Cancer and Metastasis Reviews

, Volume 25, Issue 3, pp 417–434 | Cite as

Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression

  • Fernando Vidal-Vanaclocha
  • Lorea Mendoza
  • Naiara Telleria
  • Clarisa Salado
  • María Valcárcel
  • Natalia Gallot
  • Teresa Carrascal
  • Eider Egilegor
  • Jabier Beaskoetxea
  • Charles A. Dinarello



Interleukin-18 (IL-18, interferon [IFN]-gamma-inducing factor) is a proinflammatory cytokine converted to a biologically active molecule by interleukin (IL)-1beta converting enzyme (caspase-1). A wide range of normal and cancer cell types can produce and respond to IL-18 through a specific receptor (IL-18R) belonging to the toll-like receptor family. The activity of IL-18 is regulated by IL-18-binding protein (IL-18bp), a secreted protein possessing the ability to neutralize IL-18 and whose blood level is affected by renal function and is induced by IFNgamma. IL-18 plays a central role in inflammation and immune response, contributing to the pathogenesis and pathophysiology of infectious and inflammatory diseases. Because immune-stimulating effects of IL-18 have antineoplastic properties, IL-18 has been proposed as a novel adjuvant therapy against cancer. However, IL-18 increases in the blood of the majority of cancer patients and has been associated with disease progression and, in some cancer types, with metastatic recurrence risk and poor clinical outcome and survival. Under experimental conditions, cancer cells can also escape immune recognition, increase their adherence to the microvascular wall and even induce production of angiogenic and tumor growth-stimulating factors via IL-18-dependent mechanism. This is particularly visible in melanoma cells. Thus, the role of IL-18 in cancer progression and metastasis remains controversial. This review examines the clinical correlations and biological effects of IL-18 during cancer development and highlights recent experimental insights into prometastatic and proangiogenic effects of IL-18 and the use of IL-18bp against cancer progression.


Interleukin-18 Metastasis Angiogenesis Cancer progression Immune response Inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dinarello, C. A. (1999). Interleukin-18. Methods, 19, 121–132.CrossRefPubMedGoogle Scholar
  2. 2.
    Sims J. E. (2002). IL-1 and IL-18 receptors, and their extended family. Current Opinion in Immunology, 14, 117–122.CrossRefPubMedGoogle Scholar
  3. 3.
    Torigoe, K., Ushio, S., Okura, T., Kobayashi, S., Taniai, M., & Kunikata, T., et al. (1997). Purification and characterization of the human interleukin-18 receptor. Journal Of Biological Chemistry, 272, 25737–25742.CrossRefPubMedGoogle Scholar
  4. 4.
    Born, T. L., Thomassen, E., Bird, T. A., & Sims, J. E. (1998). Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling. Journal of Biological Chemistry, 273, 29445–29450.CrossRefPubMedGoogle Scholar
  5. 5.
    Dinarello, C. A., Novick, D., Puren, A. J., Fantuzzi, G., Shapiro, L., & Mu¨hl, H., et al. (1998). Overview of interleukin-18: more than an interferon-gamma inducing factor. Journal of Leukocyte Biology, 63, 658–666.PubMedGoogle Scholar
  6. 6.
    Takeuchi, M., Okura, T., Mori, T., Akita, K., Ohta, T., & Ikeda, M., et al. (1999). Intracellular production of interleukin-18 in human epithelial- like cell lines is enhanced by hyperosmotic stress in vitro. Cell & Tissue Research, 297, 467–473.CrossRefGoogle Scholar
  7. 7.
    Puren, A. J., Fantuzzi, G., Gu, Y., Su, M. S., & Dinarello, C. A. (1998). Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. Journal of Clinical Investigation, 101, 711–719.PubMedGoogle Scholar
  8. 8.
    Nakanishi, K., Yoshimoto, T., Tsutsui, H., & Okamura, H. (2001). Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine & Growth Factor Reviews, 12, 53–72.CrossRefGoogle Scholar
  9. 9.
