Advertisement

Cancer and Metastasis Reviews

, Volume 27, Issue 2, pp 273–288 | Cite as

Targeted therapy for oesophageal cancer: an overview

  • K. N. Syrigos
  • A. Zalonis
  • E. Kotteas
  • Muhammad Wasif Saif
NON-THEMATIC REVIEW

Abstract

Oesophageal cancer (OC), is an aggressive cancer constituting a major cause of cancer-related deaths worldwide. Recent advances in surgical techniques, incorporation of new therapeutic approaches—adjuvant/neoadjuvant chemoradiotherapy—and integration of new cytotoxic drugs into the management of oesophageal cancer have increased the response rate percentages to 40–50%, with minor impact on the overall survival. The need for an efficacious therapy with minimal toxicity along with a better understanding of molecular pathways of oesophageal carcinogenesis has led to the development of novel anticancer agents. These agents have targeted mechanisms of action such as: (1) inhibitors of the ErbB receptor family, (2) vascular endothelial growth factor (VEGF) inhibitors, (3) selective inhibitors of cycloxygenase-2, (4) matrix metalloproteinase inhibitors, (5) cell-cycle regulators, and (6) promoters of apoptosis. The incorporation of these agents into combined modality treatment schedules for advanced and early stage tumors together with the identification of patients who will most likely benefit will provide novel opportunities in the treatment of oesophageal cancer.

Keywords

Monoclonal antibodies Biological therapies Vascular endothelial growth factor (VEGF) Epidermal growth factor (EGFR) 

References

  1. 1.
    Ajani, J. A., van Cutsem, E., Moiseyenko, V., Tjulandin, S., Fodor, M., Majlis, A., et al. (2003). Docetaxel, cisplatin, 5-fluorouracil compare to cisplatin and 5-fluorouracil for chemotherapy-naive patients with metastatic or locally recurrent, unresectable gastic carcinoma: Interim results of a randomized phase III trial (V325). Proceedings of the American Society of Clinical Oncology, 22, 229–237.Google Scholar
  2. 2.
    Blot, W. J., & McLaughlin, J. K. (1999). The changing epidemiology of oesophageal cancer. Seminars in Oncology, 26, 2–8.PubMedGoogle Scholar
  3. 3.
    Enzinger, P. C., & Mayer, R. J. (2003). Esophageal cancer. New England Journal of Medicine, 349, 2241–2252.PubMedGoogle Scholar
  4. 4.
    Mendelsohn, J., & Baselga, J. (2000). The EGF receptor family as targets for cancer therapy. Oncogene, 19, 6550–6565.PubMedGoogle Scholar
  5. 5.
    Lemmon, M. A., & Schlessinger, J. (1994). Regulation of signal transduction and signal diversity by receptor oligomerization. Trends in Biochemical Sciences, 19, 459–463.PubMedGoogle Scholar
  6. 6.
    Schlessinger, J. (2000). Cell signalling by receptor tyrosine kinases. Cell, 103, 211–225.PubMedGoogle Scholar
  7. 7.
    Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews. Molecular Cell Biology, 2, 127–137.PubMedGoogle Scholar
  8. 8.
    Iihara, K., Shiozaki, H., Tahara, H., Kobayashi, K., Inoue, M., Tamura, S., et al. (1993). Prognostic significance of transforming growth factor-alpha in human esophageal carcinoma. Implication for the autocrine proliferation. Cancer, 71, 2902–2909.PubMedGoogle Scholar
  9. 9.
    Ozawa, S., Ueda, M., Ando, N., et al. (1987). High incidence of EGF receptor hyperproduction in esophageal squamous-cell carcinomas. International Journal of Cancer, 39, 333–337.Google Scholar
  10. 10.
    Ozawa, S., Ueda, M., Ando, N., Shimizu, N., & Abe, O. (1989). Prognostic significance of epidermal growth factor receptor in esophageal squamous cell carcinomas. Cancer, 63, 2169–2173.PubMedGoogle Scholar
  11. 11.
    Shimada, Y., Imamura, M., Watanabe, G., Ushida, S., Harada, H., Makino, T., et al. (1999). Prognostic factors of esophageal squamous cell carcinoma from the perspective of molecular biology. British Journal of Cancer, 80, 1281–1288.PubMedGoogle Scholar
  12. 12.
    Kitagawa, Y., Ueda, M., Ando, N., Ozawa, S., Shimizu, N., & Kitajima, M. (1996). Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clinical Cancer Research, 2, 909–914.PubMedGoogle Scholar
  13. 13.
    Itakura, Y., Sasano, H., Shiga, C., Furukawa, Y., Shiga, K., Mori, S., et al. (1994). Epidermal growth factor receptor overexpression in esophageal carcinoma. An immunohistochemical study correlated with clinicopathologic findings and DNA amplification. Cancer, 74, 795–804.PubMedGoogle Scholar
  14. 14.
    Sudo, T., Mimori, K., Nagahara, H., et al. (2007). Identification of EGFR mutations in esophageal cancer. European Journal of Surgical Oncology, 33, 44–48.PubMedGoogle Scholar
  15. 15.
    Guo, M., Liu, S., & Lu, F. (2006). Gefitinib-sensitizing mutations in esophageal carcinoma. New England Journal of Medicine, 354, 2193–2194.PubMedGoogle Scholar
  16. 16.
