Advertisement

Cancer and Metastasis Reviews

, Volume 26, Issue 2, pp 225–239 | Cite as

Hypoxia in cancer: significance and impact on clinical outcome

  • Peter Vaupel
  • Arnulf Mayer
Article

Abstract

Hypoxia, a characteristic feature of locally advanced solid tumors, has emerged as a pivotal factor of the tumor (patho-)physiome since it can promote tumor progression and resistance to therapy. Hypoxia represents a “Janus face” in tumor biology because (a) it is associated with restrained proliferation, differentiation, necrosis or apoptosis, and (b) it can also lead to the development of an aggressive phenotype. Independent of standard prognostic factors, such as tumor stage and nodal status, hypoxia has been suggested as an adverse prognostic factor for patient outcome. Studies of tumor hypoxia involving the direct assessment of the oxygenation status have suggested worse disease-free survival for patients with hypoxic cervical cancers or soft tissue sarcomas. In head & neck cancers the studies suggest that hypoxia is prognostic for survival and local control. Technical limitations of the direct O2 sensing technique have prompted the use of surrogate markers for tumor hypoxia, such as hypoxia-related endogenous proteins (e.g., HIF-1α, GLUT-1, CA IX) or exogenous bioreductive drugs. In many—albeit not in all—studies endogenous markers showed prognostic significance for patient outcome. The prognostic relevance of exogenous markers, however, appears to be limited. Noninvasive assessment of hypoxia using imaging techniques can be achieved with PET or SPECT detection of radiolabeled tracers or with MRI techniques (e.g., BOLD). Clinical experience with these methods regarding patient prognosis is so far only limited. In the clinical studies performed up until now, the lack of standardized treatment protocols, inconsistencies of the endpoints characterizing the oxygenation status and methodological differences (e.g., different immunohistochemical staining procedures) may compromise the power of the prognostic parameter used.

Keywords

Tumor oxygenation Hypoxia Patient outcome Oxygen needle electrode Hypoxia marker Hypoxia imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vaupel, P., Thews, O., & Höckel, M. (2001). Treatment resistance of solid tumors: Role of hypoxia and anemia. Medical Oncology, 18, 243–259.PubMedGoogle Scholar
  2. 2.
    Vaupel, P., & Höckel, M. (2002). Tumor hypoxia and therapeutic resistance. In M. R. Nowrousian (Ed.), Recombinant Human Erythropoietin (rhEPO) in clinical oncology (pp. 127–146). Berlin Heidelberg New York: Springer.Google Scholar
  3. 3.
    Vaupel, P., Mayer, A., & Höckel, M. (2004). Tumor hypoxia and malignant progression. Methods in Enzymology, 381, 335–354.PubMedGoogle Scholar
  4. 4.
    Vaupel, P., & Kelleher, D. K. (1999). Tumor hypoxia. Stuttgart: Wissenschaftliche Verlagsgesellschaft.Google Scholar
  5. 5.
    Vaupel, P., Briest, S., & Höckel, M. (2002). Hypoxia in breast cancer: Pathogenesis, characterization and biological/therapeutic implications. Wiener Medizinische Wochenschrift, 152, 334–342.PubMedGoogle Scholar
  6. 6.
    Vaupel, P., & Mayer, A. (2005). Effects of anaemia and hypoxia on tumour biology. In C. Bokemeyer & H. Ludwig (Eds.), European school of oncology. Scientific Updates, vol 6 (pp. 47–66).Google Scholar
  7. 7.
    Vaupel, P., Höckel, M., & Mayer, A. (2007). Detection and characterization of tumor hypoxia using pO2 histography. Antioxidants & Redox Signalling (in press).Google Scholar
  8. 8.
    Vaupel, P. (2004). Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in Radiation Oncology, 14, 198–206.PubMedGoogle Scholar
  9. 9.
    Höckel, M., & Vaupel, P. (2001). Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute, 93, 266–276.PubMedGoogle Scholar
  10. 10.
    Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35, 71–103.PubMedGoogle Scholar
  11. 11.
    Semenza, G. L. (2002). Involvement of hypoxia-inducible factor 1 in human cancer. Internal Medicine, 41, 79–83.PubMedGoogle Scholar
  12. 12.
    Semenza, G. L. (2002). HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends in Molecular Medicine, 8, S62–S67.PubMedGoogle Scholar
  13. 13.
    Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumour growth. Nature Reviews Cancer, 2, 38–47.PubMedGoogle Scholar
  14. 14.
    Leo, C., Giaccia, A. J., & Denko, N. C. (2004). The hypoxic tumor microenvironment and gene expression. Seminars in Radiation Oncology, 14, 207–214.PubMedGoogle Scholar
  15. 15.
    Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3, 721–732.PubMedGoogle Scholar
  16. 16.
