., Li, J. Y., Li, M., Gu, J., Shi, X. T., Ke, Y., et al. (2005). Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. American Journal of Gastroenterology, 100, 1835–1843.

    PubMed  CAS  Google Scholar 

  118. Tierney, G. M., Griffin, N. R., Stuart, R. C., Kasem, H., Lynch, K. P., Lury, J. T., et al. (1999). A pilot study of the safety and effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer. European Journal of Cancer, 35, 563–568.

    PubMed  CAS  Google Scholar 

  119. Bramhall, S. R., Hallissey, M. T., Whiting, J., Scholefield, J., Tierney, G., Stuart, R. C., et al. (2002). Marimastat as maintenance therapy for patients with advanced gastric cancer: A randomised trial. British Journal of Cancer, 86, 1864–1870.

    PubMed  CAS  Google Scholar 

  120. Heath, E. I., Burtness, B. A., Kleinberg, L., Salem, R. R., Yang, S. C., Heitmiller, R. F., et al. (2006). Phase II, parallel-design study of preoperative combined modality therapy and the matrix metalloproteinase (mmp) inhibitor prinomastat in patients with esophageal adenocarcinoma. Investigational New Drugs, 24, 135–140.

    PubMed  CAS  Google Scholar 

  121. Pavlaki, M., & Zucker, S. (2003). Matrix metalloproteinase inhibitors (MMPIs): The beginning of phase I or termination of phase III clinical trials. Cancer and Metastasis Reviews, 22, 177–203.

    PubMed  CAS  Google Scholar 

  122. Schwartz, G. K. (2005). Development of cell cycle active drugs for the treatment of gastrointestinal cancers: A new approach to cancer therapy. Journal of Clinical Oncology, 23, 4499–4508.

    PubMed  CAS  Google Scholar 

  123. Kawakubo, H., Ozawa, S., Ando, N., Kitagawa, Y., Mukai, M., Ueda, M., et al. (2005). Alternations of p53, cyclin D1 and Prb expression in the carcinogenesis of esophageal squamous cell carcinoma. Oncology Reports, 14, 1453–1459.

    PubMed  CAS  Google Scholar 

  124. Koppert, L. B., Wijnhoven, B. P., van Dekken, H., Tilanus, H. W., & Dinjens, W. N. (2005). The molecular biology of esophageal adenocarcinoma. Journal of Surgical Oncology, 92, 169–190.

    PubMed  CAS  Google Scholar 

  125. Bani-Hani, K., Martin, I. G., Hardie, L. J., Mapstone, N., Briggs, J. A., Forman, D., et al. (2000). Prospective study of cyclin D1 overexpression in Barrett’s esophagus: Association with increased risk of adenocarcinoma. Journal of National Cancer Institute, 92, 1316–1321.

    CAS  Google Scholar 

  126. Milas, L., Akimoto, T., Hunter, N. R., Mason, K. A., Buchmiller, L., Yamakawa, M., et al. (2002). Relationship between cyclin D1 expression and poor radioresponse of murine carcinomas. International Journal of Radiation Oncology, Biology, Physics, 52, 514–521.

    PubMed  CAS  Google Scholar 

  127. Swanton, C. (2004). Cell-cycle targeted therapies. Lancet Oncology, 5, 27–36.

    PubMed  CAS  Google Scholar 

  128. Senderowicz, A. M. (2003). Small-molecule cyclin-dependent kinase modulators. Oncogene, 22, 6609–6620.

    PubMed  CAS  Google Scholar 

  129. Sato, S., Kajiyama, Y., Sugano, M., Iwanuma, Y., & Tsurumaru, M. (2004). Flavopiridol as a radiosensitizer for esophageal cancer cell lines. Diseases of the Esophagus, 17, 338–344.

    PubMed  CAS  Google Scholar 

  130. Motwani, M., Rizzo, C., Sirotnak, F., She, Y., & Schwartz, G. K. (2003). Flavopiridol enhances the effect of docetaxel in vitro and in vivo in human gastric cancer cells. Molecular Cancer Therapeutics, 2, 549–555.

    PubMed  CAS  Google Scholar 

  131. Jung, C., Motwani, M., Kortmansky, J., Sirotnak, F. M., She, Y., Gonen, M., et al. (2003). The cyclin-dependent kinase inhibitor flavopiridol potentiates γ-irradiation-induced apoptosis in colon and gastric cancer cells. Clinical Cancer Research, 9, 6052–6061.

    PubMed  CAS  Google Scholar 

  132. Raju, U., Ariga, H., Koto, M., Lu, X., Pickett, J., Valdecanas, D., et al. (2006). Improvement of esophageal adenocarcinoma cell and xenograft responses to radiation by targeting cyclin-dependent kinases. Radiotherapy and Oncology, 80, 185–191.

    PubMed  CAS  Google Scholar 

  133. Schwartz, G. K., Ilson, D., Saltz, L., O’Reilly, E., Tong, W., Maslak, P., et al. (2001). Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. Journal of Clinical Oncology, 19, 1985–1992.

    PubMed  CAS  Google Scholar 

  134. Schwartz, G. K., O’Reilly, E., Ilson, D., Saltz, L., Sharma, S., Tong, W., et al. (2002). Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumours. Journal of Clinical Oncology, 20, 2157–2170.

    PubMed  CAS  Google Scholar 

  135. Rothkopf, D. E., Ilson, D. H., Yi, S., Winkelmann, J., Kelsen, D. P., & Schwartz, G. K. (2004). A phase II trial of sequential paclitaxel and flavopiridol in patients with metastatic paclitaxel-refractory esophageal cancer. Program and Abstracts of the American Society of Clinical Oncology 2004 Gastrointestinal Cancers Symposium, 67, Abstr 116.

  136. Shah, M. A., Kortmansky, J., Gonen, M., Tse, A., Lefkowitz, R., Kelsen, D., et al. (2004). Phase I study of weekly irinotecan (CPT), cisplatin (CIS) and flavopiridol (F). Proceedings of the American Society of Clinical Oncology, 23, 319.

    Google Scholar 

  137. Yu, X., Guo, Z. S., Marcu, M. G., Neckers, L., Nguyen, D. M., Chen, G. A., et al. (2004). Modulation of P53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. Journal of the National Cancer Institute, 94, 504–513.

    Google Scholar 

  138. Gartel, A. L., & Tyner, A. L. (2002). The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Molecular Cancer Therapeutics, 1, 639–649.

    PubMed  CAS  Google Scholar 

  139. Nguyen, D. M., Schrump, W. D., Tsai, W. S., Chen, A., Stewart, J. H., IV, Steiner, F., et al. (2003). Enhancement of depsipeptide- mediated apoptosis of lung or esophageal cancer cells by flavopiridol: Activation of the mitochondria-dependent death-signalling pathway. Journal of Thoracic and Cardiovascular Surgery, 125, 1132–1142.

    PubMed  CAS  Google Scholar 

  140. Baldwin, A. S. (1996). The Nk-kappa B and I kappa B proteins: New discoveries and insights. Annual Review of Immunology, 14, 649–683.

    PubMed  CAS  Google Scholar 

  141. Abdel-Latif, M. M., O’Riordan, J., Windle, H. J., Carton, E., Ravi, N., Kelleher, D., et al. (2004). NF-kappaB activation in esophageal adenocarcinoma: Relationship to Barrett′s metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Annals of Surgery, 239, 491–500.

    PubMed  Google Scholar 

  142. Izzo, J. G., Malhotra, U., Wu, T. T., Ensor, J., Luthra, R., Lee, J. H., et al. (2006). Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. Journal of Clinical Oncology, 24, 748–754.

    PubMed  CAS  Google Scholar 

  143. Li, J., Minnich, D. J., Camp, E. R., Brank, A., Mackay, S. L., & Hochwald, S. N. (2006). Enhanced sensitivity to chemotherapy in esophageal cancer though inhibition of NF-kappaB. Journal of Surgical Research, 132, 112–120.

    PubMed  CAS  Google Scholar 

  144. Shah, M. A., Holen, K., Singh, D., Kemeny, M., Levner, A., Cox, L., et al. (2005). A multicenter, two-stage, phase II study of PS-341 in patients with unresectable or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma. Program and Abstracts of the American Society of Clinical Oncology 2005 Gastrointestinal Cancers Symposium, 103, Abstr 41.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Syrigos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syrigos, K.N., Zalonis, A., Kotteas, E. et al. Targeted therapy for oesophageal cancer: an overview. Cancer Metastasis Rev 27, 273–288 (2008). https://doi.org/10.1007/s10555-008-9117-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9117-z

Keywords

Navigation