    Hickey, K., Grehan, D., Reid, I. M., O’ Briain, S., Walsh, T. N., & Hennessy, T. P. (1994). Expression of epidermal growth factor receptor and proliferating cell nuclear antigen predicts response of esophageal squamous cell carcinoma to chemoradiotherapy. Cancer, 74, 1693–1698.PubMedGoogle Scholar
  17. 17.
    Kawaguchi, Y., Kono, K., Mimura, K., Sugai, H., Akaike, H., & Fugii, H. (2007). Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma. International Journal of Cancer, 120, 781–787.Google Scholar
  18. 18.
    Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., et al. (2004). Cetuximab monotherapy and cetuximab plus irinotecan-refractory metastatic colorectal cancer. New England Journal of Medicine, 351, 337–345.PubMedGoogle Scholar
  19. 19.
    Saltz, L. B., Meropol, N. J., Loehrer, P. J., Needle, M. N., Kopit, J., & Mayer, R. J. (2004). Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. Journal of Clinical Oncology, 22, 1201–1208.PubMedGoogle Scholar
  20. 20.
    Bonner, J. A. (2004). Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: A phase III study of high dose radiation therapy with or without cetuximab. Journal of Clinical Oncology, 22, 5507.Google Scholar
  21. 21.
    Vermorken, J. B., Trigo, J., Hitt, R., Koralewski, P., Diaz-Rubio, E., Rolland, F., et al. (2007). Open-label, uncontrolled, multicentre phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. Journal of Clinical Oncology, 25, 2171–2177.PubMedGoogle Scholar
  22. 22.
    Chung, K. Y., Shia, J., Kemeny, N. E., Shah, M., Schwartz, G. K., Tse, A., et al. (2005). Cetuximab shows activity in colorectal cancer patients with tumours that do not express the epidermal growth factor receptor by immunohistochemistry. Journal of Clinical Oncology, 23, 1803–1810.PubMedGoogle Scholar
  23. 23.
    Cohenuram, M., & Saif, M. W. (2007). Panitumumab the first fully human monoclonal antibody: From the bench to the clinic. Anticancer Drugs, 18, 7–15.PubMedGoogle Scholar
  24. 24.
    Khazaeli MB, Lobuglio AF, Falcey JW, et al. (2000). Low immunogenicity of a chimeric monoclonal antibody (MAb), IMC-C225, used to treat epidermal growth factor receptor-positive tumors. Proceedings of the American Society of Clinical Oncology, 16, Abstr 808.Google Scholar
  25. 25.
    Vanhoefer, U., Tewes, M., Rojo, F., Dirsch, O., Schleucher, N., Rosen, O., et al. (2004). Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. Journal of Clinical Oncology, 22, 175–184.PubMedGoogle Scholar
  26. 26.
    Hecht JR, Patnaik A, Malik I, et al. (2004). ABX-EGF monotherapy in patients (pts) with metastatic colorectal cancer (mCRC): An updated analysis. Proceedings of the American Society of Clinical Oncology , 22, Abstr 3511.Google Scholar
  27. 27.
    Ciardiello, F., & Tortora, G. (2002). Anti-epidermal growth factor receptors in cancer therapy. Expert Opinion on Investigational Drugs, 11, 755–768.PubMedGoogle Scholar
  28. 28.
    Perez-Soler, R. (2004). Phase II clinical trial data with the epidermal growth factor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clinical Lung Cancer, 6, 20–23.CrossRefGoogle Scholar
  29. 29.
    Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966.PubMedGoogle Scholar
  30. 30.
    Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J. Y., et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. Journal of Clinical Oncology, 21, 2237–2246.Google Scholar
  31. 31.
    Taira, N., Doihara, H., Oota, T., Hara, F., Shien, T., Takahashi, H., et al. (2006). Gefitinib, an epidermal growth factor receptor blockade agent, shows additional or synergistic effects on the radiosensitivity of esophageal cancer cells in vitro. Acta Medica Okayama, 60, 25–34.PubMedGoogle Scholar
  32. 32.
    Russo, S. M., Seay, L. L., Raisch, K. P., et al. (2004). EGFR-specific tyrosine kinase inhibitor, Erlotinib, sensitizes esophageal carcinoma cells to ionizing radiation. Presented at: Radiation Research Society Meeting. St Louis.Google Scholar
  33. 33.
    Russo, S. M., Raisch, K. P., Seay, L. L., et al. (2003). Epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib, as a radiosensitizer for patients with respectable esophageal cancer. Presented at: International Conference on Molecular Targets and Cancer Therapeutics. Boston.Google Scholar
  34. 34.
    Raisch, K. P., Russo, S. M., Seay, L. L., et al. (2003). EGFR-specific tyrosine kinase inhibitor, erlotinib, in combination with ionizing radiation for the treatment of esophageal carcinoma cells. Presented at: International Conference on Molecular Targets and Cancer Therapeutics. Boston.Google Scholar
  35. 35.
    Hara, F., Aoe, M., Doihara, H., Taira, N., Shien, T., Takahashi, H., et al. (2005). Antitumor effect of gefitinib (‘Iresa’) on esophageal squamous cell carcinoma cell lines in vitro and in vivo. Cancer Letters, 226, 37–47.PubMedGoogle Scholar
  36. 36.
    Hirata, A., Ogawa, S., Kometani, T., Kuwano, T., Naito, S., Kuwano, M., et al. (2002). ZD1839 (Iressa) induces antioangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Research, 62, 2554–2560.PubMedGoogle Scholar
  37. 37.
    Ferry, D. R., Anderson, M., Beddows, K., et al. (2004). Phase II trial of gefitinib (ZD1839) in advanced adenocarcinoma of the esophagus incorporating biopsy before and after gefitinib. Proceedings of the American Society of Clinical Oncology, 23, 317, Abstr 4021.Google Scholar
  38. 38.
    van Groeningen, C., Richel, D., Giaccone, G., et al. (2004). Gefitinib phase II study in second-line treatment of advanced esophageal cancer. Proceedings of the American Society of Clinical Oncology, 23, Abstr 4022.Google Scholar
  39. 39.
    Adelstein, D. J., Rybicki, L. A., Carrol, M. A., Rice, T. W., & Mekhail, T. (2005). Phase II trial gefitinib for recurrent or metastatic esophageal or gastroesophageal junction (GEJ) cancer. Proceedings of the American Society of Clinical Oncology, 23, Abstr 4054.Google Scholar
  40. 40.
    Tew, W. P., Shah, M., Swhartz, G., Kelsen, D., & Ilson, D. H. (2005) Phase II trial of erlotinib for second-line treatment of advanced esophageal cancer. Program and Abstracts of the American Society of Clinical Oncology 2005 Gastrointestinal Cancers Symposium, 85, Abstr 5.Google Scholar
  41. 41.
    Dragovich, T., Mccoy, S., Urba, S. G., Zanner, K. S., Fenoglio-Preiser, C. M., Blanke, C. D., et al. (2005). SWOG 0127 phase II trial of erlotinib in GEJ and gastric adenocarcinomas. Program and Abstracts of the American Society of Clinical Oncology 2005 Gastrointestinal Cancers Symposium, 107, Abstr 49.Google Scholar
  42. 42.
    Dobelbower, M. C., Russo, S. M., Raisch, K. P., Seay, L. L., Clemons, L. K., Suter, S., et al. (2006). Epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib, and concurrent 5-fluorouracil, cisplatin and radiotherapy for patients with esophageal cancer: A phase I study. Anticancer Drugs, 17, 95–102.PubMedGoogle Scholar
  43. 43.
    Janmaat, M. L., Gallegos-Ruiz, M. I., Rodriguez, J. A., Meijer, G. A., Vervenne, W. L., Richel, D. J., et al. (2006). Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. Journal of Clinical Oncology, 24, 1612–1619.PubMedGoogle Scholar
  44. 44.
    Personeni, N. (2006). Epidermal growth factor receptor gene copy number in esophageal cancer and outcome prediction to gefitinib: Does intratumoral heterogeneity matter? Journal of Clinical Oncology, 24, 5465.PubMedGoogle Scholar
  45. 45.
    Personeni, N. (2007). Outcome prediction to erlotinib in gastroesophageal adenocarcinomas: Can we improve epidermal growth factor receptor and phosphor-AKT testing? Journal of Clinical Oncology, 25, 910.PubMedGoogle Scholar
  46. 46.
    Teraishi, F., Kagawa, S., Watanabe, T., Tango, Y., Kawashima, T., Umeoka, T., et al. (2005). ZD1839 (Gefitinib, ‘Iresa’), an epidermal growth factor receptor-tyrosine inhibitor, enhances the anti-cancer effects of TRAIL in human esophageal squamous cell carcinoma. FEBS Letters, 579, 4069–4075.PubMedGoogle Scholar
  47. 47.
    Guo, M., Liu, S., Herman, J. G., & Lu, F. (2006). Gefitinib-sensitizing mutation in esophageal carcinoma cell line Kyse450. Cancer Biology and Therapy, 5, 152–155.PubMedCrossRefGoogle Scholar
  48. 48.
    Guo, M., Liu, S., & Lu, F. (2006). Gefitinib-sensitizing mutations in esophageal carcinoma. New England Journal of Medicine, 354, 2193–2194.PubMedGoogle Scholar
  49. 49.
    Sudo, T., Mimori, K., Nagahara, H., Utsunomiya, T., Fujita, H., Tanaka, Y., et al. (2007). Identification of EGFR mutations in esophageal cancer. European Journal of Surgical Oncology, 33, 44–48.PubMedGoogle Scholar
  50. 50.
    Kwak, E. L., Jankowski, J., Thayer, S. P., Lauwers, G. Y., Brannigan, B. W., Harris, P. L., et al. (2006). Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clinical Cancer Research, 12, 4283–4287.PubMedGoogle Scholar
  51. 51.
    Xia, W., Mullin, R. J., Keith, B. R., Liu, L. H., Ma, H., Rusnak, D. W., et al. (2002). Antitumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene, 21, 6255–6263.PubMedGoogle Scholar
  52. 52.
    Rusnak, D. W., Lackey, K., Affleck, K., Wood, E. R., Alligood, K. J., Rhodes, N., et al. (2001). The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW572016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Molecular Cancer Therapeutics, 1, 85–94.PubMedGoogle Scholar
  53. 53.
    Ako, E., Yamashita, Y., Ohira, M., Yamazaki, M., Hori, T., Kubo, N., et al. (2007). The pan-erB tyrosine kinase inhibitor CI-1033 inhibits human esophageal cancer cells in vitro and in vivo. Oncology Reports, 17, 887–893.PubMedGoogle Scholar
  54. 54.