    Reynolds, T. Y., Rockwell, S., & Glazer, P. M. (1996). Genetic instability induced by the tumor microenvironment. Cancer Research, 56, 5754–5757.PubMedGoogle Scholar
  17. 17.
    Yuan, J., Narayanan, L., Rockwell, S., & Glazer, P. M. (2000). Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Research, 60, 4372–4376.PubMedGoogle Scholar
  18. 18.
    Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 379, 88–91.PubMedGoogle Scholar
  19. 19.
    Kim, C. Y., Tsai, M. H., Osmanian, C., Graeber, T. G., Lee, J. E., Giffard, R. G., et al. (1997). Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Research, 57, 4200–4204.PubMedGoogle Scholar
  20. 20.
    Kondo, A., Safaei, R., Mishima, M., Niedner, H., Lin, X., & Howell, S. B. (2001). Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Research, 61, 7603–7607.PubMedGoogle Scholar
  21. 21.
    Vaupel, P. (2004). The role of hypoxia-induced factors in tumor progression. Oncologist, 9(Suppl 5), 10–17.PubMedGoogle Scholar
  22. 22.
    Gatenby, R. A., Kessler, H. B., Rosenblum, J. S., Coia, L. R., Moldofsky, P. J., Hartz, W. H., et al. (1988). Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 14, 831–838.PubMedGoogle Scholar
  23. 23.
    Höckel, M., Schlenger, K., Aral, B., Mitze, M., Schäffer, U., & Vaupel, P. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Research, 56, 4509–4515.PubMedGoogle Scholar
  24. 24.
    Höckel, M., Knoop, C., Schlenger, K., Vorndran, B., Baussmann, E., Mitze, M., et al. (1993). Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiotherapy and Oncology, 26, 45–50.PubMedGoogle Scholar
  25. 25.
    Fyles, A., Milosevic, M., Hedley, D., Pintilie, M., Levin, W., Manchul, L., et al. (2002). Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. Journal of Clinical Oncology, 20, 680–687.PubMedGoogle Scholar
  26. 26.
    Knocke, T. H., Weitmann, H. D., Feldmann, H. J., Selzer, E., & Potter, R. (1999). Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiotherapy and Oncology, 53, 99–104.PubMedGoogle Scholar
  27. 27.
    Lyng, H., Sundfor, K., Trope, C., & Rofstad, E. K. (2000). Disease control of uterine cervical cancer: Relationships to tumor oxygen tension, vascular density, cell density, and frequency of mitosis and apoptosis measured before treatment and during radiotherapy. Clinical Cancer Research, 6, 1104–1112.PubMedGoogle Scholar
  28. 28.
    Evans, S. M., & Koch, C. J. (2003). Prognostic significance of tumor oxygenation in humans. Cancer Letter, 195, 1–16.Google Scholar
  29. 29.
    Nordsmark, M., Loncaster, J., Aquino-Parsons, C., Chou, S. C., Gebski, V., West, C., et al. (2006). The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: A prospective international multi-center study. Radiotherapy and Oncology, 80, 123–131.PubMedGoogle Scholar
  30. 30.
    Nordsmark, M., Bentzen, S. M., Rudat, V., Brizel, D., Lartigau, E., Stadler, P., et al. (2005). Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiotherapy and Oncology, 77, 18–24.PubMedGoogle Scholar
  31. 31.
    Terris, D. J. (2000). Head and neck cancer: The importance of oxygen. Laryngoscope, 110, 697–707.PubMedGoogle Scholar
  32. 32.
    Menon, C., & Fraker, D. L. (2005). Tumor oxygenation status as a prognostic marker. Cancer Letter, 221, 225–235.Google Scholar
  33. 33.
    Mayer, A., Höckel, M., & Vaupel, P. (2006). Endogenous hypoxia markers in locally advanced cancers of the uterine cervix: Reality or wishful thinking? Strahlentherapie und Onkologie, 182, 501–510.PubMedGoogle Scholar
  34. 34.
    Bilton, R. L., & Booker, G. W. (2003). The subtle side to hypoxia inducible factor (HIFα) regulation. European Journal of Biochemistry, 270, 791–798.PubMedGoogle Scholar
  35. 35.
    Loeb, L. A. (1991). Mutator phenotype may be required for multistage carcinogenesis. Cancer Research, 51, 3075–3079.PubMedGoogle Scholar
  36. 36.
    Kwon, S. J., & Lee, Y. J. (2005). Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1α in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clinical Cancer Research, 11, 4694–4700.PubMedGoogle Scholar
  37. 37.
    Mekhail, K., Khacho, M., Gunaratnam, L., & Lee, S. (2004). Oxygen sensing by H+: Implications for HIF and hypoxic cell memory. Cell Cycle, 3, 1027–1029.PubMedGoogle Scholar
  38. 38.
    Bos, R., van der Groep, P., Greijer, A. E., Shvarts, A., Meijer, S., Pinedo, H. M., et al. (2003). Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 97, 1573–1581.PubMedGoogle Scholar
  39. 39.
    Gruber, G., Greiner, R. H., Hlushchuk, R., Aebersold, D. M., Altermatt, H. J., Berclaz, G., et al. (2004). Hypoxia-inducible factor 1 alpha in high-risk breast cancer: An independent prognostic parameter? Breast Cancer Research, 6, R191–R198.PubMedGoogle Scholar
  40. 40.
    Vleugel, M. M., Greijer, A. E., Shvarts, A., van der Groep, P., van Berkel, M., Aarbodem, Y., et al. (2005). Differential prognostic impact of hypoxia induced and diffuse HIF-1α expression in invasive breast cancer. Journal of Clinical Pathology, 58, 172–177.PubMedGoogle Scholar
  41. 41.
    Trastour, C., Benizri, E., Ettore, F., Ramaioli, A., Chamorey, E., Pouyssegur, J., et al. (2007). HIF-1alpha and CA IX staining in invasive breast carcinomas: Prognosis and treatment outcome. International Journal of Cancer, 120, 1451–1458.Google Scholar
  42. 42.
    Aebersold, D. M., Burri, P., Beer, K. T., Laissue, J., Djonov, V., Greiner, R. H., et al. (2001). Expression of hypoxia-inducible factor-1α: A novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Research, 61, 2911–2916.PubMedGoogle Scholar
  43. 43.
    Matsuyama, T., Nakanishi, K., Hayashi, T., Yoshizumi, Y., Aiko, S., Sugiura, Y., et al. (2005). Expression of hypoxia-inducible factor-1alpha in esophageal squamous cell carcinoma. Cancer Science, 96, 176–182.PubMedGoogle Scholar
  44. 44.
    Griffiths, E. A., Pritchard, S. A., Valentine, H. R., Whitchelo, N., Bishop, P. W., Ebert, M. P., et al. (2007). Hypoxia-inducible factor-1a expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas. British Journal of Cancer, 96, 95–103.PubMedGoogle Scholar
  45. 45.
    Swinson, D. E., Jones, J. L., Cox, G., Richardson, D., Harris, A. L., & O’Byrne, K. J. (2004). Hypoxia-inducible factor-1 alpha in non small cell lung cancer: Relation to growth factor, protease and apoptosis pathways. International Journal of Cancer, 111, 43–50.Google Scholar
  46. 46.
    Burri, P., Djonov, V., Aebersold, D. M., Lindel, K., Studer, U., Altermatt, H. J., et al. (2003). Significant correlation of hypoxia-inducible factor-1α with treatment outcome in cervical cancer treated with radical radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 56, 494–501.PubMedGoogle Scholar
  47. 47.
    Haugland, H. K., Vukovic, V., Pintilie, M., Fyles, A. W., Milosevic, M., Hill, R. P., et al. (2002). Expression of hypoxia-inducible factor-1α in cervical carcinomas: Correlation with tumor oxygenation. International Journal of Radiation Oncology, Biology, Physics, 53, 854–861.PubMedGoogle Scholar
  48. 48.
    Hutchison, G. J., Valentine, H. R., Loncaster, J. A., Davidson, S. E., Hunter, R. D., Roberts, S. A., et al. (2004). Hypoxia-inducible factor 1α expression as an intrinsic marker of hypoxia: Correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clinical Cancer Research, 10, 8405–8412.PubMedGoogle Scholar
  49. 49.
    Mayer, A., Wree, A., Höckel, M., Leo, C., Pilch, H., & Vaupel, P. (2004). Lack of correlation between expression of HIF-1α protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Research, 64, 5876–5881.PubMedGoogle Scholar
  50. 50.
    Acs, G., Xu, X., Chu, C., Acs, P., & Verma, A. (2004). Prognostic significance of erythropoietin expression in human endometrial carcinoma. Cancer, 100, 2376–2386.PubMedGoogle Scholar
  51. 51.
    Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Simopoulos, C., Turley, H., Talks, K., et al. (2002). Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 53, 1192–1202.PubMedGoogle Scholar
  52. 52.
    Giatromanolaki, A., Koukourakis, M. I., Sivridis, E., Turley, H., Talks, K., Pezzella, F., et al. (2001). Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. British Journal of Cancer, 85, 881–890.PubMedGoogle Scholar
  53. 53.
    Atkin, G. K., Daley, F. M., Bourne, S., Glynne-Jones, R., Northover, J. M., & Wilson, G. D. (2006). The impact of surgically induced ischaemia on protein levels in patients undergoing rectal cancer surgery. British Journal of Cancer, 95, 928–933.PubMedGoogle Scholar
  54. 54.
    Ryan, H. E., Poloni, M., McNulty, W., Elson, D., Gassmann, M., Arbeit, J. M., et al. (2000). Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Research, 60, 4010–4015.PubMedGoogle Scholar
  55. 55.
    Maxwell, P. H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., et al. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 8104–8109.PubMedGoogle Scholar
  56. 56.
    Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.PubMedGoogle Scholar
  57. 57.
    Leek, R. D., Stratford, I., & Harris, A. L. (2005). The role of hypoxia-inducible factor-1 in three-dimensional tumor growth, apoptosis, and regulation by the insulin-signaling pathway. Cancer Research, 65, 4147–4152.PubMedGoogle Scholar
  58. 58.
    Volm, M., & Koomagi, R. (2000). Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Research, 20, 1527–1533.PubMedGoogle Scholar
  59. 59.
    Beasley, N. J., Leek, R., Alam, M., Turley, H., Cox, G. J., Gatter, K., et al. (2002). Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: Relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Research, 62, 2493–2497.PubMedGoogle Scholar
  60. 60.
    Koukourakis, M. I., Bentzen, S. M., Giatromanolaki, A., Wilson, G. D., Daley, F. M., Saunders, M. I., et al. (2006). Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. Journal of Clinical Oncology, 24, 727–735.PubMedGoogle Scholar
  61. 61.
    Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. American Journal of Pathology, 157, 411–421.PubMedGoogle Scholar
  62. 62.
    Onita, T., Ji, P. G., Xuan, J. W., Sakai, H., Kanetake, H., Maxwell, P. H., et al. (2002). Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2α correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clinical Cancer Research, 8, 471–480.PubMedGoogle Scholar
  63. 63.
    Kang, S. S., Chun, Y. K., Hur, M. H., Lee, H. K., Kim, Y. J., Hong, S. R., et al. (2002). Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Japanese Journal of Cancer Research, 93, 1123–1128.PubMedGoogle Scholar
  64. 64.
    Kunkel, M., Reichert, T. E., Benz, P., Lehr, H. A., Jeong, J. H., Wieand, S., et al. (2003). Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer, 97, 1015–1024.PubMedGoogle Scholar
  65. 65.
    Tohma, T., Okazumi, S., Makino, H., Cho, A., Mochizuki, R., Shuto, K., et al. (2005). Overexpression of glucose transporter 1 in esophageal squamous cell carcinomas: A marker for poor prognosis. Diseases of the Esophagus, 18, 185–189.PubMedGoogle Scholar
  66. 66.
    Hoskin, P. J., Sibtain, A., Daley, F. M., & Wilson, G. D. (2003). GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: Relationship with vascularity and proliferation as predictors of outcome of ARCON. British Journal of Cancer, 89, 1290–1297.PubMedGoogle Scholar
  67. 67.
    Kawamura, T., Kusakabe, T., Sugino, T., Watanabe, K., Fukuda, T., Nashimoto, A., et al. (2001). Expression of glucose transporter-1 in human gastric carcinoma: Association with tumor aggressiveness, metastasis, and patient survival. Cancer, 92, 634–641.PubMedGoogle Scholar
  68. 68.
    Furudoi, A., Tanaka, S., Haruma, K., Yoshihara, M., Sumii, K., Kajiyama, G., et al. (2001). Clinical significance of human erythrocyte glucose transporter 1 expression at the deepest invasive site of advanced colorectal carcinoma. Oncology, 60, 162–169.PubMedGoogle Scholar
  69. 69.
    Cantuaria, G., Fagotti, A., Ferrandina, G., Magalhaes, A., Nadji, M., Angioli, R., et al. (2001). GLUT-1 expression in ovarian carcinoma: Association with survival and response to chemotherapy. Cancer, 92, 1144–1150.PubMedGoogle Scholar
  70. 70.
    Younes, M., Brown, R. W., Stephenson, M., Gondo, M., & Cagle, P. T. (1997). Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer, 80, 1046–1051.PubMedGoogle Scholar
  71. 71.
    Airley, R., Loncaster, J., Davidson, S., Bromley, M., Roberts, S., Patterson, A., et al. (2001). Glucose transporter Glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clinical Cancer Research, 7, 928–934.PubMedGoogle Scholar
  72. 72.
    Mayer, A., Höckel, M., Wree, A., & Vaupel, P. (2005). Microregional expression of glucose transporter-1 and oxygenation status: Lack of correlation in locally advanced cervical cancers. Clinical Cancer Research, 11, 2768–2773.PubMedGoogle Scholar
  73. 73.
    Loncaster, J. A., Harris, A. L., Davidson, S. E., Logue, J. P., Hunter, R. D., Wycoff, C. C., et al. (2001). Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: Correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Research, 61, 6394–6399.PubMedGoogle Scholar
  74. 74.
    Chia, S. K., Wykoff, C. C., Watson, P. H., Han, C., Leek, R. D., Pastorek, J., et al. (2001). Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. Journal of Clinical Oncology, 19, 3660–3668.PubMedGoogle Scholar
  75. 75.