    Dinarello, C. A. (2000). Targeting interleukin 18 with interleukin 18 binding protein. Annals of the Rheumatic Diseases, 59(Suppl. 1), i17.CrossRefPubMedGoogle Scholar
  10. 10.
    Moller, B., Paulukat, J., Nold, M., Behrens, M., Kukoc-Zivojnov, N., & Kaltwasser, J. P., et al. (2003). Interferon-gamma induces expression of interleukin-18 binding protein in fibroblast-like synoviocytes. Rheumatology (Oxford), 42, 442–445.CrossRefGoogle Scholar
  11. 11.
    Neumayr, G., Ludwiczek, O., Hoertnagl, H., Pfister, R., Mitterbauer, G., & Moschen, A., et al. (2005). The impact of prolonged strenuous endurance exercise on interleukin 18 and interleukin 18 binding protein in recreational cyclists. International Journal of Sports Medicine, 26, 836–840.CrossRefPubMedGoogle Scholar
  12. 12.
    Stuyt, R. J., Netea, M. G., van Krieken, J. H., van der Meer, J. W., & Kullberg, B. J. (2004). Recombinant interleukin-18 protects against disseminated Candida albicans infection in mice. Journal of Infectious Diseases, 189, 1524–1527.CrossRefPubMedGoogle Scholar
  13. 13.
    Pizarro, T. T., Michie, M. H., Bentz, M., Woraratanadharm, J., Smith, M. F. Jr., & Foley, E., et al. (1999). IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. Journal of Immunology, 162, 6829–6835.Google Scholar
  14. 14.
    Menge, T., Jander, S., & Stoll, G. (2001). Induction of the proinflammatory cytokine interleukin-18 by axonal injury. Journal of Neuroscience Research, 65, 332–339.CrossRefPubMedGoogle Scholar
  15. 15.
    Marino, E., & Cardier, J. E. (2003). Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-alpha and Fas (CD95). Cytokine, 22, 142–148.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaser, A., Novick, D., Rubinstein, M., Siegmund, B., Enrich, B., & Koch, R. O., et al. (2002). Interferon-alpha induces interleukin-18 binding protein in chronic hepatitis C patients. Clinical and Experimental Immunology, 129, 332–338.CrossRefPubMedGoogle Scholar
  17. 17.
    Ludwiczek, O., Kaser, A., Novick, D., Dinarello, C. A., Rubinstein, M., & Vogel W, et al. (2002). Plasma levels of interleukin-18 and interleukin-18 binding protein are elevated in patients with chronic liver disease. Journal of Clinical Immunology, 22, 331–337.CrossRefPubMedGoogle Scholar
  18. 18.
    Ueno, N., Kashiwamura, S., Ueda, H., Okamura, H., Tsuji, N. M., & Hosohara, K., et al. (2005). Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock, 24, 564–570.CrossRefPubMedGoogle Scholar
  19. 19.
    Lissoni, P., Brivio, F., Rovelli, F., Fumagalli, G., Malugani, F., & Vaghi, M., et al. (2000). Serum concentrations of interleukin-18 in early and advanced cancer patients: enhanced secretion in metastatic disease. Journal of Biological Regulators and Homeostatic Agents, 14, 275–277.PubMedGoogle Scholar
  20. 20.
    Tsuboi, K., Miyazaki, T., Nakajima, M., Fukai, Y., Masuda, N., & Manda, R., et al. (2004). Serum interleukin-12 and interleukin-18 levels as a tumor marker in patients with esophageal carcinoma. Cancer Letter, 205, 207–214.CrossRefGoogle Scholar
  21. 21.
    Kawabata, T., Ichikura, T., Majima, T., Seki, S., Chochi, K., & Takayama, E., et al. (2001). Preoperative serum interleukin-18 level as a postoperative prognostic marker in patients with gastric carcinoma. Cancer, 92, 2050–2055.CrossRefPubMedGoogle Scholar
  22. 22.
    Majima, T., Ichikura, T., Seki, S., Takayama, E., Matsumoto, A., & Kawabata, T., et al. (2002). The influence of interleukin-10 and interleukin-18 on interferon-gamma production by peritoneal exudate cells in patients with gastric carcinoma. Anticancer Research, 22, 1193–1199.PubMedGoogle Scholar
  23. 23.
    Bellone, G., Smirne, C., Mauri, F. A., Tonel, E., Carbone, A., & Buffolino, A., et al. (2006). Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother, 55, 684–698.CrossRefPubMedGoogle Scholar
  24. 24.
    Carrascal, T., Mendoza, L., Valcarcel, M., Salado, C., Egilegor, E., & Tellerýa, N., et al. (2003). Interleukin-18 binding protein reduces B16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium. Cancer Research, 63, 491–497.PubMedGoogle Scholar
  25. 25.
    Mendoza, L., Valcarcel, M., Carrascal, T., Egilegor, E., Salado, C., & Sim, B. K., et al. (2004). Inhibition of cytokine-induced microvascular arrest of tumor cells by recombinant endostatin prevents experimental hepatic melanoma metastasis. Cancer Research, 64, 304–310.CrossRefPubMedGoogle Scholar
  26. 26.
    Pages, F., Berger, A., Henglein, B., Piqueras, B., Danel, C., & Zinzindohoue, F., et al. (1999). Modulation of interleukin-18 expression in human colon carcinoma: consequences for tumor immune surveillance. International Journal of Cancer, 84, 326–330.CrossRefGoogle Scholar
  27. 27.
    Wen, Z., Ouyang, Q., Chen, D., & Su, X. (2003). Interleukin 18 expression in colon cancer and adenoma. Sichuan Da Xue Xue Bao Yi Xue Ban, 34, 262–264.PubMedGoogle Scholar
  28. 28.
    Asakawa M., Kono H., Amemiya H., Matsuda M., Suzuki T., & Maki A., et al. (2006). Role of interleukin-18 and its receptor in hepatocellular carcinoma associated with hepatitis C virus infection. International Journal of Cancer, 118, 564–570.CrossRefGoogle Scholar
  29. 29.
    Riedel, F., Adam, S., Feick, P., Haas, S., Gotte, K., & Hormann, K. (2004). Mannheim Alcohol Study Group. Expression of IL-18 in patients with head and neck squamous cell carcinoma. International Journal of Molecular Medicine, 13, 267–272.PubMedGoogle Scholar
  30. 30.
    Cortesina, G. (2004). Constitutive expression of interleukin-18 in head and neck squamous carcinoma cells. Head Neck, 26, 494–503.CrossRefPubMedGoogle Scholar
  31. 31.
    Park, H., Byun, D., Kim, T. S., Kim, Y. I., Kang, J. S., & Hahm, E. S., et al. (2001). Enhanced IL-18 expression in common skin tumors. Immunology Letters, 79, 215–219.CrossRefPubMedGoogle Scholar
  32. 32.
    Jablonska, E., Puzewska, W., Grabowska, Z., Jablonski, J., & Talarek, L. (2005). VEGF, IL-18 and NO production by neutrophils and their serum levels in patients with oral cavity cancer. Cytokine, 30, 93–99.CrossRefPubMedGoogle Scholar
  33. 33.
    Pratesi, C., Bortolin, M. T., Bidoli, E., Tedeschi, R., Vaccher, E., & Dolcetti, R., et al. (2006). Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunology and Immunotherapy, 55, 23–30.PubMedGoogle Scholar
  34. 34.
    Naumnik, W., Chyczewska, E., Kovalchuk, O., Talalaj, J., Izycki, T., & Panek, B. (2004). Serum levels of interleukin-18 (IL-18) and soluble interleukin-2 receptor (sIL-2R) in lung cancer. Roczniki Akademii Medycznej w Biaøymstoku, 49, 246–251.Google Scholar
  35. 35.
    Takahata, Y., Takada, H., Nomura, A., Ohshima, K., Nakayama, H., & Tsuda, T., et al. (2001). Interleukin-18 in human milk. Pediatric Research, 50, 268–272.PubMedGoogle Scholar
  36. 36.
    Merendino, R. A., Gangemi, S., Ruello, A., Bene, A., Losi, E., & Lonbardo, G., et al. (2001). Serum levels of interleukin-18 and sICAM-1 in patients affected by breast cancer: preliminary considerations. International Journal of Biological Markers, 16, 126–129.PubMedGoogle Scholar
  37. 37.
    Gunel, N., Coskun, U., Sancak, B., Gunel, U., Hasdemir, O., & Bozkurt, S. (2002). Clinical importance of serum interleukin-18 and nitric oxide activities in breast carcinoma patients. Cancer, 95, 663–667.CrossRefPubMedGoogle Scholar
  38. 38.
    Nouh, M. A., Eissa, S. A., Zaki, S. A., El-Maghraby, S. M., & Kadry, D. Y. (2005). Importance of Serum IL-18 and RANTES as Markers for Breast Carcinoma Progression. Journal of Egyptian National Cancer Institute, 17, 51–55.Google Scholar
  39. 39.
    Gunel, N., Coskun, U., Sancak, B., Hasdemir, O., Sare, M., & Bayram, O., et al. (2003). Prognostic value of serum IL-18 and nitric oxide activity in breast cancer patients at operable stage. American Journal of Clinical Oncology, 26, 416–421.CrossRefPubMedGoogle Scholar
  40. 40.
    Akahiro, J., Konno, R., Ito, K., Okamura, K., & Yaegashi, N. (2004). Impact of serum interleukin-18 level as a prognostic indicator in patients with epithelial ovarian carcinoma. International Journal of Clinical Oncology, 9, 42–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Bushley, A. W., Ferrell, R., McDuffie, K., Terada, K. Y., Carney, M. E., & Thompson P. J., et al. (2004). Polymorphisms of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and IL-18 and the risk of ovarian cancer. Gynecologic Oncology, 95, 672–679.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang, Z. Y., Gaggero. A., Rubartelli, A., Rosso, O., Miotti, S., & Mezzanzanica, D., et al. (2002). Expression of interleukin-18 in human ovarian carcinoma and normal ovarian epithelium: evidence for defective processing in tumor cells. International Journal of Cancer, 98, 873–878.CrossRefGoogle Scholar
  43. 43.
    Le Page, C., Ouellet, V., Madore, J., Hudson, T. J., Tonin, P. N., & Provencher, D. M., et al. (2006). From gene profiling to diagnostic markers: IL-18 and FGF-2 complement CA125 as serum-based markers in epithelial ovarian cancer. International Journal of Cancer, 118, 1750–1758.CrossRefGoogle Scholar
  44. 44.
    Thalmann, G. N., Sermier, A., Rentsch, C., Mohrle, K., Cecchini, M. G., & Studer, U. E. (2000). Urinary Interleukin-8 and 18 predict the response of superficial bladder cancer to intravesical therapy with bacillus Calmette–Guerin. Journal of Urology, 164, 2129–2133.CrossRefPubMedGoogle Scholar
  45. 45.
    Bukan, N., Sozen, S., Coskun, U., Sancak, B., Gunel, N., & Bozkirli, I., et al. (2003). Serum interleukin-18 and nitric oxide activity in bladder carcinoma. European Cytokine Network, 14, 163–167.PubMedGoogle Scholar
  46. 46.
    Eto, M., Koga, H., Noma, H., Yamaguchi, A., Yoshikai, Y., & Naito, S. (2005). Importance of urinary interleukin-18 in intravesical immunotherapy with bacillus Calmette–Guerin for superficial bladder tumors. Urologia Internationalis, 75, 114–118.CrossRefPubMedGoogle Scholar
  47. 47.
    Luo, Y., Yamada, H., Chen, X., Ryan, A. A., Evanoff, D. P., & Triccas, J. A., et al. (2004). Recombinant Mycobacterium bovis bacillus Calmette–Guerin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clinical and Experimental Immunology, 137, 24–34.CrossRefPubMedGoogle Scholar
  48. 48.
    Sozen, S., Coskun, U., Sancak, B., Bukan, N., Gunel, N., & Tunc, L., et al. (2004). Serum levels of interleukin-18 and nitrite+nitrate in renal cell carcinoma patients with different tumor stage and grade. Neoplasma, 51, 25–29.PubMedGoogle Scholar
  49. 49.
    Lebel-Binay, S., Thiounn, N., De Pinieux, G., Vieillefond, A., Debre, B., & Bonnefoy, J. Y. et al. (2003). IL-18 is produced by prostate cancer cells and secreted in response to interferons. International Journal of Cancer, 106, 827–835.CrossRefGoogle Scholar
  50. 50.
    Zhang, B., Wang, Y., Zheng, G. G., Ma, X. T., Li, G., & Zhang, F. K., et al. (2002). Clinical significance of IL-18 gene over-expression in AML. Leukemia Research, 26, 887–892.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang, B., Wu, K. F., Cao, Z. Y., Rao, Q., Ma, X. T., & Zheng, G. G., et al. (2004). IL-18 increases invasiveness of HL-60 myeloid leukemia cells: up-regulation of matrix metalloproteinases-9 (MMP-9) expression. Leukemia Research, 28, 91–95.CrossRefPubMedGoogle Scholar
  52. 52.
    Alexandrakis, M. G., Passam, F. H., Sfiridaki, K., Moschandrea, J., Pappa, C., & Liapi, D., et al. (2004). Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leukemia Research, 28, 259–266.CrossRefPubMedGoogle Scholar
  53. 53.
    Airoldi, I., Raffaghello, L., Cocco, C., Guglielmino, R., Roncella, S., & Fedeli, F., et al. (2004). Heterogeneous expression of interleukin-18 and its receptor in B-cell lymphoproliferative disorders deriving from naive, germinal center, and memory B lymphocytes. Clinical Cancer Research, 10(1 Pt 1), 144–154.CrossRefPubMedGoogle Scholar
  54. 54.
    Mazodier, K., Marin, V., Novick, D., Farnarier, C., Robitail, S., & Schleinitz, N., et al. (2005). Severe imbalance of IL-18/IL-18bp in patients with secondary hemophagocytic syndrome. Blood, 106, 3483–3489.CrossRefPubMedGoogle Scholar
  55. 55.
    Kobashi, K., Iwagaki, H., Yoshino, T., Morimoto, Y., Kohka, H., & Kodama, M., et al. (2001). Down-regulation of IL-18 receptor in cancer patients: its clinical significance. Anticancer Research, 21, 3285–3293.PubMedGoogle Scholar
  56. 56.
    Smith, V. P., Bryant, N. A., & Alcami, A. (2000). Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. Journal of General Virology, 81, 1223–1231.PubMedGoogle Scholar
  57. 57.
    Xiang, Y., Moss, B. (1999). IL-18 binding and inhibition of interferon induction by human poxvirus-encoded proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11537.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee, S. J., Cho, Y. S., Cho, M. C., Shim, J. H., Lee, K. A., & Ko, K. K., et al. (2001). Both E6 and E7 oncoproteins of human papillomavirus 16 inhibit IL-18-induced IFN-gamma production in human peripheral blood mononuclear and NK cells. Journal of Immunology, 167, 497–504.Google Scholar
  59. 59.
    Lee, K. A., Cho, K. J., Kim, S. H., Shim, J. H., Lim, J. S., & Cho, D. H., et al. (2005). IL-18 E42A mutant is resistant to the inhibitory effects of HPV-16 E6 and E7 oncogenes on the IL-18-mediated immune response. Cancer Letter, 229, 261–270.CrossRefGoogle Scholar
  60. 60.
    Jonak, Z. L., Trulli, S., Maier, C., McCabe, F. L., Kirkpatrick, R., & Johanson, K., et al. (2002). High-dose recombinant interleukin-18 induces an effective Th1 immune response to murine MOPC-315 plasmacytoma. Journal of Immunotherapy, 25(Suppl 1), S20–S27.CrossRefPubMedGoogle Scholar
  61. 61.
    Yamashita, K., Iwasaki, T., Tsujimura, T., Sugihara, A., Yamada, N., & Ueda, H., et al. (2002). Interleukin-18 inhibits lodging and subsequent growth of human multiple myeloma cells in the bone marrow. Oncology Reports, 9, 1237–1244.PubMedGoogle Scholar
  62. 62.
    Okamoto, T., Yamada, N., Tsujimura, T., Sugihara, A., Nishizawa, Y., & Ueda, H., et al. (2004). Inhibition by interleukin-18 of the growth of Dunn osteosarcoma cells. Journal of Interferon & Cytokine Research, 24, 161–167.CrossRefGoogle Scholar
  63. 63.
    Arai, N., Akamatsu, S., Arai, S., Toshimori, Y., Hanaya, T., & Tanimoto, T., et al. (2000). Interleukin-18 in combination with IL-2 enhances natural killer cell activity without inducing large amounts of IFN-gamma in vivo. Journal of Interferon & Cytokine Research, 20, 217–224.CrossRefGoogle Scholar
  64. 64.
    Son, Y. I., Dallal, R. M., & Lotze, M. T. (2003). Combined treatment with interleukin-18 and low-dose interleukin-2 induced regression of a murine sarcoma and memory response. Journal of Immunotherapy, 26, 234–240.CrossRefPubMedGoogle Scholar
  65. 65.
    Redlinger, R. E. Jr, Mailliard, R. B., Lotze, M. T., & Barksdale, E. M. Jr (2003). Synergistic interleukin-18 and low-dose interleukin-2 promote regression of established murine neuroblastoma in vivo. Journal of Pediatric Surgery, 38, 301–307.CrossRefPubMedGoogle Scholar
  66. 66.
    Osaki, T., Peron, J. M., Cai, Q., Okamura, H., Robbins, P. D., & Kurimoto, M., et al. (1998). IFNgamma-inducing factor/IL-18 administration mediates IFNgamma-and IL-12-independent antitumor effects. Journal of Immunology, 160, 1742–1749.Google Scholar
  67. 67.
    Yao, N. S., Chen, Y. M., Perng, R. P., & Whang-Peng, J. (2002). Additive effect of Interleukin-12 and Interleukin-18 on the T-helper cell pathway of malignant pleural effusion. Lung, 180, 15–24.CrossRefPubMedGoogle Scholar
  68. 68.
    Li, Q., Carr, A. L., Donald, E. J., Skitzki, J. J., Okuyama, R., & Stoolman L. M., et al. (2005). Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type 1 pattern. Cancer Research, 65, 1063–1070.PubMedGoogle Scholar
  69. 69.
    Osaki, T., Hashimoto, W., Gambotto, A., Okamura, H., Robbins, P. D., & Kurimoto, M., et al. (1999). Potent antitumor effects mediated by local expression of the mature form of the interferon-gamma inducing factor, interleukin-18 (IL-18). Gene Theraphy, 6, 808–815.CrossRefGoogle Scholar
  70. 70.
    Tatsumi, T., Gambotto, A., Robbins, P. D., & Storkus, W. J. (2002). Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Research, 62, 5853–5858.PubMedGoogle Scholar
  71. 71.
    Ju, D. W., Tao, Q., Lou, G., Bai, M., He, L., & Yang, Y., et al. (2001). Interleukin 18 transfection enhances antitumor immunity induced by dendritic cell–tumor cell conjugates. Cancer Research, 61, 3735–3740.PubMedGoogle Scholar
  72. 72.
    Tatsumi, T., Huang, J., Gooding, W. E., Gambotto, A., Robbinsm, P. D., & Vujanovic, N. L., et al. (2003). Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Research, 63, 6378–6386.PubMedGoogle Scholar
  73. 73.
    Hegardt, P., Widegren, B., Li, L., Sjogren, B., Kjellman, C., & Sur, I., et al. (2001). Nitric oxide synthase inhibitor and IL-18 enhance the anti-tumor immune response of rats carrying an intrahepatic colon carcinoma. Cancer Immunology and Immunotherapy, 50, 491–501.CrossRefPubMedGoogle Scholar
  74. 74.
    Iigo, M., Shimamura, M., Matsuda, E., Fujita, K., Nomoto, H., & Satoh, J., et al. (2004). Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa: a possible explanation for inhibition of carcinogenesis and metastasis. Cytokine, 25, 36–44.CrossRefPubMedGoogle Scholar
  75. 75.
    Merendino, R. A., Ruello, A., Cascinu, S., Ferlazzo, B., Bene, A., & Bonanno, D., et al. (2002). Influence of 5-fluorouracil and folinic acid on interleukin-18 production in colorectal cancer patients. International Journal of Biological Markers, 17, 63–66.PubMedGoogle Scholar
  76. 76.
    Carbone, A., Rodeck, U., Mauri, F. A., Sozzi, M., Gaspari, F., & Smirne, C., et al. (2005). Human pancreatic carcinoma cells secrete bioactive interleukin-18 after treatment with 5-fluorouracil: implications for anti-tumor immune response. Cancer Biol Ther, 4, 31–241.Google Scholar
  77. 77.
    Coughlin, C. M., Salhany, K. E., Wysocka, M., Aruga, E., Kurzawa, H., & Chang A. E., et al. (1998). Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. Journal of Clinical Investigation, 101, 1441–1452.PubMedGoogle Scholar
  78. 78.
    Cao, R., Farnebo, J., Kurimoto, M., & Cao, Y. (1999). Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB Journal, 13, 2195–2202.PubMedGoogle Scholar
  79. 79.
    Shimamura, M., Yamamoto, Y., Ashino, H., Oikawa, T., Hazato, T., & Tsuda, H., et al. (2004). Bovine lactoferrin inhibits tumor-induced angiogenesis. International Journal of Cancer, 111, 111–116.CrossRefGoogle Scholar
  80. 80.
    Nakata, A., Tsujimura, T., Sugihara, A., Okamura, H., Iwasaki, T., & Shinkai, K., et al. (1999). Inhibition by interleukin 18 of osteolytic bone metastasis by human breast cancer cells. Anticancer Research 19, 4131–4138.PubMedGoogle Scholar
  81. 81.
    Iwasaki, T., Yamashita, K., Tsujimura, T., Kashiwamura, S., Tsutsui, H., & Kaisho, T., et al. (2002). Interleukin-18 inhibits osteolytic bone metastasis by human lung cancer cells possibly through suppression of osteoclastic bone-resorption in nude mice. Journal of Immunotherapy, 25 Suppl 1, S52–S60.CrossRefPubMedGoogle Scholar
  82. 82.
    Nakamura, Y., Yamada, N., Ohyama, H., Nakasho, K., Nishizawa, Y., & Okamoto, T., et al. (2006). Effect of interleukin-18 on metastasis of mouse osteosarcoma cells. Cancer Immunology and immunotherapy, 12, 1–8, Jan.Google Scholar
  83. 83.
    Golab, J., & Stoklosa, T. (2005). Technology evaluation: SB-485232, GlaxoSmithKline. Current Opinion in Molecular Therapeutics, 7, 85–93.PubMedGoogle Scholar
  84. 84.
    Vidal-Vanaclocha, F., Amezaga, C., Asumendi, A., Kaplanski, G., & Dinarello, C. A. (1994). Interleukin-1 receptor blockade reduces the number and size of murine B16 melanoma hepatic metastases. Cancer Research, 54, 2667–2672.PubMedGoogle Scholar
  85. 85.
    Vidal-Vanaclocha, F., Fantuzzi, G., Mendoza, L., Fuentes, A. M., Anasagasti, M. J., & Martin, J., et al. (2000). IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proceedings of the National Academy of Sciences of the United States of America, 97, 734–739.CrossRefPubMedGoogle Scholar
  86. 86.
    Mendoza, L., Carrascal, T., De Luca, M., Fuentes, A. M., Salado, C., & Blanco, J., et al. (2001). Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18-activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in the murine liver. Hepatology, 34, 298–310.CrossRefPubMedGoogle Scholar
  87. 87.
    Jiang, D., Ying, W., Lu, Y., Wan, J., Zhai, Y., & Liu, W. et al. (2003). Identification of metastasis-associated proteins by proteomic analysis and functional exploration of interleukin-18 in metastasis. Proteomics, 3, 724–737.CrossRefPubMedGoogle Scholar
  88. 88.
    Cho, D., Song, H., Kim, Y. M., Houh, D., Hur, D. Y., & Park, H., et al. (2000). Endogenous interleukin-18 modulates immune escape of murine melanoma cells by regulating the expression of Fas ligand and reactive oxygen intermediates. Cancer Research, 60, 2703–2709.PubMedGoogle Scholar
  89. 89.
    Cho, D., Seung Kang, J., Hoon Park, J., Kim, Y. I., Hahm, E., & Lee, J., et al. (2002). The enhanced IL-18 production by UVB irradiation requires ROI and AP-1 signaling in human keratinocyte cell line (HaCaT). Biochemical and Biophysical Research Communications, 298, 289–295.CrossRefPubMedGoogle Scholar
  90. 90.
    Hue, J., Kim, A., Song, H., Choi, I., Park, H., & Kim, T., et al. (2005). IL-18 enhances SCF production of melanoma cells by regulating ROI and p38 MAPK activity. Immunology Letters, 96, 211–217.CrossRefPubMedGoogle Scholar
  91. 91.
    Telleria, N., Carrascal, T., Beaskoetxea, J., Salado, C., Egilegor, E., & Mendoza, L., et al. (2006). Interleukin-18 upregulates very late antigen-4 expression from melanoma cell variants of low intracellular glutathione content, via oxidative stress-induced autocrine tumor necrosis factor-alpha. Cancer Research.Google Scholar
  92. 92.
    Majima, T., Ichikura, T., Chochi, K., Kawabata, T., Tsujimoto, H., & Sugasawa H., et al. (2006). Exploitation of interleukin-18 by gastric cancers for their growth and evasion of host immunity. International Journal of Cancer, 118, 388–395.CrossRefGoogle Scholar
  93. 93.
    Park, C. C., Morel, J. C., Amin, M. A., Connors, M. A., Harlow, L. A., & Koch, A. E. (2001). Evidence of IL-18 as a novel angiogenic mediator. Journal of Immunology, 167, 1644–1653.Google Scholar
  94. 94.
    Gerdes, N., Sukhova, G. K., Libby, P., Reynolds, R. S., Young, J. L., & Schonbeck, U. (2002). Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. Journal of Experimental Medicine, 195, 245–257.CrossRefPubMedGoogle Scholar
  95. 95.
    Qiao, H., Sonoda, K. H., Sassa, Y., Hisatomi, T., Yoshikawa, H., & Ikeda, Y., et al. (2004). Abnormal retinal vascular development in IL-18 knockout mice. Laboratory Investigation, 84, 973–980.CrossRefPubMedGoogle Scholar
  96. 96.
    Cho, M. L., Jung, Y. O., Moon, Y. M., Min, S. Y., Yoon, C. H., & Lee, S. H., et al. (2006). Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunology Letters, 103, 159–166.CrossRefPubMedGoogle Scholar
  97. 97.
    Mendoza, L., Gutierrez, V., Carrascal, T., Valcárcel, M., Dinarello, C. A., & Vidal-Vanaclocha, F. (2006). Interleukin-18 mediates proangiogenic action of vascular endothelial growth factor on myofibroblast and endothelial cell recruitment into hepatic melanoma metastasis. Hepatology.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Fernando Vidal-Vanaclocha
    • 1
    • 2
  • Lorea Mendoza
    • 2
  • Naiara Telleria
    • 2
  • Clarisa Salado
    • 2
  • María Valcárcel
    • 2
  • Natalia Gallot
    • 2
  • Teresa Carrascal
    • 2
  • Eider Egilegor
    • 4
  • Jabier Beaskoetxea
    • 2
  • Charles A. Dinarello
    • 3
  1. 1.Department of Cell Biology and HistologyBasque Country University School of Medicine and DentistryLeioa, BizkaiaSpain
  2. 2.Dominion Pharmakine, Bizkaia Technology ParkBizkaiaSpain
  3. 3.University of Colorado Health Sciences CenterDenverUSA
  4. 4.Dominion Pharmakine, Bizkaia Technology ParkBizkaiaSpain

Personalised recommendations