    De Potter, C. R. (1994). The neu oncogene: More than a prognostic indicator? Human Pathology, 25, 1264–1268.PubMedGoogle Scholar
  55. 55.
    Olayioye, M. A., Neve, R. M., Lane, H. A., & Hynes, N. E. (2000). The ErbB signalling network receptor heterodimerization in development and cancer. EMBO Journal, 19, 3159–3167.PubMedGoogle Scholar
  56. 56.
    Graus-Porta, D., Beerli, R. R., Daly, J. M., & Hynes, N. E. (1997). ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signalling. EMBO Journal, 16, 1647–1655.PubMedGoogle Scholar
  57. 57.
    Kelsen, D., Ilson, D., Lipton, R., Baylor, L., & Minsky, B. (1999) A phase I trial of radiation therapy (RT) plus concurrent fixed dose cisplatin (C) with escalating doses of paclitaxel (P) as a 96 hour continuous infusion in patients (pts) with localized esophageal cancer (EC). Proceedings of the American Society of Clinical Oncology, 18, Abstr 1039.Google Scholar
  58. 58.
    Ross, J. S., & McKenna, B. J. (2001). The HER-2/neu oncogene in tumors of the gastrointestinal tract. Cancer Investigation, 19, 554–568.PubMedGoogle Scholar
  59. 59.
    De Castro, J., Gonzalez Baron, C. P., Gamallo, C., Ordonez, A., Espinosa E., et al. (1997). Predictive value of p53, E-Cadherin and erbB-2 in patients with squamous cell esophageal carcinoma. Proceedings of the Annual MeetingAmerican Society of Clinical Oncology, 16, Abstr 1018.Google Scholar
  60. 60.
    Lam, K. Y., Tin, L., & Ma, L. (1998). C-erbB-2 protein expression in esophageal squamous epithelium from esophageal squamous cell carcinomas, with special reference to histological grade of carcinoma and pre-invasive lesions. European Journal of Surgical Oncology, 24, 431–435.PubMedGoogle Scholar
  61. 61.
    Mimura, K., Kono, K., Hanawa, M., Mitsui, F., Sugai, H., Miyagawa, N., et al. (2005). Frequencies of HER-2/neu expression and gene amplification in patients with esophageal squamous cell carcinoma. British Journal of Cancer, 92, 1253–1260.PubMedGoogle Scholar
  62. 62.
    Nakamura, T., Nekarda, H., Hoelscher, A. H., Bollschweiler, E., Harbeck, N., Becker, K., et al. (1994). Prognostic value of DNA ploidy and c-erbB-2 oncoprotein overexpression in adenocarcinoma of Barrett’s esophagus. Cancer, 73, 1785–1794.PubMedGoogle Scholar
  63. 63.
    Brien, T. P., Odze, R. D., Sheehan, C. E., McKenna, B. J., & Ross, J. S. (2000). HER-2/neu gene amplification by Fish predicts poor survival in Barrett’s esophagus-associated adenocarcinoma. Human Pathology, 31, 35–39.PubMedGoogle Scholar
  64. 64.
    Cobleigh, M. A., Vogel, C. L., Tripathy, D., Robert, N. J., Scholl, S., Fehrenbacher, L., et al. (1999). Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology, 17, 2639–2648.PubMedGoogle Scholar
  65. 65.
    Romond, E. H., Perez, E. A., Bryant, J., Suman, V. J., Geyer, C. E., Jr, Davidson, N. E., et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New England Journal of Medicine, 353, 1673–1684.PubMedGoogle Scholar
  66. 66.
    Kono, K., Takahashi, A., Ichihara, F., Sugai, H., Fujii, H., & Matsumoto, Y. (2002). Impaired antibody-dependent cellular cytotoxicity mediated by Herceptin in patients with gastric cancer. Cancer Research, 62, 5813–5817.PubMedGoogle Scholar
  67. 67.
    Mimura, K., Kono, K., Hanawa, M., Kanzaki, M., Nakao, A., Ooi, A., et al. (2005). Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clinical Cancer Research, 11, 4898–4904.PubMedGoogle Scholar
  68. 68.
    Sato, S., Kajiyama, Y., Sugano, M., Iwanuma, Y., Sonoue, H., Matsumoto, T., et al. (2005). Monoclonal antibody to Her-2/neu receptor enhances radiosensitivity of esophageal cancer cell lines expressing HER-2/neu oncoprotein. International Journal of Radiation Oncology, Biology, Physics, 61, 203–211.PubMedGoogle Scholar
  69. 69.
    Pegram, M. D., Lopez, A., Konecny, G., & Slamon, D. J. (2000). Trastuzumab and chemotherapeutics: Drug interactions and synergies. Seminars in Oncology, 27, S21–S25.Google Scholar
  70. 70.
    Safran, H., Dipetrillo, T., Akerman, P., Ng, T., Evans, D., Steinhoff, M., et al. (2007). Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma. International Journal of Radiation Oncology, Biology, Physics, 67, 405–409.PubMedGoogle Scholar
  71. 71.
    Kato, H., Yoshikawa, M., Miyazaki, T., Nakajima, M., Fukai, Y., Masuda, N., et al. (2002). Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1) in esophageal squamous cell carcinoma. Anticancer Research, 22, 3977–3984.PubMedGoogle Scholar
  72. 72.
    Kleespies, A., Guba, M., Jauch, K. W., & Bruns, C. J. (2004). Vascular endothelial growth factor in esophageal cancer. Journal of Surgical Oncology, 87, 95–104.PubMedGoogle Scholar
  73. 73.
    Ogata, Y., Fujita, H., Yamana, H., Sueyoshi, S., & Shirouzu, K. (2003). Expression of vascular endothelial growth factor as a prognostic factor in node-positive squamous cell carcinoma in the thoracic esophagus: Long term follow-up study. World Journal of Surgery, 27, 584–589.PubMedGoogle Scholar
  74. 74.
    Couverland, A., Paraf, F., Gratio, V., Scoazec, J. Y., Hénin, D., Degott, C., et al. (2000). Angiogenesis in the neoplastic sequence of Barrett’s esophagus. Correlation with VEGF expression. Journal of Pathology, 192, 14–18.Google Scholar
  75. 75.
    Presta, L. G., Chen, H., O’Connor, S. J., Chisholm, V., Meng, Y. G., Krummen, L., et al. (1997). Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Research, 57, 4593–4599.PubMedGoogle Scholar
  76. 76.
    Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–2342.PubMedGoogle Scholar
  77. 77.
    Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non small-cell lung cancer. New England Journal of Medicine, 355, 2542–2550.PubMedGoogle Scholar
  78. 78.
    Shah, M. A., Ramanathan, R. K., Ilson, D. H., Levnor, A., D’Adamo, D., O’Reilly, E., et al. (2006). Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinomas. Journal of Clinical Oncology, 24, 5201–5206.PubMedGoogle Scholar
  79. 79.
    Enzinger, P. C., Fidias, P., Meyerhardt, J., Stuart, K., Fuchs, C., Huberman, M., et al. (2006). Phase II study of Bevacizumab and Docetaxel in metastatic esophageal and gastric cancer. Proceedings of the American Society of Clinical Oncology GI Cancers Symposium, Abstr 68.Google Scholar
  80. 80.
    Sunitinib FDA approval (2007). Avaible at www.fda.gov/cder/Offices/OODP/whatsnew/sunitinib.htm.
  81. 81.
    Ratain, M. J., Eisen, T., Stadler, W. M., Flaherty, K. T., Kaye, S. B., Rosner, G. L., et al. (2006). Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 24, 2505–2512.PubMedGoogle Scholar
  82. 82.
    Kane, R. C., Farrell, A. T., Saber, H., Tang, S., Williams, G., Jee, J. M., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.PubMedGoogle Scholar
  83. 83.
    Kerins, D. M., Murray, R., & Fitzgerald, G. A. (1991). Prostacyclin and prostaglandin E1: Molecular mechanisms and therapeutic utility. Progress in Hemostasis and Thrombosis, 10, 307–337.PubMedGoogle Scholar
  84. 84.
    Mestre, J. R., Subbaramaiah, K., Sacks, P. G., Schantz, S. P., Tanabe, T., Inoue, H., et al. Retinoids suppress epidermal growth factor-induced transcription of cyclooxygenase-2 in human oral squamous carcinoma cells. Cancer Research, 57, 2890–2895.Google Scholar
  85. 85.
    Subbaramaiah, K., Altorki, N., Chung, W., Mestre, J. R., Sampat, A., & Dannenberg, A. J. (1999). Inhibition of cyclooxygenase-2 gene expression by p53. Journal of Biological Chemistry, 274, 10911–10915.PubMedGoogle Scholar
  86. 86.
    Kelley, D. J., Mestre, J. R., Subbaramaiah, K., Sacks, P. G., Schantz, S. P., Tanabe, T., et al. (1997). Benzo[a]pyrene up-regulates cyclooxygenase-2 gene expression in oral epithelial cells. Carcinogenesis, 18, 795–799.PubMedGoogle Scholar
  87. 87.
    Zimmermann, K. C., Sarbia, M., Weber, A. A., Borchard, F., Gabbert, H. E., & Schrör, K. (1999). Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Research, 59, 198–204.PubMedGoogle Scholar
  88. 88.
    Yu, H. P., Xu, S. Q., Liu, L., Shi, L. Y., Cai, X. K., Lu, W. H., et al. (2003). Cyclooxygenase-2 expression in squamous dysplasia and squamous cell carcinoma of the esophagus. Cancer Letters, 198, 193–201.PubMedGoogle Scholar
  89. 89.
    Yu, H. P., Shi, L. Y., Lu, W. H., Su, Y. H., Li, Y. Y., & Xu, S. Q. (2004). Expression of cyclooxygenase-2 (COX-2) in human esophageal cancer and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Journal of Gastroenterology and Hepatology, 19, 638–642.PubMedGoogle Scholar
  90. 90.
    Shamma, A., Yamamoto, H., Doki, Y., Okami, J., Kondo, M., Fujiwara, Y., et al. (2000). Up-regulation of cyclooxygenase-2 in squamous carcinogenesis of the esophagus. Clinical Cancer Research, 6, 1229–1238.PubMedGoogle Scholar
  91. 91.
    Zhi, H., Wang, L., Zhang, J., Zhou, C., Ding, F., Luo, A., et al. (2006). Significance of COX-2 expression in human esophageal squamous cell carcinoma. Carcinogenesis, 27, 1214–1221.PubMedGoogle Scholar
  92. 92.
    Bhandari, P., Bateman, A. C., Mehta, R. L., Stacey, B. S., Johnson, P., Cree, I. A., et al. (2006). Prognostic significance of cyclooxygenase-2 (COX-2) expression in patients with surgically respectable adenocarcinomas of the esophagus. BMC Cancer, 6, 134.PubMedGoogle Scholar
  93. 93.
    Alici, S., Ugras, S., Bayram, I., & Izmirli, M. (2006). Prognostic factors and COX-2 expression in advanced stage esophageal squamous cell carcinoma. Advances in Therapy, 23, 672–679.PubMedGoogle Scholar
  94. 94.
    Liu, J. F., Jamieson, G., Wu, T. C., Zhang, S. W., Wang, Q. Z., & Drew, P. (2006). Cyclooxygenase-2 expression in squamous cell carcinoma of the esophagus. Diseases of the Esophagus, 19, 350–354.PubMedGoogle Scholar
  95. 95.
    Xi, H., Baldus, S. E., Warnecke-Eberz, U., Brabender, J., Neiss, S., Metzger, R., et al. (2005). High cyclooxygenase-2 expression following neoadjuvant radiochemotherapy is associated with minor histopathologic response and poor prognosis in esophageal cancer. Clinical Cancer Research, 11, 8341–8347.PubMedGoogle Scholar
  96. 96.
    Takatori, H., Natsugoe, S., Okumura, H., Matsumoto, M., Ishigami, S., Owaki, T., et al. (2005). Predictive value of COX-2 for the effect of chemoradiotherapy on esophageal squamous cell carcinoma. Oncology Reports, 13, 697–701.PubMedGoogle Scholar
  97. 97.
    France, M., Drew, P. A., Dodd, T., & Watson, D. I. (2004). Cyclo-oxygenase-2 expression in esophageal adenocarcinomas as a determinant of clinical outcome following esophagectomy. Diseases of the Esophagus, 17, 136–140.PubMedGoogle Scholar
  98. 98.
    Buskens, C. J., Van Rees, B. P., Sivula, A., Reitsma, J. B., Haglund, C., Bosma, P. J., et al. (2002). Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinomas of the esophagus. Gastroenterology, 122, 1800–1807.PubMedGoogle Scholar
  99. 99.
    Pai, R., Soreghan, B., Szabo, I. L., Pavelka, M., Baatar, D., & Tarnawski, A. S. (2002). Prostaglandin E2 transactivates RGF receptor: A novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Medicine, 8, 289–293.PubMedGoogle Scholar
  100. 100.
    Liu, X. H., Yao, S., Kirschenbaum, A., & Levine, A. C. (1998). NS398, a selective cycloogenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Research, 58, 4245–4249.PubMedGoogle Scholar
  101. 101.
    Souza, R. F., Shewmake, K., Beer, D. G., Cryer, B., & Spechler, S. J. (2000). Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinomas cells. Cancer Research, 60, 5767–5772.PubMedGoogle Scholar
  102. 102.
    Gallo, O., Franchi, A., Magnelli, L., Sardi, I., Vannacci, A., Boddi, V., et al. (2001). Cyclooxygenase -2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia, 3, 53–61.PubMedGoogle Scholar
  103. 103.
    Kase, S., Osaki, M., Honjo, S., Adachi, H., Tsujitani, S., Kaibara, N., et al. (2003). Expression of cyclo-oxygenase-2 is correlated with high intratumoral microvessel density and low apoptotic index in human esophageal squamous cell carcinomas. Virchows Archiv, 442, 129–135.PubMedGoogle Scholar
  104. 104.
    Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–3340.PubMedGoogle Scholar
  105. 105.
    Corley, D. A., Kerlikowske, K., Verma, R., & Buffler, P. (2003). Protective association of aspirin/NSAIDs and esophageal cancer: A systematic review and meta-analysis. Gastroenterology, 124, 47–56.PubMedGoogle Scholar
  106. 106.
    Kase, S., Osaki, M., Honjo, S., Takeda, A., Adachi, K., Araki, K., et al. (2004). A selective cyclooxygenase-2 inhibitor, NS398, inhibits cell growth and induces cell cycle arrest in the G2/m phase in human esophageal squamous cell carcinoma cells. Journal of Experimental & Clinical Cancer Research, 23, 301–307.Google Scholar
  107. 107.
    Li, M., Wu, X., & Xu, X. C. (2001). Induction of apoptosis by cyclo-oxygenase-2 inhibitor NS398 through a cytochrome C-dependent pathway in esophageal cancer cells. International Journal of Cancer, 93, 218–223.Google Scholar
  108. 108.
    Moore, R. J., Zweifel, B. S., Heuvelman, D. M., Leahy, K. M., Edwards, D. A., Woerner, B. M., et al. (2000). Enhanced antitumor activity by co-administration of celecoxib and the chemotherapeutic agents, cyclophosphamide and 5-FU. Proceedings of the American Association for Cancer Research, 41, 409.Google Scholar
  109. 109.
    Milas, L., Kishi, K., Hunter, N., Mason, K., Masferrer, J. L., & Tofilon, P. J. (1999). Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. Journal of the National Cancer Institute, 91, 1501–1504.PubMedGoogle Scholar
  110. 110.
    Dawson, S. J., Michael, M., Biagi, J., Foo, K. F., Jefford, M., Ngan, S. Y., et al. (2007). A phase I/II trial of celecixib with chemotherapy and radiotherapy in the treatment of patients with locally advanced eosophageal cancer. Investigational New Drugs, 25, 123–129.PubMedGoogle Scholar
  111. 111.
    Govindan, R., Mcleod, H., Mantravadi, P., Fineberg, N., Helft, P., Kesler, K., et al. (2004). Cisplatin, fluouracil, celecoxib, and RT in respectable esophageal cancer: Preliminary results. Oncology, 14, 18–21.Google Scholar
  112. 112.
    Enzinnger, P., Mamon, H., & Choi, N. C., Bueno, R., Kulke, M., Fidias, P., et al. (2004). Phase II cisplatin, irinotecan, celecoxib and concurrent radiation therapy followed by surgery for locally ]advanced esophageal cancer. Presented at: ASCO Gastrointestinal Cancer Symposium.Google Scholar
  113. 113.
    Yamashita, K., Mori, M., Kataoka, A., Inoue, H., & Sugimachi, K. (2001). The clinical significance of MMP-1 expression in oesophageal carcinoma. British Journal of Cancer, 84, 276–282.PubMedGoogle Scholar
  114. 114.
    Li, J. R., Qi, F. Y., & Li, L. (2005). Correlation between expression of matrix metalloproteinase-2 and angiogenesis in esophageal carcinoma. Zhonghua Zhong Liu Za Zhi, 27, 96–98.PubMedGoogle Scholar
  115. 115.
    Yamashita, K., Mori, M., Shiraishi, T., Shibuta, K., & Sugimachi, K. (2000). Clinical significance of matrix metalloproteinase-7 expression in esophageal carcinoma. Clinical Cancer Research, 6, 1169–1174.PubMedGoogle Scholar
  116. 116.
    Gu, Z. D., Chen, K. N., Li, M., Gu, J., & Li, J. Y. (2005). Clinical significance of matrix metalloproteinase-9 expression in esophageal sqamous cell carcinoma. World Journal of Gastroenterology, 11, 871–874.PubMedGoogle Scholar
  117. 117.
    Gu, Z. D., Li, J. Y., Li, M., Gu, J., Shi, X. T., Ke, Y., et al. (2005). Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. American Journal of Gastroenterology, 100, 1835–1843.PubMedGoogle Scholar
  118. 118.
    Tierney, G. M., Griffin, N. R., Stuart, R. C., Kasem, H., Lynch, K. P., Lury, J. T., et al. (1999). A pilot study of the safety and effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer. European Journal of Cancer, 35, 563–568.PubMedGoogle Scholar
  119. 119.
    Bramhall, S. R., Hallissey, M. T., Whiting, J., Scholefield, J., Tierney, G., Stuart, R. C., et al. (2002). Marimastat as maintenance therapy for patients with advanced gastric cancer: A randomised trial. British Journal of Cancer, 86, 1864–1870.PubMedGoogle Scholar
  120. 120.
    Heath, E. I., Burtness, B. A., Kleinberg, L., Salem, R. R., Yang, S. C., Heitmiller, R. F., et al. (2006). Phase II, parallel-design study of preoperative combined modality therapy and the matrix metalloproteinase (mmp) inhibitor prinomastat in patients with esophageal adenocarcinoma. Investigational New Drugs, 24, 135–140.PubMedGoogle Scholar
  121. 121.
    Pavlaki, M., & Zucker, S. (2003). Matrix metalloproteinase inhibitors (MMPIs): The beginning of phase I or termination of phase III clinical trials. Cancer and Metastasis Reviews, 22, 177–203.PubMedGoogle Scholar
  122. 122.
    Schwartz, G. K. (2005). Development of cell cycle active drugs for the treatment of gastrointestinal cancers: A new approach to cancer therapy. Journal of Clinical Oncology, 23, 4499–4508.PubMedGoogle Scholar
  123. 123.
    Kawakubo, H., Ozawa, S., Ando, N., Kitagawa, Y., Mukai, M., Ueda, M., et al. (2005). Alternations of p53, cyclin D1 and Prb expression in the carcinogenesis of esophageal squamous cell carcinoma. Oncology Reports, 14, 1453–1459.PubMedGoogle Scholar
  124. 124.
    Koppert, L. B., Wijnhoven, B. P., van Dekken, H., Tilanus, H. W., & Dinjens, W. N. (2005). The molecular biology of esophageal adenocarcinoma. Journal of Surgical Oncology, 92, 169–190.PubMedGoogle Scholar
  125. 125.
    Bani-Hani, K., Martin, I. G., Hardie, L. J., Mapstone, N., Briggs, J. A., Forman, D., et al. (2000). Prospective study of cyclin D1 overexpression in Barrett’s esophagus: Association with increased risk of adenocarcinoma. Journal of National Cancer Institute, 92, 1316–1321.Google Scholar
  126. 126.
    Milas, L., Akimoto, T., Hunter, N. R., Mason, K. A., Buchmiller, L., Yamakawa, M., et al. (2002). Relationship between cyclin D1 expression and poor radioresponse of murine carcinomas. International Journal of Radiation Oncology, Biology, Physics, 52, 514–521.PubMedGoogle Scholar
  127. 127.
    Swanton, C. (2004). Cell-cycle targeted therapies. Lancet Oncology, 5, 27–36.PubMedGoogle Scholar
  128. 128.
    Senderowicz, A. M. (2003). Small-molecule cyclin-dependent kinase modulators. Oncogene, 22, 6609–6620.PubMedGoogle Scholar
  129. 129.
    Sato, S., Kajiyama, Y., Sugano, M., Iwanuma, Y., & Tsurumaru, M. (2004). Flavopiridol as a radiosensitizer for esophageal cancer cell lines. Diseases of the Esophagus, 17, 338–344.PubMedGoogle Scholar
  130. 130.
    Motwani, M., Rizzo, C., Sirotnak, F., She, Y., & Schwartz, G. K. (2003). Flavopiridol enhances the effect of docetaxel in vitro and in vivo in human gastric cancer cells. Molecular Cancer Therapeutics, 2, 549–555.PubMedGoogle Scholar
  131. 131.
    Jung, C., Motwani, M., Kortmansky, J., Sirotnak, F. M., She, Y., Gonen, M., et al. (2003). The cyclin-dependent kinase inhibitor flavopiridol potentiates γ-irradiation-induced apoptosis in colon and gastric cancer cells. Clinical Cancer Research, 9, 6052–6061.PubMedGoogle Scholar
  132. 132.
    Raju, U., Ariga, H., Koto, M., Lu, X., Pickett, J., Valdecanas, D., et al. (2006). Improvement of esophageal adenocarcinoma cell and xenograft responses to radiation by targeting cyclin-dependent kinases. Radiotherapy and Oncology, 80, 185–191.PubMedGoogle Scholar
  133. 133.
    Schwartz, G. K., Ilson, D., Saltz, L., O’Reilly, E., Tong, W., Maslak, P., et al. (2001). Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. Journal of Clinical Oncology, 19, 1985–1992.PubMedGoogle Scholar
  134. 134.
    Schwartz, G. K., O’Reilly, E., Ilson, D., Saltz, L., Sharma, S., Tong, W., et al. (2002). Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumours. Journal of Clinical Oncology, 20, 2157–2170.PubMedGoogle Scholar
  135. 135.
    Rothkopf, D. E., Ilson, D. H., Yi, S., Winkelmann, J., Kelsen, D. P., & Schwartz, G. K. (2004). A phase II trial of sequential paclitaxel and flavopiridol in patients with metastatic paclitaxel-refractory esophageal cancer. Program and Abstracts of the American Society of Clinical Oncology 2004 Gastrointestinal Cancers Symposium, 67, Abstr 116.Google Scholar
  136. 136.
    Shah, M. A., Kortmansky, J., Gonen, M., Tse, A., Lefkowitz, R., Kelsen, D., et al. (2004). Phase I study of weekly irinotecan (CPT), cisplatin (CIS) and flavopiridol (F). Proceedings of the American Society of Clinical Oncology, 23, 319.Google Scholar
  137. 137.
    Yu, X., Guo, Z. S., Marcu, M. G., Neckers, L., Nguyen, D. M., Chen, G. A., et al. (2004). Modulation of P53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. Journal of the National Cancer Institute, 94, 504–513.Google Scholar
  138. 138.
    Gartel, A. L., & Tyner, A. L. (2002). The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Molecular Cancer Therapeutics, 1, 639–649.PubMedGoogle Scholar
  139. 139.
    Nguyen, D. M., Schrump, W. D., Tsai, W. S., Chen, A., Stewart, J. H., IV, Steiner, F., et al. (2003). Enhancement of depsipeptide- mediated apoptosis of lung or esophageal cancer cells by flavopiridol: Activation of the mitochondria-dependent death-signalling pathway. Journal of Thoracic and Cardiovascular Surgery, 125, 1132–1142.PubMedGoogle Scholar
  140. 140.
    Baldwin, A. S. (1996). The Nk-kappa B and I kappa B proteins: New discoveries and insights. Annual Review of Immunology, 14, 649–683.PubMedGoogle Scholar
  141. 141.
    Abdel-Latif, M. M., O’Riordan, J., Windle, H. J., Carton, E., Ravi, N., Kelleher, D., et al. (2004). NF-kappaB activation in esophageal adenocarcinoma: Relationship to Barrett′s metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Annals of Surgery, 239, 491–500.PubMedGoogle Scholar
  142. 142.
    Izzo, J. G., Malhotra, U., Wu, T. T., Ensor, J., Luthra, R., Lee, J. H., et al. (2006). Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. Journal of Clinical Oncology, 24, 748–754.PubMedGoogle Scholar
  143. 143.
    Li, J., Minnich, D. J., Camp, E. R., Brank, A., Mackay, S. L., & Hochwald, S. N. (2006). Enhanced sensitivity to chemotherapy in esophageal cancer though inhibition of NF-kappaB. Journal of Surgical Research, 132, 112–120.PubMedGoogle Scholar
  144. 144.
    Shah, M. A., Holen, K., Singh, D., Kemeny, M., Levner, A., Cox, L., et al. (2005). A multicenter, two-stage, phase II study of PS-341 in patients with unresectable or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma. Program and Abstracts of the American Society of Clinical Oncology 2005 Gastrointestinal Cancers Symposium, 103, Abstr 41.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. N. Syrigos
    • 1
    • 2
  • A. Zalonis
    • 1
    • 2
  • E. Kotteas
    • 1
    • 2
  • Muhammad Wasif Saif
    • 2
  1. 1.Oncology Unit, Third Department of MedicineAthens University School of Medicine, Sotiria General HospitalAthensGreece
  2. 2.Yale University School of MedicineNew HavenUSA

Personalised recommendations