    Kon-no, H., Ishii, G., Nagai, K., Yoshida, J., Nishimura, M., Nara, M., et al. (2006). Carbonic anhydrase IX expression is associated with tumor progression and a poor prognosis of lung adenocarcinoma. Lung Cancer, 54, 409–418.PubMedGoogle Scholar
  76. 76.
    Chen, J., Rocken, C., Hoffmann, J., Kruger, S., Lendeckel, U., Rocco, A., et al. (2005). Expression of carbonic anhydrase 9 at the invasion front of gastric cancers. Gut, 54, 920–927.PubMedGoogle Scholar
  77. 77.
    Bui, M. H., Seligson, D., Han, K. R., Pantuck, A. J., Dorey, F. J., Huang, Y., et al. (2003). Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: Implications for prognosis and therapy. Clinical Cancer Research, 9, 802–811.PubMedGoogle Scholar
  78. 78.
    Robertson, N., Potter, C., & Harris, A. L. (2004). Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Research, 64, 6160–6165.PubMedGoogle Scholar
  79. 79.
    Parkkila, S., Rajaniemi, H., Parkkila, A. K., Kivela, J., Waheed, A., Pastorekova, S., et al. (2000). Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proceedings of the National Academy of Sciences of the United States of America, 97, 2220–2224.PubMedGoogle Scholar
  80. 80.
    Potter, C., & Harris, A. L. (2004). Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle, 3, 164–167.PubMedGoogle Scholar
  81. 81.
    Lagadic-Gossmann, D., Huc, L., & Lecureur, V. (2004). Alterations of intracellular pH homeostasis in apoptosis: Origins and roles. Cell Death and Differentiation, 11, 953–961.PubMedGoogle Scholar
  82. 82.
    Toi, M., Matsumoto, T., & Bando, H. (2001). Vascular endothelial growth factor: Its prognostic, predictive, and therapeutic implications. Lancet Oncology, 2, 667–673.PubMedGoogle Scholar
  83. 83.
    Kotch, L. E., Iyer, N. V., Laughner, E., & Semenza, G. L. (1999). Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developments in Biologicals, 209, 254–267.CrossRefGoogle Scholar
  84. 84.
    Marjon, P. L., Bobrovnikova-Marjon, E. V., & Abcouwer, S. F. (2004). Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Molecular Cancer, 3, 4.PubMedGoogle Scholar
  85. 85.
    Xu, L., Fukumura, D., & Jain, R. K. (2002). Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: Mechanism of low pH-induced VEGF. Journal of Biological Chemistry, 277, 11368–11374.PubMedGoogle Scholar
  86. 86.
    West, C. M., Cooper, R. A., Loncaster, J. A., Wilks, D. P., & Bromley, M. (2001). Tumor vascularity: A histological measure of angiogenesis and hypoxia. Cancer Research, 61, 2907–2910.PubMedGoogle Scholar
  87. 87.
    Raleigh, J. A., Calkins-Adams, D. P., Rinker, L. H., Ballenger, C. A., Weissler, M. C., Fowler, W. C. Jr., et al. (1998). Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Research, 58, 3765–3768.PubMedGoogle Scholar
  88. 88.
    Erler, J. T., & Giaccia, A. J. (2006). Lysyl oxidase mediates hypoxic control of metastasis. Cancer Research, 66, 10238–10241.PubMedGoogle Scholar
  89. 89.
    Erler, J. T., Bennewith, K. L., Nicolau, M., Dornhofer, N., Kong, C., Le, Q. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440, 1222–1226.PubMedGoogle Scholar
  90. 90.
    Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Bougioukas, G., Didilis, V., Gatter, K. C., et al. (2003). Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. British Journal of Cancer, 89, 877–885.PubMedGoogle Scholar
  91. 91.
    Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Gatter, K. C., & Harris, A. L. (2006). Lactate dehydrogenase 5 expression in operable colorectal cancer: Strong association with survival and activated vascular endothelial growth factor pathway—A report of the Tumour Angiogenesis Research Group. Journal of Clinical Oncology, 24, 4301–4308.PubMedGoogle Scholar
  92. 92.
    Maulik, N., & Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radical Biology & Medicine, 33, 1047–1060.Google Scholar
  93. 93.
    Rangaswami, H., Bulbule, A., & Kundu, G. C. (2006). Osteopontin: Role in cell signaling and cancer progression. Trends in Cell Biology, 16, 79–87.PubMedGoogle Scholar
  94. 94.
    Zhu, Y., Denhardt, D. T., Cao, H., Sutphin, P. D., Koong, A. C., Giaccia, A. J., et al. (2005). Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene, 24, 6555–6563.PubMedGoogle Scholar
  95. 95.
    Le, Q. T., Sutphin, P. D., Raychaudhuri, S., Yu, S. C., Terris, D. J., Lin, H. S., et al. (2003). Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clinical Cancer Research, 9, 59–67.PubMedGoogle Scholar
  96. 96.
    Le, Q. T., Chen, E., Salim, A., Cao, H., Kong, C. S., Whyte, R., et al. (2006). An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clinical Cancer Research, 12, 1507–1514.PubMedGoogle Scholar
  97. 97.
    Bache, M., Reddemann, R., Said, H. M., Holzhausen, H. J., Taubert, H., Becker, A., et al. (2006). Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: Prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1alpha-related markers, and hemoglobin levels. International Journal of Radiation Oncology, Biology, Physics, 66, 1481–1487.PubMedGoogle Scholar
  98. 98.
    Nordsmark, M., Loncaster, J., Chou, S. C., Havsteen, H., Lindegaard, J. C., Davidson, S. E., et al. (2001). Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. International Journal of Radiation Oncology, Biology, Physics, 49, 581–586.PubMedGoogle Scholar
  99. 99.
    Nordsmark, M., Loncaster, J., Aquino-Parsons, C., Chou, S. C., Ladekarl, M., Havsteen, H., et al. (2003). Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiotherapy and Oncology, 67, 35–44.PubMedGoogle Scholar
  100. 100.
    Evans, S. M., Judy, K. D., Dunphy, I., Jenkins, W. T., Nelson, P. T., Collins, R., et al. (2004). Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Research, 64, 1886–1892.PubMedGoogle Scholar
  101. 101.
    Kavanagh, M. C., Tsang, V., Chow, S., Koch, C., Hedley, D., Minkin, S., et al. (1999). A comparison in individual murine tumors of techniques for measuring oxygen levels. International Journal of Radiation Oncology, Biology, Physics, 44, 1137–1146.PubMedGoogle Scholar
  102. 102.
    Evans, S. M., Fraker, D., Hahn, S. M., Gleason, K., Jenkins, W. T., Jenkins, K., et al. (2006). EF5 binding and clinical outcome in human soft tissue sarcomas. International Journal of Radiation Oncology, Biology, Physics, 64, 922–927.PubMedGoogle Scholar
  103. 103.
    Evans, S. M., Judy, K. D., Dunphy, I., Jenkins, W. T., Hwang, W. T., Nelson, P. T., et al. (2004). Hypoxia is important in the biology and aggression of human glial brain tumors. Clinical Cancer Research, 10, 8177–8184.PubMedGoogle Scholar
  104. 104.
    Kaanders, J. H. A. M., Wijffels, K. I. E. M., Marres, H. A. M., Ljungkvist, A. S. E., Pop, L. A. M., van den Hoogen, F. J. A., et al. (2002). Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Research, 62, 7066–7074.PubMedGoogle Scholar
  105. 105.
    Leek, R. D., Landers, R. J., Harris, A. L., & Lewis, C. E. (1999). Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. British Journal of Cancer, 79, 991–995.PubMedGoogle Scholar
  106. 106.
    Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104, 2224–2234.PubMedGoogle Scholar
  107. 107.
    Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56, 4625–4629.PubMedGoogle Scholar
  108. 108.
    Janssen, H. L., Hoebers, F. J., Sprong, D., Goethals, L., Williams, K. J., Stratford, I. J., et al. (2004). Differentiation-associated staining with anti-pimonidazole antibodies in head and neck tumors. Radiotherapy and Oncology, 70, 91–97.PubMedGoogle Scholar
  109. 109.
    Rajendran, J. G., Schwartz, D. L., O’Sullivan, J., Peterson, L. M., Ng, P., Scharnhorst, J., et al. (2006). Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clinical Cancer Research, 12, 5435–5441.PubMedGoogle Scholar
  110. 110.
    Rischin, D., Hicks, R. J., Fisher, R., Binns, D., Corry, J., Porceddu, S., et al. (2006). Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: A substudy of Trans-Tasman Radiation Oncology Group Study 98.02. Journal of Clinical Oncology, 24, 2098–2104.PubMedGoogle Scholar
  111. 111.
    Lehtio, K., Eskola, O., Viljanen, T., Oikonen, V., Gronroos, T., Sillanmaki, L., et al. (2004). Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 59, 971–982.PubMedGoogle Scholar
  112. 112.
    Ziemer, L. S., Evans, S. M., Kachur, A. V., Shuman, A. L., Cardi, C. A., Jenkins, W. T., et al. (2003). Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. European Journal of Nuclear Medicine and Molecular Imaging, 30, 259–266.PubMedCrossRefGoogle Scholar
  113. 113.
    Fujibayashi, Y., Cutler, C. S., Anderson, C. J., McCarthy, D. W., Jones, L. A., Sharp, T., et al. (1999). Comparative studies of Cu-64-ATSM and C-11-acetate in an acute myocardial infarction model: Ex vivo imaging of hypoxia in rats. Nuclear Medicine and Biology, 26, 117–121.PubMedGoogle Scholar
  114. 114.
    Yuan, H., Schroeder, T., Bowsher, J. E., Hedlund, L. W., Wong, T., & Dewhirst, M. W. (2006). Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). Journal of Nuclear Medicine, 47, 989–998.PubMedGoogle Scholar
  115. 115.
    Dehdashti, F., Grigsby, P. W., Mintun, M. A., Lewis, J. S., Siegel, B. A., & Welch, M. J. (2003). Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: Relationship to therapeutic response—A preliminary report. International Journal of Radiation Oncology, Biology, Physics, 55, 1233–1238.PubMedGoogle Scholar
  116. 116.
    Li, L., Yu, J., Xing, L., Ma, K., Zhu, H., Guo, H., et al. (2006). Serial hypoxia imaging with 99mTc-HL91 SPECT to predict radiotherapy response in nonsmall cell lung cancer. American Journal of Clinical Oncology, 29, 628–633.PubMedGoogle Scholar
  117. 117.
    Cooper, R. A., Carrington, B. M., Loncaster, J. A., Todd, S. M., Davidson, S. E., Logue, J. P., et al. (2000). Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiotherapy and Oncology, 57, 53–59.PubMedGoogle Scholar
  118. 118.
    Loncaster, J. A., Carrington, B. M., Sykes, J. R., Jones, A. P., Todd, S. M., Cooper, R., et al. (2002). Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. International Journal of Radiation Oncology, Biology, Physics, 54, 759–767.PubMedGoogle Scholar
  119. 119.
    Padhani, A. R., Krohn, K. A., Lewis, J. S., & Alber, M. (2007). Imaging oxygenation of human tumours. European Radiology, 17(4): 861–872.PubMedGoogle Scholar
  120. 120.
    Vaupel, P., Kallinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Research, 49, 6449–6465.PubMedGoogle Scholar
  121. 121.
    Rodrigues, L. M., Howe, F. A., Griffiths, J. R., & Robinson, S. P. (2004). Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. Journal of Magnetic Resonance Imaging, 19, 482–488.PubMedGoogle Scholar
  122. 122.
    Dunst, J., Stadler, P., Becker, A., Lautenschlager, C., Pelz, T., Hansgen, G., et al. (2003). Tumor volume and tumor hypoxia in head and neck cancers. The amount of the hypoxic volume is important. Strahlentherapie und Onkologie, 179, 521–526.PubMedGoogle Scholar
  123. 123.
    Brizel, D. M., Sibley, G. S., Prosnitz, L. R., Scher, R. L., & Dewhirst, M. W. (1997). Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. International Journal of Radiation Oncology, Biology, Physics, 38, 285–289.PubMedGoogle Scholar
  124. 124.
    Brizel, D. M., Dodge, R. K., Clough, R. W., & Dewhirst, M. W. (1999). Oxygenation of head and neck cancer: Changes during radiotherapy and impact on treatment outcome. Radiotherapy and Oncology, 53, 113–117.PubMedGoogle Scholar
  125. 125.
    Nordsmark, M., & Overgaard, J. (2000). A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiotherapy and Oncology, 57, 39–43.PubMedGoogle Scholar
  126. 126.
    Nordsmark, M., & Overgaard, J. (2004). Tumor hypoxia is independent of hemoglobin and prognostic for loco-regional tumor control after primary radiotherapy in advanced head and neck cancer. Acta Oncológica, 43, 396–403.PubMedGoogle Scholar
  127. 127.
    Rudat, V., Stadler, P., Becker, A., Vanselow, B., Dietz, A., Wannenmacher, M., et al. (2001). Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer. Strahlentherapie und Onkologie, 177, 462–468.PubMedGoogle Scholar
  128. 128.
    Rudat, V., Vanselow, B., Wollensack, P., Bettscheider, C., Osman-Ahmet, S., Eble, M. J., et al. (2000). Repeatability and prognostic impact of the pretreatment pO2 histography in patients with advanced head and neck cancer. Radiotherapy and Oncology, 57, 31–37.PubMedGoogle Scholar
  129. 129.
    Brizel, D. M. (1999). Human tumor oxygenation: The Duke University Medical Center experience. In P. Vaupel & D. K. Kelleher (Eds.), Tumor hypoxia (pp. 29–38). Stuttgart: Wissenschaftliche Verlagsgesellschaft.Google Scholar
  130. 130.
    Nordsmark, M., Alsner, J., Keller, J., Nielsen, O. S., Jensen, O. M., Horsman, M. R., et al. (2001). Hypoxia in human soft tissue sarcomas: Adverse impact on survival and no association with p53 mutations. British Journal of Cancer, 84, 1070–1075.PubMedGoogle Scholar
  131. 131.
    Bachtiary, B., Schindl, M., Potter, R., Dreier, B., Knocke, T. H., Hainfellner, J. A., et al. (2003). Overexpression of hypoxia-inducible factor 1α indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clinical Cancer Research, 9, 2234–2240.PubMedGoogle Scholar
  132. 132.
    Birner, P., Schindl, M., Obermair, A., Plank, C., Breitenecker, G., & Oberhuber, G. (2000). Overexpression of hypoxia-inducible factor 1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Research, 60, 4693–4696.PubMedGoogle Scholar
  133. 133.
    Ishikawa, H., Sakurai, H., Hasegawa, M., Mitsuhashi, N., Takahashi, M., Masuda, N., et al. (2004). Expression of hypoxic-inducible factor 1α predicts metastasis-free survival after radiation therapy alone in stage IIIB cervical squamous cell carcinoma. International Journal of Radiation Oncology, Biology, Physics, 60, 513–521.PubMedGoogle Scholar
  134. 134.
    Dales, J. P., Garcia, S., Meunier-Carpentier, S., Andrac-Meyer, L., Haddad, O., Lavaut, M. N., et al. (2005). Overexpression of hypoxia-inducible factor HIF-1α predicts early relapse in breast cancer: Retrospective study in a series of 745 patients. International Journal of Cancer, 116, 734–739.Google Scholar
  135. 135.
    Schindl, M., Schoppmann, S. F., Samonigg, H., Hausmaninger, H., Kwasny, W., Gnant, M., et al. (2002). Overexpression of hypoxia-inducible factor 1α is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clinical Cancer Research, 8, 1831–1837.PubMedGoogle Scholar
  136. 136.
    Schoppmann, S. F., Fenzl, A., Schindl, M., Bachleitner-Hofmann, T., Nagy, K., Gnant, M., et al. (2006). Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Research and Treatment, 99, 135–141.PubMedGoogle Scholar
  137. 137.
    Kyzas, P. A., Stefanou, D., Batistatou, A., & Agnantis, N. J. (2005). Hypoxia-induced tumor angiogenic pathway in head and neck cancer: An in vivo study. Cancer Letter, 225, 297–304.Google Scholar
  138. 138.
    Winter, S. C., Shah, K. A., Han, C., Campo, L., Turley, H., Leek, R., et al. (2006). The relation between hypoxia-inducible factor (HIF)-1α and HIF-2α expression with anemia and outcome in surgically treated head and neck cancer. Cancer, 107, 757–766.PubMedGoogle Scholar
  139. 139.
    De Schutter, H., Landuyt, W., Verbeken, E., Goethals, L., Hermans, R., & Nuyts, S. (2005). The prognostic value of the hypoxia markers CA IX and GLUT 1 and the cytokines VEGF and IL 6 in head and neck squamous cell carcinoma treated by radiotherapy +/− chemotherapy. BMC Cancer, 5, 42.PubMedGoogle Scholar
  140. 140.
    Jonathan, R. A., Wijffels, K. I., Peeters, W., de Wilde, P. C., Marres, H. A., Merkx, M. A., et al. (2006). The prognostic value of endogenous hypoxia-related markers for head and neck squamous cell carcinomas treated with ARCON. Radiotherapy and Oncology, 79, 288–297.PubMedGoogle Scholar
  141. 141.
    Oliver, R. J., Woodwards, R. T., Sloan, P., Thakker, N. S., Stratford, I. J., & Airley, R. E. (2004). Prognostic value of facilitative glucose transporter Glut-1 in oral squamous cell carcinomas treated by surgical resection; results of EORTC Translational Research Fund studies. European Journal of Cancer, 40, 503–507.PubMedGoogle Scholar
  142. 142.
    Hedley, D., Pintilie, M., Woo, J., Morrison, A., Birle, D., Fyles, A., et al. (2003). Carbonic anhydrase IX expression, hypoxia, and prognosis in patients with uterine cervical carcinomas. Clinical Cancer Research, 9, 5666–5674.PubMedGoogle Scholar
  143. 143.
    Brennan, D. J., Jirstrom, K., Kronblad, A., Millikan, R. C., Landberg, G., Duffy, M. J., et al. (2006). CA IX is an independent prognostic marker in premenopausal breast cancer patients with one to three positive lymph nodes and a putative marker of radiation resistance. Clinical Cancer Research, 12, 6421–6431.PubMedGoogle Scholar
  144. 144.
    Hussain, S. A., Ganesan, R., Reynolds, G., Gross, L., Stevens, A., Pastorek, J., et al. (2007). Hypoxia-regulated carbonic anhydrase IX expression is associated with poor survival in patients with invasive breast cancer. British Journal of Cancer, 96, 104–109.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Physiology and PathophysiologyUniversity of MainzMainzGermany

Personalised recommendations