Cancer and Metastasis Reviews

, Volume 27, Issue 2, pp 263–272 | Cite as

Targeting PTPs with small molecule inhibitors in cancer treatment

  • Zhong-Xing Jiang
  • Zhong-Yin Zhang


Protein tyrosine phosphorylation plays a major role in cellular signaling. The level of tyrosine phosphorylation is controlled by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Disturbance of the normal balance between PTK and PTP activity results in aberrant tyrosine phosphorylation, which has been linked to the etiology of several human diseases, including cancer. A number of PTPs have been implicated in oncogenesis and tumor progression and therefore are potential drug targets for cancer chemotherapy. These include PTP1B, which may augment signaling downstream of HER2/Neu; SHP2, which is the first oncogene in the PTP superfamily and is essential for growth factor-mediated signaling; the Cdc25 phosphatases, which are positive regulators of cell cycle progression; and the phosphatase of regenerating liver (PRL) phosphatases, which promote tumor metastases. As PTPs have emerged as drug targets for cancer, a number of strategies are currently been explored for the identification of various classes of PTP inhibitors. These efforts have resulted many potent, and in some cases selective, inhibitors for PTP1B, SHP2, Cdc25 and PRL phosphatases. Structural information derived from these compounds serves as a solid foundation upon which novel anti-cancer agents targeted to these PTPs can be developed.


Protein tyrosine phosphatase (PTP) PTP1B SHP2 Cdc25 PRL phosphatases Small molecule inhibitor design PTP inhibitor 



protein tyrosine kinase


protein tyrosine phosphatase


Src homology-2


phosphatase of regenerating liver



This work was supported by NIH Grants CA69202 and DK68447.


  1. 1.
    Hunter, T. (2000). Signaling—2000 and beyond. Cell, 100, 113–127.PubMedCrossRefGoogle Scholar
  2. 2.
    Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews. Molecular Cell Biology, 7, 833–846.PubMedCrossRefGoogle Scholar
  3. 3.
    Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Friedberg, I., Osterman, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117, 699–711.PubMedCrossRefGoogle Scholar
  4. 4.
    Hunter, T. (1998). The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 583–605.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, Z.-Y. (2001). Protein tyrosine phosphatases: prospects for therapeutics. Current Opinion in Chemical Biology, 5, 416–423.PubMedCrossRefGoogle Scholar
  6. 6.
    Arena, S., Benvenuti, S., & Bardelli, A. (2005). Genetic analysis of the kinome and phosphatome in cancer. Cellular and Molecular Life Sciences, 62, 2092–2099.PubMedCrossRefGoogle Scholar
  7. 7.
    Ventura, J. J., & Nebreda, A. R. (2006). Protein kinases and phosphatases as therapeutic targets in cancer. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 8, 153–160.Google Scholar
  8. 8.
    Krause, D. S., & Van Etten, R. A. (2005). Tyrosine kinases as targets for cancer therapy. New England Journal of Medicine, 353, 172–187.PubMedCrossRefGoogle Scholar
  9. 9.
    Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275, 1943–1947.PubMedCrossRefGoogle Scholar
  10. 10.
    Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung, W. K. A., Lin, H., Ligon, A. H., et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23 that is mutated in multiple advanced cancers. Nature Genetics, 15, 356–362.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, Z., Shen, D., Parsons, D. W., Bardelli, A., Sager, J., Szabo, S., et al. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304, 1164–1166.PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng, X. M., Wang, Y., & Pallen, C. J. (1992). Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature, 359, 336–339.PubMedCrossRefGoogle Scholar
  13. 13.
    Ponniah, S., Wang, D. Z., Lim, K. L., & Pallen, C. J. (1999). Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Current Biology, 9, 535–538.PubMedCrossRefGoogle Scholar
  14. 14.
    Su, J., Muranjan, M., & Sap, J. (1999). Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Current Biology, 9, 505–511.PubMedCrossRefGoogle Scholar
  15. 15.
    Noguchi, T., Matozaki, T., Horita, K., Fujioka, Y., & Kasuga, M. (1994). Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Molecular and Cell Biology, 14, 6674–6682.Google Scholar
  16. 16.
    Tang, T. L., Freeman Jr., R. M., O’Reilly, A. M., Neel, B. G., & Sokol, S. Y. (1995). The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell, 80, 473–483.PubMedCrossRefGoogle Scholar
  17. 17.
    Bennett, A. M., Hausdorff, S. F., O’Reilly, A. M., Freeman, R. M., & Neel, B. G. (1996). Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Molecular and Cell Biology, 16, 1189–1202.Google Scholar
  18. 18.
    Shi, Z. Q., Yu, D. H., Park, M., Marshall, M., & Feng, G. S. (2000). Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Molecular and Cell Biology, 20, 1526–1536.CrossRefGoogle Scholar
  19. 19.
    Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP2, cause Noonan syndrome. Nature Genetics, 29, 465–468.PubMedCrossRefGoogle Scholar
  20. 20.
    Tartaglia, M., Niemeyer, C. M., Fragale, A., Song, X., Buechner, J., Jung, A., et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 34, 148–150.PubMedCrossRefGoogle Scholar
  21. 21.
    Bentires-Alj, M., Paez, J. G., David, F. S., Keilhack, H., Halmos, B., Naoki, K., et al. (2004). Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, 64, 8816–8820.PubMedCrossRefGoogle Scholar
  22. 22.
    Stephens, B. J., Han, H., Gokhale, V., & Von Hoff, D. D. (2005). PRL phosphatases as potential molecular targets in cancer. Advanced Thailand Geographic, 4, 1653–1661.Google Scholar
  23. 23.
    Blume-Jensen, P., & Hunter, T. (2001). Oncogenic kinase signaling. Nature, 411, 355–365.PubMedCrossRefGoogle Scholar
  24. 24.
    Druker, B. J. (2004). Imatinib as a paradigm of targeted therapies. Advanced Cancer Research, 91, 1–30.CrossRefGoogle Scholar
  25. 25.
    Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350, 2129–2139.PubMedCrossRefGoogle Scholar
  26. 26.
    Ostman, A., Hellberg, C., & Bohmer, F. D. (2006). Protein-tyrosine phosphatases and cancer. Nature Reviews. Nature Reviews. Cancer, 6, 307–320.PubMedCrossRefGoogle Scholar
  27. 27.
    Elchelby, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Lee Loy, A., et al. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283, 1544–1548.CrossRefGoogle Scholar
  28. 28.
    Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., et al. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and Cellular Biology, 20, 5479–5489.PubMedCrossRefGoogle Scholar
  29. 29.
    Zinker, B. A., Rondinone, C. M., Trevillyan, J. M., Gum, R. J., Clampit, J. E., Waring, J. F., et al. (2002). PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 11357–11362.PubMedCrossRefGoogle Scholar
  30. 30.
    Flint, A. J., Tiganis, T., Barford, D., & Tonks, N. K. (1997). Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 94, 1680–1685.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu, F., & Chernoff, J. (1997). Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochemical Journal, 327, 139–145.PubMedGoogle Scholar
  32. 32.
    Bjorge, J. D., Pang, A., & Fujita, D. J. (2000). Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. Journal of Biological Chemistry, 275, 41439–41446.PubMedCrossRefGoogle Scholar
  33. 33.
    Cheng, A., Bal, G. S., Kennedy, B. P., & Tremblay, M. L. (2001). Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. Journal of Biological Chemistry, 276, 25848–25855.PubMedCrossRefGoogle Scholar
  34. 34.
    Liang, F., Lee, S.-Y., Liang, J., Lawrence, D. S., & Zhang, Z. Y. (2005). The role of PTP1B in integrin signaling. Journal of Biological Chemistry, 280, 24857–24863.PubMedCrossRefGoogle Scholar
  35. 35.
    Dube, N., Cheng, A., & Tremblay, M. L. (2004). The role of protein tyrosine phosphatase 1B in Ras signaling. Proceedings of the National Academy of Sciences of the United States of America, 101, 1834–1839.PubMedCrossRefGoogle Scholar
  36. 36.
    Yarden, Y. (2001). Biology of HER2 and its importance in breast cancer. Oncology, 61(Suppl 2), 1–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews. Cancer, 5, 341–354.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhai, Y. F., Beittenmiller, H., Wang, B., Gould, M. N., Oakley, C., Esselman, W. J., et al. (1993). Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Research, 53, 2272–2278.PubMedGoogle Scholar
  39. 39.
    Wiener, J. R., Kerns, B. J., Harvey, E. L., Conaway, M. R., Iglehart, J. D., Berchuck, A., et al. (1994). Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. Journal of the National Cancer Institute, 86, 372–378.PubMedCrossRefGoogle Scholar
  40. 40.
    Julien, S. G., Dubé, N., Read, M., Penney, J., Paquet, M., Han, Y., et al. (2007). Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genetics, 39, 338–346.PubMedCrossRefGoogle Scholar
  41. 41.
    Bentires-Alj, M., & Neel, B. G. (2007). Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Research, 67, 2420–2424.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu, S., Bjorge, J. D., & Fujita, D. J. (2007). PTP1B contributes to oncogenic properties of colon cancer cells through Src activation. Cancer Research, 67, 10129–10137.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang, S., & Zhang, Z.-Y. (2007). PTP1B as a drug target: recent development in PTP1B inhibitor discovery. Drug Discovery Today, 12, 373–381.PubMedCrossRefGoogle Scholar
  44. 44.
    Shen, K., Keng, Y. F., Wu, L., Guo, X. L., Lawrence, D. S., & Zhang, Z.-Y. (2001). Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. Journal of Biological Chemistry, 276, 47311–47319.PubMedCrossRefGoogle Scholar
  45. 45.
    Sun, J.-P., Fedorov, A. A., Lee, S.-Y., Guo, X.-L., Shen, K., Lawrence, D. S., et al. (2003). Crystal structure of PTP1B in complex with a potent and selective bidentate inhibitor. Journal of Biological Chemistry, 278, 12406–12414.PubMedCrossRefGoogle Scholar
  46. 46.
    Xie, L., Lee, S.-Y., Andersen, J. N., Waters, S., Shen, K., Guo, X.-L., et al. (2003). Cellular effects of small molecule PTP1B inhibitors on insulin signalling. Biochemistry, 42, 12792–12804.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee, S.-Y., Liang, F., Guo, X.-L., Xie, L., Cahill, S. M., Blumenstein, M., et al. (2005). Design, construction, and intracellular activation of an intramolecularly self-silenced signal transduction inhibitor. Angewandte Chemie. International Edition, 44, 4242–4244.CrossRefGoogle Scholar
  48. 48.
    Boutselis, I. G., Yu, X., Zhang, Z. Y., & Borch, R. (2007). Synthesis and cell-based activity of a potent and selective PTP1B inhibitor prodrug. Journal of Medicinal Chemistry, 50, 856–864.PubMedCrossRefGoogle Scholar
  49. 49.
    Morrison, C. D., White, C. L., Wang, Z., Lee, S.-Y., Lawrence, D. S., Cefalu, W. T., et al. (2007). Increased hypothalamic PTP1B contribute to leptin resistance with age. Endocrinology, 148, 433–440.PubMedCrossRefGoogle Scholar
  50. 50.
    Black, E., Breed, J., Breeze, A. L., Embrey, K., Garcia, R., Gero, T. W., et al. (2005). Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 2503–2507.CrossRefGoogle Scholar
  51. 51.
    Combs, A. P., Yue, E. W., Bower, M., Ala, P. J., Wayland, B., Douty, B., et al. (2005). Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. Journal of Medicinal Chemistry, 48, 6544–6548.PubMedCrossRefGoogle Scholar
  52. 52.
    Yue, E. W., Wayland, B., Douty, B., Crawley, M. L., McLaughlin, E., Takvorian, A., et al. (2006). Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: synthesis and structure-activity relationships of a peptide scaffold. Bioorganic & Medicinal Chemistry, 14, 5833–5849.CrossRefGoogle Scholar
  53. 53.
    Combs, A. P., Zhu, W., Crawley, M. L., Glass, B., Polam, P., Sparks, R. B., et al. (2006). Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. Journal of Medicinal Chemistry, 49, 3774–3789.PubMedCrossRefGoogle Scholar
  54. 54.
    Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., & Shoelson, S. E. (1998). Cell, 92, 441–450.PubMedCrossRefGoogle Scholar
  55. 55.
    Mohi, M. G., & Neel, B. G. (2007). The role of Shp2 (PTPN11) in cancer. Current Opinion in Genetics & Development, 17, 23–30.CrossRefGoogle Scholar
  56. 56.
    Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pyroli CagA protein. Nature Reviews. Cancer, 4, 688–694.PubMedCrossRefGoogle Scholar
  57. 57.
    Stommel, J. M., Kimmelman, A. C., Ying, H., Nabioullin, R., Ponugoti, A. H., Wiedemeyer, R., et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science, 318, 287–290.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen, L., Sung, S. S., Yip, M. L., Lawrence, H. R., Ren, Y., Guida, W. C., et al. (2006). Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Molecular Pharmacology, 70, 562–570.PubMedCrossRefGoogle Scholar
  59. 59.
    Coleman, T. R., & Dunphy, W. G. (1994). Cdc2 regulatory factors. Current Opinion in Cell Biology, 6, 877–882.PubMedCrossRefGoogle Scholar
  60. 60.
    Hoffmann, I., & Karsenti, E. (1994). The role of cdc25 in checkpoints and feedback controls in the eukaryotic cell cycle. Journal of Cell Science. Supplement, 18, 75–79.PubMedGoogle Scholar
  61. 61.
    Nilsson, I., & Hoffmann, I. (2000). Cell cycle regulation by the Cdc25 phosphatase family. Progress in Cell Cycle Research, 4, 107–114.PubMedGoogle Scholar
  62. 62.
    Ma, Z. Q., Chua, S. S., DeMayo, F. J., & Tsai, S. Y. (1999). Induction of mammary gland hyperplasia in transgenic mice over-expressing human Cdc25B. Oncogene, 18, 4564−4576.PubMedGoogle Scholar
  63. 63.
    Yao, Y., Slosberg, E. D., Wang, L., Hibshoosh, H., Zhang, Y.-J., Xing, W.-Q., et al. (1999). Increased susceptibility to carcinogen-induced mammary tumors in MMTV-Cdc25B transgenic mice. Oncogene, 18, 5159−5166.PubMedGoogle Scholar
  64. 64.
    Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M., et al. (1995). Cdc25 phosphatases as potential human oncogenes. Science, 269, 1575–1577.PubMedCrossRefGoogle Scholar
  65. 65.
    Cangi, M. G., Cukor, B., Soung, P., Signoretti, S., Moreira Jr., G., Ranashinge, M., et al. (2000). Role of the Cdc25A phosphatase in human breast cancer. Journal of Clinical Investigation, 106, 753–761.PubMedCrossRefGoogle Scholar
  66. 66.
    Lyon, M. A., Ducruet, A. P., Wipf, P., & Lazo, J. S. (2002). Dual-specificity phosphatases as targets for antineoplastic agents. Nature reviews. Nature reviews. Drug discovery, 1, 961–976.PubMedCrossRefGoogle Scholar
  67. 67.
    Ducruet, A. P., Vogt, A., Wipf, P., & Lazo, J. S. (2005). Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer’s disease. Annual Review of Pharmacology and Toxicology, 45, 725–750.PubMedCrossRefGoogle Scholar
  68. 68.
    Gunasekera, S. P., McCarty, P. J., Kelly-Borges, M., Lobkovsky, E., & Clardy, J. (1996). Dysidiolide: a novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. Journal of the American Chemical Society, 118, 8759–8760.CrossRefGoogle Scholar
  69. 69.
    Dodo, K., Takahashi, M., Yamada, Y., Sugimoto, Y., Hashimoto, Y., & Shirai, R. (2000). Synthesis of a novel class of cdc25A inhibitors from vitamin D3. Bioorganic & Medicinal Chemistry Letters, 10, 615–617.CrossRefGoogle Scholar
  70. 70.
    Horiguchi, T., Nishi, K., Hakoda, S., Tanida, S., Nagata, A., & Okayama, H. (1994). Dnacin A1 and dnacin B1 are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochemical Pharmacology, 48, 2139–2141.PubMedCrossRefGoogle Scholar
  71. 71.
    Loukaci, A., Le Saout, I., Samadi, M., Leclerc, S., Damiens, E., Meijer, L., et al. (2001). Coscinosulfate, a CDC25 phosphatase inhibitor from the sponge Coscinoderma mathewsi. Bioorganic & Medicinal Chemistry, 9, 3049–3054.CrossRefGoogle Scholar
  72. 72.
    Ham, S. W., Park, H. J., & Lim, D. H. (1997). Studies on menadione as an inhibitor of the cdc25 phosphatase. Bioorganic Chemistry, 25, 33–36.CrossRefGoogle Scholar
  73. 73.
    Lazo, J. S., Nemoto, K., Pestell, K. E., Cooley, K., Southwick, E. C., Mitchell, D. A., et al. (2002). Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Molecular Pharmacology, 61, 720–728.PubMedCrossRefGoogle Scholar
  74. 74.
    Contour-Galcera, M. O., Sidhu, A., Prevost, G., Bigg, D., & Ducommun, B. (2007). What’s new on Cdc25 phosphatase inhibitors. Pharmacology & Therapeutics, 115, 1–12.CrossRefGoogle Scholar
  75. 75.
    Sohn, J., Kiburz, B., Li, Z., Deng, L., Safi, A., Pirrung, M. C. et al. (2003). Inhibition of Cdc25 phosphatases by indolyldihydroxyquinones. Journal of Medicinal Chemistry, 46, 2580–2588.PubMedCrossRefGoogle Scholar
  76. 76.
    Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.PubMedGoogle Scholar
  77. 77.
    Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.PubMedCrossRefGoogle Scholar
  78. 78.
    Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatase. Cancer Letters, 110, 49–55.PubMedCrossRefGoogle Scholar
  79. 79.
    Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.PubMedCrossRefGoogle Scholar
  80. 80.
    Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.PubMedGoogle Scholar
  81. 81.
    Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.PubMedCrossRefGoogle Scholar
  82. 82.
    Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.PubMedCrossRefGoogle Scholar
  83. 83.
    Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.PubMedGoogle Scholar
  84. 84.
    Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.PubMedCrossRefGoogle Scholar
  85. 85.
    Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.PubMedCrossRefGoogle Scholar
  86. 86.
    Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.PubMedCrossRefGoogle Scholar
  87. 87.
    Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.PubMedCrossRefGoogle Scholar
  88. 88.
    Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Clinical Cancer Research, 5, 219–229.Google Scholar
  89. 89.
    Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.PubMedGoogle Scholar
  90. 90.
    Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 2996–2999.CrossRefGoogle Scholar
  91. 91.
    Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.PubMedCrossRefGoogle Scholar
  92. 92.
    Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.PubMedCrossRefGoogle Scholar
  93. 93.
    Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.PubMedCrossRefGoogle Scholar
  94. 94.
    Sun, J.-P., Luo, Y., Yu, X., Wang, W.-Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for the PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations