Cancer and Metastasis Reviews

, Volume 26, Issue 3–4, pp 453–467 | Cite as

Chemokines in tumor angiogenesis and metastasis

  • Seema Singh
  • Anguraj Sadanandam
  • Rakesh K. Singh


Chemokines are a large group of low molecular weight cytokines that are known to selectively attract and activate different cell types. Although the primary function of chemokines is well recognized as leukocyte attractants, recent evidences indicate that they also play a role in number of tumor-related processes, such as growth, angiogenesis and metastasis. Chemokines activate cells through cell surface seven trans-membranes, G-protein-coupled receptors (GPCR). The role played by chemokines and their receptors in tumor pathophysiology is complex as some chemokines favor tumor growth and metastasis, while others may enhance anti-tumor immunity. These diverse functions of chemokines establish them as key mediators between the tumor cells and their microenvironment and play critical role in tumor progression and metastasis. In this review, we present some of the recent advances in chemokine research with special emphasis on its role in tumor angiogenesis and metastasis.


Chemokines Tumor growth Angiogenesis Metastasis Tumor microenvironment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil–hypothesis revisited. Nature Review Cancer, 3(6), 453–58.Google Scholar
  2. 2.
    Locati, M., Otero, K., Schioppa, T., Signorelli, P., Perrier, P., & Baviera, S., et al. (2002). The chemokine system: Tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy, 57(11), 972–82.PubMedGoogle Scholar
  3. 3.
    Murphy, P. M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., & Matsushima, K., et al. (2000). International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews, 52(1), 145–76.PubMedGoogle Scholar
  4. 4.
    Zlotnik, A., & Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity, 12(2), 121–27.PubMedGoogle Scholar
  5. 5.
    Murphy, P. M. (2002). International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacological Reviews, 54(2), 227–29.PubMedGoogle Scholar
  6. 6.
    Baggiolini, M., Dewald, B., & Moser, B. (1997). Human chemokines: An update. Annual Review of Immunology, 15, 675–05.PubMedGoogle Scholar
  7. 7.
    Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., & Kasper, J., et al. (1995). The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. Journal of Biological Chemistry, 270(45), 27348–7357.PubMedGoogle Scholar
  8. 8.
    Strieter, R. M., Burdick, M. D., Mestas, J., Gomperts, B., Keane, M. P., & Belperio, J. A. (2006). Cancer CXC chemokine networks and tumour angiogenesis. European Journal of Cancer, 42(6), 768–78.PubMedGoogle Scholar
  9. 9.
    Belperio, J. A., Keane, M. P., Arenberg, D. A., Addison, C. L., Ehlert, J. E., & Burdick, M. D., et al. (2000). CXC chemokines in angiogenesis. Journal of Leukocyte Biology, 68(1), 1–.PubMedGoogle Scholar
  10. 10.
    Luster, A. D. (1998). Chemokines’chemotactic cytokines that mediate inflammation. New England Journal of Medicine, 338(7), 436–45.PubMedGoogle Scholar
  11. 11.
    Strieter, R. M., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., & Polverini, P. J. (1995). Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochemical and Biophysical Research Communications, 210(1), 51–7.PubMedGoogle Scholar
  12. 12.
    Maione, T. E., Gray, G. S., Petro, J., Hunt, A. J., Donner, A. L., & Bauer, S. I., et al. (1990). Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science, 247(4938), 77–9.PubMedGoogle Scholar
  13. 13.
    Nagpal, M. L., Chen, Y., & Lin, T. (2004). Effects of overexpression of CXCL10 (cytokine-responsive gene-2) on MA-10 mouse Leydig tumor cell steroidogenesis and proliferation. Journal of Endocrinology, 183(3), 585–94.PubMedGoogle Scholar
  14. 14.
    Nagasawa, T., Nakajima, T., Tachibana, K., Iizasa, H., Bleul, C. C., & Yoshie, O., et al. (1996). Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14726–4729.PubMedGoogle Scholar
  15. 15.
    Mirshahi, F., Pourtau, J., Li, H., Muraine, M., Trochon, V., & Legrand, E., et al. (2000). SDF-1 activity on microvascular endothelial cells: Consequences on angiogenesis in in vitro and in vivo models. Thrombosis Research, 99(6), 587–94.PubMedGoogle Scholar
  16. 16.
    Orimo, A., Gupta, P. B., Sgroi, D. C., renzana-Seisdedos, F., Delaunay, T., & Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–48.PubMedGoogle Scholar
  17. 17.
    Salcedo, R., Wasserman, K., Young, H. A., Grimm, M. C., Howard, O. M., & Anver, M. R., et al. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. American Journal of Pathology, 154(4), 1125–135.PubMedGoogle Scholar
  18. 18.
    Tachibana, K., Hirota, S., Iizasa, H., Yoshida, H., Kawabata, K., & Kataoka, Y., et al. (1998). The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature, 393(6685), 591–94.PubMedGoogle Scholar
  19. 19.
    Baggiolini, M., Dewald, B., & Moser, B. (1994). Interleukin-8 and related chemotactic cytokines’CXC and CC chemokines. Advances in Immunology, 55, 97–79.PubMedGoogle Scholar
  20. 20.
    Bischoff, S. C., Krieger, M., Brunner, T., Rot, A., von, T. V., & Baggiolini, M., et al. (1993). RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. European Journal of Immunology, 23(3), 761–67.PubMedGoogle Scholar
  21. 21.
    Dahinden, C. A., Geiser, T., Brunner, T., von, T. V., Caput, D., & Ferrara, P., et al. (1994). Monocyte chemotactic protein 3 is a most effective basophil- and eosinophil-activating chemokine. Journal of Experimental Medicine, 179(2), 751–56.PubMedGoogle Scholar
  22. 22.
    Garcia-Zepeda, E. A., Rothenberg, M. E., Ownbey, R. T., Celestin, J., Leder, P., & Luster, A. D. (1996). Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nature Medicine, 2(4), 449–56.PubMedGoogle Scholar
  23. 23.
    Imai, T., Yoshida, T., Baba, M., Nishimura, M., Kakizaki, M., & Yoshie, O. (1996). Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. Journal of Biological Chemistry, 271(35), 21514–1521.PubMedGoogle Scholar
  24. 24.
    Jose, P. J., Griffiths-Johnson, D. A., Collins, P. D., Walsh, D. T., Moqbel, R., & Totty, N. F., et al. (1994). Eotaxin: A potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. Journal of Experimental Medicine, 179(3), 881–87.PubMedGoogle Scholar
  25. 25.
    Kameyoshi, Y., Dorschner, A., Mallet, A. I., Christophers, E., & Schroder, J. M. (1992). Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. Journal of Experimental Medicine, 176(2), 587–92.PubMedGoogle Scholar
  26. 26.
    Ponath, P. D., Qin, S., Ringler, D. J., Clark-Lewis, I., Wang, J., & Kassam, N., et al. (1996). Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. Journal of Clinical Investigation, 97(3), 604–12.PubMedGoogle Scholar
  27. 27.
    Rot, A., Krieger, M., Brunner, T., Bischoff, S. C., Schall, T. J., & Dahinden, C. A. (1992). RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. Journal of Experimental Medicine, 176(6), 1489–495.PubMedGoogle Scholar
  28. 28.
    Kelner, G. S., Kennedy, J., Bacon, K. B., Kleyensteuber, S., Largaespada, D. A., & Jenkins, N. A., et al. (1994). Lymphotactin: A cytokine that represents a new class of chemokine. Science, 266(5189), 1395–399.PubMedGoogle Scholar
  29. 29.
    Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., & Rossi, D., et al. (1997). A new class of membrane-bound chemokine with a CX3C motif. Nature, 385(6617), 640–44.PubMedGoogle Scholar
  30. 30.
    Segerer, S., Hughes, E., Hudkins, K. L., Mack, M., Goodpaster, T., & Alpers, C. E. (2002). Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. Kidney International, 62(2), 488–95.PubMedGoogle Scholar
  31. 31.
    Umehara, H., & Imai, T. (2001). Role of fractalkine in leukocyte adhesion and migration and in vascular injury. Drug News & Perspectives, 14(8), 460–64.Google Scholar
  32. 32.
    Pan, Y., Lloyd, C., Zhou, H., Dolich, S., Deeds, J., & Gonzalo, J. A., et al. (1997). Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature, 387(6633), 611–17.PubMedGoogle Scholar
  33. 33.
    Thelen, M. (2001). Dancing to the tune of chemokines. Nature Immunology, 2(2), 129–34.PubMedGoogle Scholar
  34. 34.
    Lee, J., Horuk, R., Rice, G. C., Bennett, G. L., Camerato, T., & Wood, W. I. (1992). Characterization of two high affinity human interleukin-8 receptors. Journal of Biological Chemistry, 267(23), 16283–6287.PubMedGoogle Scholar
  35. 35.
    Wuyts, A., Proost, P., Lenaerts, J. P., Ben-Baruch, A., Van, D. J., & Wang, J. M. (1998). Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. European Journal of Biochemistry, 255(1), 67–3.PubMedGoogle Scholar
  36. 36.
    Baggiolini, M., & Loetscher, P. (2000). Chemokines in inflammation and immunity. Immunology Today, 21(9), 418–20.PubMedGoogle Scholar
  37. 37.
    Locati, M., & Murphy, P. M. (1999). Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS. Annual Review of Medicine, 50, 425–40.PubMedGoogle Scholar
  38. 38.
    Cole, K. E., Strick, C. A., Paradis, T. J., Ogborne, K. T., Loetscher, M., & Gladue, R. P., et al. (1998). Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. Journal of Experimental Medicine, 187(12), 2009–021.PubMedGoogle Scholar
  39. 39.
    Farber, J. M. (1997). Mig and IP-10: CXC chemokines that target lymphocytes. Journal of Leukocyte Biology, 61(3), 246–57.PubMedGoogle Scholar
  40. 40.
    Loetscher, M., Loetscher, P., Brass, N., Meese, E., & Moser, B. (1998). Lymphocyte-specific chemokine receptor CXCR3: Regulation, chemokine binding and gene localization. European Journal of Immunology, 28(11), 3696–05.PubMedGoogle Scholar
  41. 41.
    Feng, Y., Broder, C. C., Kennedy, P. E., & Berger, E. A. (1996). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 272(5263), 872–77.PubMedGoogle Scholar
  42. 42.
    Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J. L., & renzana-Seisdedos, F., et al. (1996). The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 382(6594), 833–35.PubMedGoogle Scholar
  43. 43.
    Legler, D. F., Loetscher, M., Roos, R. S., Clark-Lewis, I., Baggiolini, M., & Moser, B. (1998). B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. Journal of Experimental Medicine, 187(4), 655–60.PubMedGoogle Scholar
  44. 44.
    Deng, H. K., Unutmaz, D., KewalRamani, V. N., & Littman, D. R. (1997). Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature, 388(6639), 296–00.PubMedGoogle Scholar
  45. 45.
    Matloubian, M., David, A., Engel, S., Ryan, J. E., & Cyster, J. G. (2000). A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nature Immunology, 1(4), 298–04.PubMedGoogle Scholar
  46. 46.
    Berkhout, T. A., Gohil, J., Gonzalez, P., Nicols, C. L., Moores, K. E., & Macphee, C. H., et al. (2000). Selective binding of the truncated form of the chemokine CKbeta8 (25–9) to CC chemokine receptor 1(CCR1). Biochemical Pharmacology, 59(5), 591–96.PubMedGoogle Scholar
  47. 47.
    Gong, J. H., Uguccioni, M., Dewald, B., Baggiolini, M., & Clark-Lewis, I. (1996). RANTES and MCP-3 antagonists bind multiple chemokine receptors. Journal of Biological Chemistry, 271(18), 10521–0527.PubMedGoogle Scholar
  48. 48.
    Hwang, J., Son, K. N., Kim, C. W., Ko, J., Na, D. S., & Kwon, B. S., et al. (2005). Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine, 30(5), 254–63.PubMedGoogle Scholar
  49. 49.
    Neote, K., Darbonne, W., Ogez, J., Horuk, R., & Schall, T. J. (1993). Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. Journal of Biological Chemistry, 268(17), 12247–2249.PubMedGoogle Scholar
  50. 50.
    Tsou, C. L., Gladue, R. P., Carroll, L. A., Paradis, T., Boyd, J. G., & Nelson, R. T., et al. (1998). Identification of C-C chemokine receptor 1 (CCR1) as the monocyte hemofiltrate C-C chemokine (HCC)-1 receptor. Journal of Experimental Medicine, 188(3), 603–08.PubMedGoogle Scholar
  51. 51.
    Charo, I. F., Myers, S. J., Herman, A., Franci, C., Connolly, A. J., & Coughlin, S. R. (1994). Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proceedings of the National Academy of Sciences of the United States of America, 91(7), 2752–756.PubMedGoogle Scholar
  52. 52.
    Moore, U. M., Kaplow, J. M., Pleass, R. D., Castro, S. W., Naik, K., & Lynch, C. N., et al. (1997). Monocyte chemoattractant protein-2 is a potent agonist of CCR2B. Journal of Leukocyte Biology, 62(6), 911–15.PubMedGoogle Scholar
  53. 53.
    Stellato, C., Collins, P., Ponath, P. D., Soler, D., Newman, W., & La, R. G., et al. (1997). Production of the novel C-C chemokine MCP-4 by airway cells and comparison of its biological activity to other C-C chemokines. Journal of Clinical Investigation, 99(5), 926–36.PubMedGoogle Scholar
  54. 54.
    Forssmann, U., Uguccioni, M., Loetscher, P., Dahinden, C. A., Langen, H., & Thelen, M., et al. (1997). Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. Journal of Experimental Medicine, 185(12), 2171–176.PubMedGoogle Scholar
  55. 55.
    Forssmann, U., Hartung, I., Balder, R., Fuchs, B., Escher, S. E., & Spodsberg, N., et al. (2004). n-Nonanoyl-CC chemokine ligand 14, a potent CC chemokine ligand 14 analogue that prevents the recruitment of eosinophils in allergic airway inflammation. Journal of Immunology, 173(5), 3456–466.Google Scholar
  56. 56.
    Uguccioni, M., Mackay, C. R., Ochensberger, B., Loetscher, P., Rhis, S., & LaRosa, G. J., et al. (1997). High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. Journal of Clinical Investigation, 100(5), 1137–143.PubMedGoogle Scholar
  57. 57.
    Youn, B. S., Zhang, S. M., Lee, E. K., Park, D. H., Broxmeyer, H. E., & Murphy, P. M., et al. (1997). Molecular cloning of leukotactin-1: a novel human beta-chemokine, a chemoattractant for neutrophils, monocytes, and lymphocytes, and a potent agonist at CC chemokine receptors 1 and 3. Journal of Immunology, 159(11), 5201–205.Google Scholar
  58. 58.
    Imai, T., Baba, M., Nishimura, M., Kakizaki, M., Takagi, S., & Yoshie, O. (1997). The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. Journal of Biological Chemistry, 272(23), 15036–5042.PubMedGoogle Scholar
  59. 59.
    Imai, T., Chantry, D., Raport, C. J., Wood, C. L., Nishimura, M., & Godiska, R., et al. (1998). Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. Journal of Biological Chemistry, 273(3), 1764–768.PubMedGoogle Scholar
  60. 60.
    Littman, D. R. (1998). Chemokine receptors: Keys to AIDS pathogenesis. Cell, 93(5), 677–80.PubMedGoogle Scholar
  61. 61.
    Blanpain, C., Migeotte, I., Lee, B., Vakili, J., Doranz, B. J., & Govaerts, C., et al. (1999). CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood, 94(6), 1899–905.PubMedGoogle Scholar
  62. 62.
    Baba, M., Imai, T., Nishimura, M., Kakizaki, M., Takagi, S., & Hieshima, K., et al. (1997). Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. Journal of Biological Chemistry, 272(23), 14893–4898.PubMedGoogle Scholar
  63. 63.
    Yoshida, R., Imai, T., Hieshima, K., Kusuda, J., Baba, M., & Kitaura, M., et al. (1997). Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. Journal of Biological Chemistry, 272(21), 13803–3809.PubMedGoogle Scholar
  64. 64.
    Tiffany, H. L., Lautens, L. L., Gao, J. L., Pease, J., Locati, M., & Combadiere, C., et al. (1997). Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine I-309. Journal of Experimental Medicine, 186(1), 165–70.PubMedGoogle Scholar
  65. 65.
    Zaballos, A., Gutierrez, J., Varona, R., Ardavin, C., & Marquez, G. (1999). Cutting edge: Identification of the orphan chemokine receptor GPR-9-6 as CCR9, the receptor for the chemokine TECK. Journal of Immunology, 162(10), 5671–675.Google Scholar
  66. 66.
    Bonini, J. A., & Steiner, D. F. (1997). Molecular cloning and expression of a novel rat CC-chemokine receptor (rCCR10rR) that binds MCP-1 and MIP-1beta with high affinity. DNA and Cell Biology, 16(9), 1023–030.PubMedGoogle Scholar
  67. 67.
    Wang, W., Soto, H., Oldham, E. R., Buchanan, M. E., Homey, B., & Catron, D., et al. (2000). Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). Journal of Biological Chemistry, 275(29), 22313–2323.PubMedGoogle Scholar
  68. 68.
    Mantovani, A. (1999). The chemokine system: redundancy for robust outputs. Immunology Today, 20(6), 254–57.PubMedGoogle Scholar
  69. 69.
    Folkman, J., & Cotran, R. (1976). Relation of vascular proliferation to tumor growth. International Review of Experimental Pathology, 16, 207–48.PubMedGoogle Scholar
  70. 70.
    Folkman, J. (1985). Tumor angiogenesis. Advances in Cancer Research, 43, 175–03.PubMedGoogle Scholar
  71. 71.
    Folkman, J., & Klagsbrun, M. (1987). Vascular physiology. A family of angiogenic peptides. Nature, 329(6141), 671–72.PubMedGoogle Scholar
  72. 72.
    Leibovich, S. J., & Wiseman, D. M. (1988). Macrophages, wound repair and angiogenesis. Progress in Clinical and Biological Research, 266, 131–45.PubMedGoogle Scholar
  73. 73.
    Strieter, R. M., Belperio, J. A., Phillips, R. J., & Keane, M. P. (2004). CXC chemokines in angiogenesis of cancer. Seminars in Cancer Biology, 14(3), 195–00.PubMedGoogle Scholar
  74. 74.
    Hu, D. E., Hori, Y., & Fan, T. P. (1993). Interleukin-8 stimulates angiogenesis in rats. Inflammation, 17(2), 135–43.PubMedGoogle Scholar
  75. 75.
    Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., & Elner, V. M., et al. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 258(5089), 1798–801.PubMedGoogle Scholar
  76. 76.
    Norrby, K. (1996). Interleukin-8 and de novo mammalian angiogenesis. Cell Proliferation, 29(6), 315–23.PubMedGoogle Scholar
  77. 77.
    Strieter, R. M., Kunkel, S. L., Elner, V. M., Martonyi, C. L., Koch, A. E., & Polverini, P. J., et al. (1992). Interleukin-8. A corneal factor that induces neovascularization. American Journal of Pathology, 141(6), 1279–284.PubMedGoogle Scholar
  78. 78.
    Yoshida, S., Ono, M., Shono, T., Izumi, H., Ishibashi, T., & Suzuki, H., et al. (1997). Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Molecular and Cellular Biology, 17(7), 4015–023.PubMedGoogle Scholar
  79. 79.
    Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology, 170(6), 3369–376.Google Scholar
  80. 80.
    Shono, T., Ono, M., Izumi, H., Jimi, S. I., Matsushima, K., & Okamoto, T., et al. (1996). Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Molecular and Cellular Biology, 16(8), 4231–239.PubMedGoogle Scholar
  81. 81.
    Li, A., Varney, M. L., Valasek, J., Godfrey, M., Dave, B. J., & Singh, R. K. (2005). Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis, 8(1), 63–1.PubMedGoogle Scholar
  82. 82.
    Inoue, K., Slaton, J. W., Eve, B. Y., Kim, S. J., Perrotte, P., & Balbay, M. D., et al. (2000). Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clinical Cancer Research, 6(5), 2104–119.PubMedGoogle Scholar
  83. 83.
    Luca, M., Huang, S., Gershenwald, J. E., Singh, R. K., Reich, R., & Bar-Eli, M. (1997). Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. American Journal of Pathology, 151(4), 1105–113.PubMedGoogle Scholar
  84. 84.
    McCawley, L. J., & Matrisian, L. M. (2000). Matrix metalloproteinases: multifunctional contributors to tumor progression. Molecular Medicine Today, 6(4), 149–56.PubMedGoogle Scholar
  85. 85.
    Xie, K. (2001). Interleukin-8 and human cancer biology. Cytokine and Growth Factor Reviews, 12(4), 375–91.PubMedGoogle Scholar
  86. 86.
    Yoneda, J., Kuniyasu, H., Crispens, M. A., Price, J. E., Bucana, C. D., & Fidler, I. J. (1998). Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. Journal of the National Cancer Institute, 90(6), 447–54.PubMedGoogle Scholar
  87. 87.
    Benoy, I. H., Salgado, R., Van, D. P., Geboers, K., Van, M. E., & Scharpe, S., et al. (2004). Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clinical Cancer Research, 10(21), 7157–162.PubMedGoogle Scholar
  88. 88.
    Veltri, R. W., Miller, M. C., Zhao, G., Ng, A., Marley, G. M., & Wright Jr., G. L., et al. (1999). Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology, 53(1), 139–47.PubMedGoogle Scholar
  89. 89.
    Aalinkeel, R., Nair, M. P., Sufrin, G., Mahajan, S. D., Chadha, K. C., & Chawda, R. P., et al. (2004). Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Research, 64(15), 5311–321.PubMedGoogle Scholar
  90. 90.
    Lehrer, S., Diamond, E. J., Mamkine, B., Stone, N. N., & Stock, R. G. (2004). Serum interleukin-8 is elevated in men with prostate cancer and bone metastases. Technology in Cancer Research and Treatment, 3(5), 411.PubMedGoogle Scholar
  91. 91.
    Uehara, H., Troncoso, P., Johnston, D., Bucana, C. D., Dinney, C., & Dong, Z., et al. (2005). Expression of interleukin-8 gene in radical prostatectomy specimens is associated with advanced pathologic stage. Prostate, 64(1), 40–9.PubMedGoogle Scholar
  92. 92.
    Murdoch, C., Monk, P. N., & Finn, A. (1999). Cxc chemokine receptor expression on human endothelial cells. Cytokine, 11(9), 704–12.PubMedGoogle Scholar
  93. 93.
    Salcedo, R., Resau, J. H., Halverson, D., Hudson, E. A., Dambach, M., & Powell, D., et al. (2000). Differential expression and responsiveness of chemokine receptors (CXCR1–) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB Journal 2000, 14(13), 2055–064.Google Scholar
  94. 94.
    Addison, C. L., Daniel, T. O., Burdick, M. D., Liu, H., Ehlert, J. E., & Xue, Y. Y., et al. (2000). The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR + CXC chemokine-induced angiogenic activity. Journal of Immunology, 165(9), 5269–277.Google Scholar
  95. 95.
    Keane, M. P., Belperio, J. A., Xue, Y. Y., Burdick, M. D., & Strieter, R. M. (2004). Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. Journal of Immunology, 172(5), 2853–860.Google Scholar
  96. 96.
    Mestas, J., Burdick, M. D., Reckamp, K., Pantuck, A., Figlin, R. A., & Strieter, R. M. (2005). The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. Journal of Immunology, 175(8), 5351–357.Google Scholar
  97. 97.
    Numasaki, M., Watanabe, M., Suzuki, T., Takahashi, H., Nakamura, A., & McAllister, F., et al. (2005). IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology, 175(9), 6177–189.Google Scholar
  98. 98.
    Arenberg, D. A., Keane, M. P., DiGiovine, B., Kunkel, S. L., Morris, S. B., & Xue, Y. Y., et al. (1998). Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. Journal of Clinical Investigation, 102(3), 465–72.PubMedGoogle Scholar
  99. 99.
    Kanda, S., Mochizuki, Y., & Kanetake, H. (2003). Stromal cell-derived factor-1alpha induces tube-like structure formation of endothelial cells through phosphoinositide 3-kinase. Journal of Biological Chemistry, 278(1), 257–62.PubMedGoogle Scholar
  100. 100.
    Neuhaus, T., Stier, S., Totzke, G., Gruenewald, E., Fronhoffs, S., & Sachinidis, A., et al. (2003). Stromal cell-derived factor 1alpha (SDF-1alpha) induces gene-expression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Proliferation, 36(2), 75–6.PubMedGoogle Scholar
  101. 101.
    Salcedo, R., & Oppenheim, J. J. (2003). Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation, 10(3–), 359–70.PubMedGoogle Scholar
  102. 102.
    Guleng, B., Tateishi, K., Ohta, M., Kanai, F., Jazag, A., & Ijichi, H., et al. (2005). Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Research, 65(13), 5864–871.PubMedGoogle Scholar
  103. 103.
    Barbero, S., Bonavia, R., Bajetto, A., Porcile, C., Pirani, P., & Ravetti, J. L., et al. (2003). Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Research, 63(8), 1969–974.PubMedGoogle Scholar
  104. 104.
    Phillips, R. J., Burdick, M. D., Lutz, M., Belperio, J. A., Keane, M. P., & Strieter, R. M. (2003). The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. American Journal of Respiratory and Critical Care Medicine, 167(12), 1676–686.PubMedGoogle Scholar
  105. 105.
    Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Morris, S. B., Burdick, M. D., & Glass, M. C., et al. (1996). Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. Journal of Experimental Medicine, 184(3), 981–92.PubMedGoogle Scholar
  106. 106.
    Sgadari, C., Angiolillo, A. L., Cherney, B. W., Pike, S. E., Farber, J. M., & Koniaris, L. G., et al. (1996). Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13791–3796.PubMedGoogle Scholar
  107. 107.
    Sgadari, C., Farber, J. M., Angiolillo, A. L., Liao, F., Teruya-Feldstein, J., & Burd, P. R., et al. (1997). Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood, 89(8), 2635–643.PubMedGoogle Scholar
  108. 108.
    Dorsey, R., Kundu, N., Yang, Q., Tannenbaum, C. S., Sun, H., & Hamilton, T. A., et al. (2002). Immunotherapy with interleukin-10 depends on the CXC chemokines inducible protein-10 and monokine induced by IFN-gamma. Cancer Research, 62(9), 2606–610.PubMedGoogle Scholar
  109. 109.
    Ruehlmann, J. M., Xiang, R., Niethammer, A. G., Ba, Y., Pertl, U., & Dolman, C. S., et al. (2001). MIG (CXCL9) chemokine gene therapy combines with antibody-cytokine fusion protein to suppress growth and dissemination of murine colon carcinoma. Cancer Research, 61(23), 8498–503.PubMedGoogle Scholar
  110. 110.
    Kondo, T., Ito, F., Nakazawa, H., Horita, S., Osaka, Y., & Toma, H. (2004). High expression of chemokine gene as a favorable prognostic factor in renal cell carcinoma. Journal of Urology, 171(6 Pt 1), 2171–175.PubMedGoogle Scholar
  111. 111.
    Romagnani, P., Annunziato, F., Lasagni, L., Lazzeri, E., Beltrame, C., & Francalanci, M., et al. (2001). Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. Journal of Clinical Investigation, 107(1), 53–3.PubMedGoogle Scholar
  112. 112.
    Nagpal, M. L., Davis, J., & Lin, T. (2006). Overexpression of CXCL10 in human prostate LNCaP cells activates its receptor (CXCR3) expression and inhibits cell proliferation. Biochimica et Biophysica Acta, 1762(9), 811–18.PubMedGoogle Scholar
  113. 113.
    Salcedo, R., Ponce, M. L., Young, H. A., Wasserman, K., Ward, J. M., & Kleinman, H. K., et al. (2000). Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood, 96(1), 34–0.PubMedGoogle Scholar
  114. 114.
    Hong, K. H., Ryu, J., & Han, K. H. (2005). Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood, 105(4), 1405–407.PubMedGoogle Scholar
  115. 115.
    Goede, V., Brogelli, L., Ziche, M., & Augustin, H. G. (1999). Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. International Journal of Cancer, 82(5), 765–70.Google Scholar
  116. 116.
    Leung, S. Y., Wong, M. P., Chung, L. P., Chan, A. S., & Yuen, S. T. (1997). Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathologica (Berlin), 93(5), 518–27.Google Scholar
  117. 117.
    Blaschke, S., Koziolek, M., Schwarz, A., Benohr, P., Middel, P., & Schwarz, G., et al. (2003). Proinflammatory role of fractalkine (CX3CL1) in rheumatoid arthritis. Journal of Rheumatology, 30(9), 1918–927.PubMedGoogle Scholar
  118. 118.
    Nanki, T., Urasaki, Y., Imai, T., Nishimura, M., Muramoto, K., & Kubota, T., et al. (2004). Inhibition of fractalkine ameliorates murine collagen-induced arthritis. Journal of Immunology, 173(11), 7010–016.Google Scholar
  119. 119.
    Volin, M. V., Woods, J. M., Amin, M. A., Connors, M. A., Harlow, L. A., & Koch, A. E. (2001). Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. American journal of Pathology, 159(4), 1521–530.PubMedGoogle Scholar
  120. 120.
    Combadiere, C., Potteaux, S., Gao, J. L., Esposito, B., Casanova, S., & Lee, E. J., et al. (2003). Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation, 107(7), 1009–016.PubMedGoogle Scholar
  121. 121.
    Eriksson, E. E. (2004). Mechanisms of leukocyte recruitment to atherosclerotic lesions: Future prospects. Current Opinion in Lipidology, 15(5), 553–58.PubMedGoogle Scholar
  122. 122.
    Umehara, H., Goda, S., Imai, T., Nagano, Y., Minami, Y., & Tanaka, Y., et al. (2001). Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunology and Cell Biology, 79(3), 298–02.PubMedGoogle Scholar
  123. 123.
    Lee, S. J., Namkoong, S., Kim, Y. M., Kim, C. K., Lee, H., & Ha, K. S., et al. (2006). Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways. American Journal of Physiology, Heart and Circulatory Physiology, 291(6), H2836’H2846.Google Scholar
  124. 124.
    Singh, R. K., & Fidler, I. J. (1996). Regulation of tumor angiogenesis by organ-specific cytokines. In U. Gunthert, & W. Birchmeier (Eds.) Attempts to understand metastasis formation II (pp. 1–1). New York: Springer.Google Scholar
  125. 125.
    Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine, 1(1), 27–1.PubMedGoogle Scholar
  126. 126.
    Keane, M. P., Arenberg, D. A., Lynch III, J. P., Whyte, R. I., Iannettoni, M. D., & Burdick, M. D., et al. (1997). The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. Journal of Immunology, 159(3), 1437–443.Google Scholar
  127. 127.
    Arenberg, D. A., Polverini, P. J., Kunkel, S. L., Shanafelt, A., Hesselgesser, J., & Horuk, R., et al. (1997). The role of CXC chemokines in the regulation of angiogenesis in non- small cell lung cancer. Journal of Leukocyte Biology, 62(5), 554–62.PubMedGoogle Scholar
  128. 128.
    Fidler, I. J. (1995). Cancer biology: Invasion and metastasis. New York: Churchill Livingstone.Google Scholar
  129. 129.
    Fidler, I. J., & Ellis, L. M. (1994). The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell, 79, 185–88.PubMedGoogle Scholar
  130. 130.
    Nicolson, G. L. (1991). Tumor and host molecules important in the organ preference of metastasis. Seminars in Cancer Biology, 2(3), 143–54.PubMedGoogle Scholar
  131. 131.
    Fidler, I. J., Singh, R. K., Yoneda, J., Kumar, R., Xu, L., & Dong, Z., et al. (2000). Critical determinants of neoplastic angiogenesis. Cancer Journal from Scientific American, 6(Suppl 3), S225’S236.Google Scholar
  132. 132.
    Balkwill, F. (2003). Chemokine biology in cancer. Seminars in Immunology, 15(1), 49–5.PubMedGoogle Scholar
  133. 133.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., & Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–6.PubMedGoogle Scholar
  134. 134.
    Murphy, P. M. (2001). Chemokines and the molecular basis of cancer metastasis. New England Journal of Medicine, 345(11), 833–35.PubMedGoogle Scholar
  135. 135.
    Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation, 70(9–0), 498–05.PubMedGoogle Scholar
  136. 136.
    Nakamura, E. S., Koizumi, K., Kobayashi, M., Saitoh, Y., Arita, Y., & Nakayama, T., et al. (2006). RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clinical and Experimental Metastasis, 23(1), 9–8.PubMedGoogle Scholar
  137. 137.
    Balkwill, F. (2004). Cancer and the chemokine network. Nature Reviews Cancer, 4(7), 540–50.PubMedGoogle Scholar
  138. 138.
    Cabioglu, N., Yazici, M. S., Arun, B., Broglio, K. R., Hortobagyi, G. N., & Price, J. E., et al. (2005). CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clinical Cancer Research, 11(16), 5686–693.PubMedGoogle Scholar
  139. 139.
    Hao, L., Zhang, C., Qiu, Y., Wang, L., Luo, Y., & Jin, M., et al. (2007). Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Letters, 253, 34–2.Google Scholar
  140. 140.
    Smith, M. C., Luker, K. E., Garbow, J. R., Prior, J. L., Jackson, E., & Piwnica-Worms, D., et al. (2004). CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Research, 64(23), 8604–612.PubMedGoogle Scholar
  141. 141.
    Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., & Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–2.PubMedGoogle Scholar
  142. 142.
    Saur, D., Seidler, B., Schneider, G., Algul, H., Beck, R., & Senekowitsch-Schmidtke, R., et al. (2005). CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology, 129(4), 1237–250.PubMedGoogle Scholar
  143. 143.
    Wehler, T., Wolfert, F., Schimanski, C. C., Gockel, I., Herr, W., & Biesterfeld, S., et al. (2006). Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncology Reports, 16(6), 1159–164.PubMedGoogle Scholar
  144. 144.
    Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., & Fricker, S., et al. (2002). Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62(20), 5930–938.PubMedGoogle Scholar
  145. 145.
    Burger, M., Glodek, A., Hartmann, T., Schmitt-Graff, A., Silberstein, L. E., & Fujii, N., et al. (2003). Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 22(50), 8093–101.PubMedGoogle Scholar
  146. 146.
    Pan, J., Mestas, J., Burdick, M. D., Phillips, R. J., Thomas, G. V., & Reckamp, K., et al. (2006). Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Molecular Cancer, 5, 56.PubMedGoogle Scholar
  147. 147.
    Kaifi, J. T., Yekebas, E. F., Schurr, P., Obonyo, D., Wachowiak, R., & Busch, P., et al. (2005). Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. Journal of the National Cancer Institute, 97(24), 1840–847.PubMedCrossRefGoogle Scholar
  148. 148.
    Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., & Giuliano, P., et al. (2005). Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11(5), 1835–841.PubMedGoogle Scholar
  149. 149.
    Arya, M., Patel, H. R., McGurk, C., Tatoud, R., Klocker, H., & Masters, J., et al. (2004). The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. Journal of Experimental Therapeutics and Oncology, 4(4), 291–03.PubMedGoogle Scholar
  150. 150.
    Schimanski, C. C., Schwald, S., Simiantonaki, N., Jayasinghe, C., Gonner, U., & Wilsberg, V., et al. (2005). Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clinical Cancer Research, 11(5), 1743–750.PubMedGoogle Scholar
  151. 151.
    Su, L., Zhang, J., Xu, H., Wang, Y., Chu, Y., & Liu, R., et al. (2005). Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clinical Cancer Research, 11(23), 8273–280.PubMedGoogle Scholar
  152. 152.
    Hu, J., Deng, X., Bian, X., Li, G., Tong, Y., & Li, Y., et al. (2005). The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clinical Cancer Research, 11(13), 4658–665.PubMedGoogle Scholar
  153. 153.
    Laverdiere, C., Hoang, B. H., Yang, R., Sowers, R., Qin, J., & Meyers, P. A., et al. (2005). Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clinical Cancer Research, 11(7), 2561–567.PubMedGoogle Scholar
  154. 154.
    Kim, J., Takeuchi, H., Lam, S. T., Turner, R. R., Wang, H. J., & Kuo, C., et al. (2005). Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. Journal of Clinical Oncology, 23(12), 2744–753.PubMedGoogle Scholar
  155. 155.
    Airoldi, I., Raffaghello, L., Piovan, E., Cocco, C., Carlini, B., & Amadori, A., et al. (2006). CXCL12 does not attract CXCR4 + human metastatic neuroblastoma cells: clinical implications. Clinical Cancer Research, 12(1), 77–2.PubMedGoogle Scholar
  156. 156.
    Weigelt, B., Wessels, L. F., Bosma, A. J., Glas, A. M., Nuyten, D. S., & He, Y. D., et al. (2005). No common denominator for breast cancer lymph node metastasis. British Journal of Cancer, 93(8), 924–32.PubMedGoogle Scholar
  157. 157.
    Ivarsson, K., Ekerydh, A., Fyhr, I. M., Janson, P. O., & Brannstrom, M. (2000). Upregulation of interleukin-8 and polarized epithelial expression of interleukin-8 receptor A in ovarian carcinomas. Acta Obstetricia et Gynecologica Scandinavica, 79(9), 777–84.PubMedGoogle Scholar
  158. 158.
    Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Glass, M., Burdick, M. D., & Strieter, R. M. (1996). Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. Journal of Clinical Investigation, 97(12), 2792–802.PubMedGoogle Scholar
  159. 159.
    Varney, M. L., Johansson, S. L., & Singh, R. K. (2006). Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. American Journal of Clinical Pathology, 125(2), 209–16.PubMedGoogle Scholar
  160. 160.
    Grimm, M. C., Elsbury, S. K., Pavli, P., & Doe, W. F. (1996). Interleukin 8: cells of origin in inflammatory bowel disease. Gut, 38(1), 90–8.PubMedGoogle Scholar
  161. 161.
    Nurnberg, W., Tobias, D., Otto, F., Henz, B. M., & Schadendorf, D. (1999). Expression of interleukin-8 detected by in situ hybridization correlates with worse prognosis in primary cutaneous melanoma. Journal of Pathology, 189(4), 546–51.PubMedGoogle Scholar
  162. 162.
    Scheibenbogen, C., Mohler, T., Haefele, J., Hunstein, W., & Keilholz, U. (1995). Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Research, 5(3), 179–81.PubMedGoogle Scholar
  163. 163.
    Singh, R. K., Gutman, M., Radinsky, R., Bucana, C. D., & Fidler, I. J. (1994). Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Research, 54(12), 3242–247.PubMedGoogle Scholar
  164. 164.
    Ugurel, S., Rappl, G., Tilgen, W., & Reinhold, U. (2001). Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. Journal of Clinical Oncology, 19(2), 577–83.PubMedGoogle Scholar
  165. 165.
    Ding, Y., Shimada, Y., Maeda, M., Kawabe, A., Kaganoi, J., & Komoto, I., et al. (2003). Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clinical Cancer Research, 9(9), 3406–412.PubMedGoogle Scholar
  166. 166.
    Gunther, K., Leier, J., Henning, G., Dimmler, A., Weissbach, R., & Hohenberger, W., et al. (2005). Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. International Journal of Cancer, 116(5), 726–33.Google Scholar
  167. 167.
    Mashino, K., Sadanaga, N., Yamaguchi, H., Tanaka, F., Ohta, M., & Shibuta, K., et al. (2002). Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Research, 62(10), 2937–941.PubMedGoogle Scholar
  168. 168.
    Takanami, I. (2003). Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. International Journal of Cancer, 105(2), 186–89.Google Scholar
  169. 169.
    Wang, J., Xi, L., Gooding, W., Godfrey, T. E., & Ferris, R. L. (2005). Chemokine receptors 6 and 7 identify a metastatic expression pattern in squamous cell carcinoma of the head and neck. Advances in Oto-rhino-laryngology, 62, 121–3.PubMedGoogle Scholar
  170. 170.
    Takeuchi, H., Fujimoto, A., Tanaka, M., Yamano, T., Hsueh, E., & Hoon, D. S. (2004). CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clinical Cancer Research, 10(7), 2351–358.PubMedGoogle Scholar
  171. 171.
    Wiley, H. E., Gonzalez, E. B., Maki, W., Wu, M. T., & Hwang, S. T. (2001). Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. Journal of the National Cancer Institute, 93(21), 1638–643.PubMedGoogle Scholar
  172. 172.
    Sancho, M., Vieira, J. M., Casalou, C., Mesquita, M., Pereira, T., & Cavaco, B. M., et al. (2006). Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. Journal of Endocrinology, 191(1), 229–38.PubMedGoogle Scholar
  173. 173.
    Tsuzuki, H., Takahashi, N., Kojima, A., Narita, N., Sunaga, H., & Takabayashi, T., et al. (2006). Oral and oropharyngeal squamous cell carcinomas expressing CCR7 have poor prognoses. Auris Nasus Larynx, 33(1), 37–2.PubMedGoogle Scholar
  174. 174.
    Craig, M. J., & Loberg, R. D. (2006). CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer and Metastasis Reviews, 25(4), 611–119.PubMedGoogle Scholar
  175. 175.
    Lu, Y., Cai, Z., Galson, D. L., Xiao, G., Liu, Y., & George, D. E., et al. (2006). Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate, 66(12), 1311–318.PubMedGoogle Scholar
  176. 176.
    Johrer, K., Zelle-Rieser, C., Perathoner, A., Moser, P., Hager, M., & Ramoner, R., et al. (2005). Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma. Clinical Cancer Research, 11(7), 2459–465.PubMedGoogle Scholar
  177. 177.
    Harasawa, H., Yamada, Y., Hieshima, K., Jin, Z., Nakayama, T., & Yoshie, O., et al. (2006). Survey of chemokine receptor expression reveals frequent co-expression of skin-homing CCR4 and CCR10 in adult T-cell leukemia/lymphoma. Leukaemia and Lymphoma, 47(10), 2163–173.Google Scholar
  178. 178.
    Vaday, G. G., Peehl, D. M., Kadam, P. A., & Lawrence, D. M. (2006). Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate, 66(2), 124–34.PubMedGoogle Scholar
  179. 179.
    Ghadjar, P., Coupland, S. E., Na, I. K., Noutsias, M., Letsch, A., & Stroux, A., et al. (2006). Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. Journal of Clinical Oncology, 24(12), 1910–916.PubMedGoogle Scholar
  180. 180.
    Letsch, A., Keilholz, U., Schadendorf, D., Assfalg, G., Asemissen, A. M., & Thiel, E., et al. (2004). Functional CCR9 expression is associated with small intestinal metastasis. Journal of Investigative Dermatology, 122(3), 685–90.PubMedGoogle Scholar
  181. 181.
    Singh, S., Singh, U. P., Stiles, J. K., Grizzle, W. E., & Lillard Jr. , J. W. (2004). Expression and functional role of CCR9 in prostate cancer cell migration and invasion. Clinical Cancer Research, 10(24), 8743–750.PubMedGoogle Scholar
  182. 182.
    Simonetti, O., Goteri, G., Lucarini, G., Filosa, A., Pieramici, T., & Rubini, C., et al. (2006). Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. European Journal of Cancer, 42(8), 1181–187.PubMedGoogle Scholar
  183. 183.
    Meijer, J., Zeelenberg, I. S., Sipos, B., & Roos, E. (2006). The CXCR5 Chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Research, 66(19), 9576–582.PubMedGoogle Scholar
  184. 184.
    Shulby, S. A., Dolloff, N. G., Stearns, M. E., Meucci, O., & Fatatis, A. (2004). CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Research, 64(14), 4693–698.PubMedGoogle Scholar
  185. 185.
    Kawada, K., Sonoshita, M., Sakashita, H., Takabayashi, A., Yamaoka, Y., & Manabe, T., et al. (2004). Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Research, 64(11), 4010–017.PubMedGoogle Scholar
  186. 186.
    Pellegrino, A., Antonaci, F., Russo, F., Merchionne, F., Ribatti, D., & Vacca, A., et al. (2004). CXCR3-binding chemokines in multiple myeloma. Cancer Letters, 207(2), 221–27.PubMedGoogle Scholar
  187. 187.
    Soejima, K., & Rollins, B. J. (2001). A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. Journal of Immunology, 167(11), 6576–582.Google Scholar
  188. 188.
    Goldberg-Bittman, L., Neumark, E., Sagi-Assif, O., Azenshtein, E., Meshel, T., & Witz, I. P., et al. (2004). The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines. Immunology Letters, 92(1–), 171–78.PubMedGoogle Scholar
  189. 189.
    Longo-Imedio, M. I., Longo, N., Trevino, I., Lazaro, P., & Sanchez-Mateos, P. (2005). Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. International Journal of Cancer, 117(5), 861–65.Google Scholar
  190. 190.
    Suyama, T., Furuya, M., Nishiyama, M., Kasuya, Y., Kimura, S., & Ichikawa, T., et al. (2005). Up-regulation of the interferon gamma (IFN-gamma)-inducible chemokines IFN-inducible T-cell alpha chemoattractant and monokine induced by IFN-gamma and of their receptor CXC receptor 3 in human renal cell carcinoma. Cancer, 103(2), 258–67.PubMedGoogle Scholar
  191. 191.
    Kawada, K., Hosogi, H., Sonoshita, M., Sakashita, H., Manabe, T., & Shimahara, Y., et al. (2007). Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene, 26, 4679–688Google Scholar
  192. 192.
    Dutt, P., Wang, J. F., & Groopman, J. E. (1998). Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. Journal of Immunology, 161(7), 3652–658.Google Scholar
  193. 193.
    Ganju, R. K., Brubaker, S. A., Meyer, J., Dutt, P., Yang, Y., & Qin, S., et al. (1998). The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. Journal of Biological Chemistry, 273(36), 23169–3175.PubMedGoogle Scholar
  194. 194.
    Mellado, M., Rodriguez-Frade, J. M., Aragay, A., del, R. G., Martin, A. M., & Vila-Coro, A. J., et al. (1998). The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. Journal of Immunology, 161(2), 805–13.Google Scholar
  195. 195.
    Takami, M., Terry, V., & Petruzzelli, L. (2002). Signaling pathways involved in IL-8-dependent activation of adhesion through Mac-1. Journal of Immunology, 168(9), 4559–566.Google Scholar
  196. 196.
    Gutkind, J. S. (1998). The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. Journal of Biological Chemistry, 273(4), 1839–842.PubMedGoogle Scholar
  197. 197.
    Gutkind, J. S. (1998). Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene, 17(11 Reviews), 1331–342.PubMedGoogle Scholar
  198. 198.
    Schraufstatter, I. U., Chung, J., & Burger, M. (2001). IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. American Journal of Physiology, Lung Cellular and Molecular Physiology, 280(6), L1094’L1103.Google Scholar
  199. 199.
    Jordan, J. D., Landau, E. M., & Iyengar, R. (2000). Signaling networks: the origins of cellular multitasking. Cell, 103(2), 193–00.PubMedGoogle Scholar
  200. 200.
    Singh, R. K., Gutman, M., Radinsky, R., Bucana, C. D., & Fidler, I. J. (1994). Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Research, 54(12), 3242–247.PubMedGoogle Scholar
  201. 201.
    Schadendorf, D., Moller, A., Algermissen, B., Worm, M., Sticherling, M., & Czarnetzki, B. M. (1993). IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor [published erratum appears in J Immunol 1994 Oct 1;153(7):3360]. Journal of Immunology, 151(5), 2667–675.Google Scholar
  202. 202.
    Varney, M. L., Li, A., Dave, B. J., Johansson, S. L., Bucana C. B., & Singh, R. K. (2003). Expression of CXCR1 and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotypes. Clinical and Experimental Metastasis, 20, 723–31Google Scholar
  203. 203.
    Luca, M., Huang, S., Gershenwald, J. E., Singh, R. K., Reich, R., & Bar-Eli, M. (1997). Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. American Journal of Pathology, 151(4), 1105–113.PubMedGoogle Scholar
  204. 204.
    Singh, R. K., Gutman, M., Reich, R., & Bar-Eli, M. (1995). Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin 8. Cancer Research, 55(16), 3669–674.PubMedGoogle Scholar
  205. 205.
    Li, A., Dubey, S., Varney, M. L., & Singh, R. K. (2002). Interleukin-8-induced proliferation, survival, and MMP production in CXCR1 and CXCR2 expressing human umbilical vein endothelial cells. Microvascular Research, 64(3), 476–81.PubMedGoogle Scholar
  206. 206.
    Wang, J. M., Taraboletti, G., Matsushima, K., Van Damme, J., & Mantovani, A. (1990). Induction of haptotactic migration of melanoma cells by neutrophil activating protein/interleukin-8. Biochemical and Biophysical Research Communications, 169(1), 165–70.PubMedGoogle Scholar
  207. 207.
    Wang, J. M., Deng, X., Gong, W., & Su, S. (1998). Chemokines and their role in tumor growth and metastasis. Journal of Immunological Methods, 220(1–), 1–7.PubMedGoogle Scholar
  208. 208.
    Singh, R. K., Varney, M. L., Bucana, C. D., & Johansson, S. L. (1999). Expression of interleukin-8 in primary and metastatic malignant melanoma of the skin. Melanoma Research, 9(4), 383–87.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Seema Singh
    • 1
  • Anguraj Sadanandam
    • 1
  • Rakesh K. Singh
    • 1
  1. 1.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations