Skip to main content

Advertisement

Log in

Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Summary

Interleukin-18 (IL-18, interferon [IFN]-gamma-inducing factor) is a proinflammatory cytokine converted to a biologically active molecule by interleukin (IL)-1beta converting enzyme (caspase-1). A wide range of normal and cancer cell types can produce and respond to IL-18 through a specific receptor (IL-18R) belonging to the toll-like receptor family. The activity of IL-18 is regulated by IL-18-binding protein (IL-18bp), a secreted protein possessing the ability to neutralize IL-18 and whose blood level is affected by renal function and is induced by IFNgamma. IL-18 plays a central role in inflammation and immune response, contributing to the pathogenesis and pathophysiology of infectious and inflammatory diseases. Because immune-stimulating effects of IL-18 have antineoplastic properties, IL-18 has been proposed as a novel adjuvant therapy against cancer. However, IL-18 increases in the blood of the majority of cancer patients and has been associated with disease progression and, in some cancer types, with metastatic recurrence risk and poor clinical outcome and survival. Under experimental conditions, cancer cells can also escape immune recognition, increase their adherence to the microvascular wall and even induce production of angiogenic and tumor growth-stimulating factors via IL-18-dependent mechanism. This is particularly visible in melanoma cells. Thus, the role of IL-18 in cancer progression and metastasis remains controversial. This review examines the clinical correlations and biological effects of IL-18 during cancer development and highlights recent experimental insights into prometastatic and proangiogenic effects of IL-18 and the use of IL-18bp against cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dinarello, C. A. (1999). Interleukin-18. Methods, 19, 121–132.

    Article  PubMed  CAS  Google Scholar 

  2. Sims J. E. (2002). IL-1 and IL-18 receptors, and their extended family. Current Opinion in Immunology, 14, 117–122.

    Article  PubMed  CAS  Google Scholar 

  3. Torigoe, K., Ushio, S., Okura, T., Kobayashi, S., Taniai, M., & Kunikata, T., et al. (1997). Purification and characterization of the human interleukin-18 receptor. Journal Of Biological Chemistry, 272, 25737–25742.

    Article  PubMed  CAS  Google Scholar 

  4. Born, T. L., Thomassen, E., Bird, T. A., & Sims, J. E. (1998). Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling. Journal of Biological Chemistry, 273, 29445–29450.

    Article  PubMed  CAS  Google Scholar 

  5. Dinarello, C. A., Novick, D., Puren, A. J., Fantuzzi, G., Shapiro, L., & Mu¨hl, H., et al. (1998). Overview of interleukin-18: more than an interferon-gamma inducing factor. Journal of Leukocyte Biology, 63, 658–666.

    PubMed  CAS  Google Scholar 

  6. Takeuchi, M., Okura, T., Mori, T., Akita, K., Ohta, T., & Ikeda, M., et al. (1999). Intracellular production of interleukin-18 in human epithelial- like cell lines is enhanced by hyperosmotic stress in vitro. Cell & Tissue Research, 297, 467–473.

    Article  CAS  Google Scholar 

  7. Puren, A. J., Fantuzzi, G., Gu, Y., Su, M. S., & Dinarello, C. A. (1998). Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. Journal of Clinical Investigation, 101, 711–719.

    PubMed  CAS  Google Scholar 

  8. Nakanishi, K., Yoshimoto, T., Tsutsui, H., & Okamura, H. (2001). Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine & Growth Factor Reviews, 12, 53–72.

    Article  CAS  Google Scholar 

  9. Dinarello, C. A. (2000). Targeting interleukin 18 with interleukin 18 binding protein. Annals of the Rheumatic Diseases, 59(Suppl. 1), i17.

    Article  PubMed  CAS  Google Scholar 

  10. Moller, B., Paulukat, J., Nold, M., Behrens, M., Kukoc-Zivojnov, N., & Kaltwasser, J. P., et al. (2003). Interferon-gamma induces expression of interleukin-18 binding protein in fibroblast-like synoviocytes. Rheumatology (Oxford), 42, 442–445.

    Article  CAS  Google Scholar 

  11. Neumayr, G., Ludwiczek, O., Hoertnagl, H., Pfister, R., Mitterbauer, G., & Moschen, A., et al. (2005). The impact of prolonged strenuous endurance exercise on interleukin 18 and interleukin 18 binding protein in recreational cyclists. International Journal of Sports Medicine, 26, 836–840.

    Article  PubMed  CAS  Google Scholar 

  12. Stuyt, R. J., Netea, M. G., van Krieken, J. H., van der Meer, J. W., & Kullberg, B. J. (2004). Recombinant interleukin-18 protects against disseminated Candida albicans infection in mice. Journal of Infectious Diseases, 189, 1524–1527.

    Article  PubMed  CAS  Google Scholar 

  13. Pizarro, T. T., Michie, M. H., Bentz, M., Woraratanadharm, J., Smith, M. F. Jr., & Foley, E., et al. (1999). IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. Journal of Immunology, 162, 6829–6835.

    CAS  Google Scholar 

  14. Menge, T., Jander, S., & Stoll, G. (2001). Induction of the proinflammatory cytokine interleukin-18 by axonal injury. Journal of Neuroscience Research, 65, 332–339.

    Article  PubMed  CAS  Google Scholar 

  15. Marino, E., & Cardier, J. E. (2003). Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-alpha and Fas (CD95). Cytokine, 22, 142–148.

    Article  PubMed  CAS  Google Scholar 

  16. Kaser, A., Novick, D., Rubinstein, M., Siegmund, B., Enrich, B., & Koch, R. O., et al. (2002). Interferon-alpha induces interleukin-18 binding protein in chronic hepatitis C patients. Clinical and Experimental Immunology, 129, 332–338.

    Article  PubMed  CAS  Google Scholar 

  17. Ludwiczek, O., Kaser, A., Novick, D., Dinarello, C. A., Rubinstein, M., & Vogel W, et al. (2002). Plasma levels of interleukin-18 and interleukin-18 binding protein are elevated in patients with chronic liver disease. Journal of Clinical Immunology, 22, 331–337.

    Article  PubMed  CAS  Google Scholar 

  18. Ueno, N., Kashiwamura, S., Ueda, H., Okamura, H., Tsuji, N. M., & Hosohara, K., et al. (2005). Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock, 24, 564–570.

    Article  PubMed  CAS  Google Scholar 

  19. Lissoni, P., Brivio, F., Rovelli, F., Fumagalli, G., Malugani, F., & Vaghi, M., et al. (2000). Serum concentrations of interleukin-18 in early and advanced cancer patients: enhanced secretion in metastatic disease. Journal of Biological Regulators and Homeostatic Agents, 14, 275–277.

    PubMed  CAS  Google Scholar 

  20. Tsuboi, K., Miyazaki, T., Nakajima, M., Fukai, Y., Masuda, N., & Manda, R., et al. (2004). Serum interleukin-12 and interleukin-18 levels as a tumor marker in patients with esophageal carcinoma. Cancer Letter, 205, 207–214.

    Article  CAS  Google Scholar 

  21. Kawabata, T., Ichikura, T., Majima, T., Seki, S., Chochi, K., & Takayama, E., et al. (2001). Preoperative serum interleukin-18 level as a postoperative prognostic marker in patients with gastric carcinoma. Cancer, 92, 2050–2055.

    Article  PubMed  CAS  Google Scholar 

  22. Majima, T., Ichikura, T., Seki, S., Takayama, E., Matsumoto, A., & Kawabata, T., et al. (2002). The influence of interleukin-10 and interleukin-18 on interferon-gamma production by peritoneal exudate cells in patients with gastric carcinoma. Anticancer Research, 22, 1193–1199.

    PubMed  CAS  Google Scholar 

  23. Bellone, G., Smirne, C., Mauri, F. A., Tonel, E., Carbone, A., & Buffolino, A., et al. (2006). Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother, 55, 684–698.

    Article  PubMed  CAS  Google Scholar 

  24. Carrascal, T., Mendoza, L., Valcarcel, M., Salado, C., Egilegor, E., & Tellerýa, N., et al. (2003). Interleukin-18 binding protein reduces B16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium. Cancer Research, 63, 491–497.

    PubMed  CAS  Google Scholar 

  25. Mendoza, L., Valcarcel, M., Carrascal, T., Egilegor, E., Salado, C., & Sim, B. K., et al. (2004). Inhibition of cytokine-induced microvascular arrest of tumor cells by recombinant endostatin prevents experimental hepatic melanoma metastasis. Cancer Research, 64, 304–310.

    Article  PubMed  CAS  Google Scholar 

  26. Pages, F., Berger, A., Henglein, B., Piqueras, B., Danel, C., & Zinzindohoue, F., et al. (1999). Modulation of interleukin-18 expression in human colon carcinoma: consequences for tumor immune surveillance. International Journal of Cancer, 84, 326–330.

    Article  CAS  Google Scholar 

  27. Wen, Z., Ouyang, Q., Chen, D., & Su, X. (2003). Interleukin 18 expression in colon cancer and adenoma. Sichuan Da Xue Xue Bao Yi Xue Ban, 34, 262–264.

    PubMed  CAS  Google Scholar 

  28. Asakawa M., Kono H., Amemiya H., Matsuda M., Suzuki T., & Maki A., et al. (2006). Role of interleukin-18 and its receptor in hepatocellular carcinoma associated with hepatitis C virus infection. International Journal of Cancer, 118, 564–570.

    Article  CAS  Google Scholar 

  29. Riedel, F., Adam, S., Feick, P., Haas, S., Gotte, K., & Hormann, K. (2004). Mannheim Alcohol Study Group. Expression of IL-18 in patients with head and neck squamous cell carcinoma. International Journal of Molecular Medicine, 13, 267–272.

    PubMed  CAS  Google Scholar 

  30. Cortesina, G. (2004). Constitutive expression of interleukin-18 in head and neck squamous carcinoma cells. Head Neck, 26, 494–503.

    Article  PubMed  Google Scholar 

  31. Park, H., Byun, D., Kim, T. S., Kim, Y. I., Kang, J. S., & Hahm, E. S., et al. (2001). Enhanced IL-18 expression in common skin tumors. Immunology Letters, 79, 215–219.

    Article  PubMed  CAS  Google Scholar 

  32. Jablonska, E., Puzewska, W., Grabowska, Z., Jablonski, J., & Talarek, L. (2005). VEGF, IL-18 and NO production by neutrophils and their serum levels in patients with oral cavity cancer. Cytokine, 30, 93–99.

    Article  PubMed  CAS  Google Scholar 

  33. Pratesi, C., Bortolin, M. T., Bidoli, E., Tedeschi, R., Vaccher, E., & Dolcetti, R., et al. (2006). Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunology and Immunotherapy, 55, 23–30.

    PubMed  CAS  Google Scholar 

  34. Naumnik, W., Chyczewska, E., Kovalchuk, O., Talalaj, J., Izycki, T., & Panek, B. (2004). Serum levels of interleukin-18 (IL-18) and soluble interleukin-2 receptor (sIL-2R) in lung cancer. Roczniki Akademii Medycznej w Biaøymstoku, 49, 246–251.

    CAS  Google Scholar 

  35. Takahata, Y., Takada, H., Nomura, A., Ohshima, K., Nakayama, H., & Tsuda, T., et al. (2001). Interleukin-18 in human milk. Pediatric Research, 50, 268–272.

    PubMed  CAS  Google Scholar 

  36. Merendino, R. A., Gangemi, S., Ruello, A., Bene, A., Losi, E., & Lonbardo, G., et al. (2001). Serum levels of interleukin-18 and sICAM-1 in patients affected by breast cancer: preliminary considerations. International Journal of Biological Markers, 16, 126–129.

    PubMed  CAS  Google Scholar 

  37. Gunel, N., Coskun, U., Sancak, B., Gunel, U., Hasdemir, O., & Bozkurt, S. (2002). Clinical importance of serum interleukin-18 and nitric oxide activities in breast carcinoma patients. Cancer, 95, 663–667.

    Article  PubMed  CAS  Google Scholar 

  38. Nouh, M. A., Eissa, S. A., Zaki, S. A., El-Maghraby, S. M., & Kadry, D. Y. (2005). Importance of Serum IL-18 and RANTES as Markers for Breast Carcinoma Progression. Journal of Egyptian National Cancer Institute, 17, 51–55.

    Google Scholar 

  39. Gunel, N., Coskun, U., Sancak, B., Hasdemir, O., Sare, M., & Bayram, O., et al. (2003). Prognostic value of serum IL-18 and nitric oxide activity in breast cancer patients at operable stage. American Journal of Clinical Oncology, 26, 416–421.

    Article  PubMed  Google Scholar 

  40. Akahiro, J., Konno, R., Ito, K., Okamura, K., & Yaegashi, N. (2004). Impact of serum interleukin-18 level as a prognostic indicator in patients with epithelial ovarian carcinoma. International Journal of Clinical Oncology, 9, 42–46.

    Article  PubMed  CAS  Google Scholar 

  41. Bushley, A. W., Ferrell, R., McDuffie, K., Terada, K. Y., Carney, M. E., & Thompson P. J., et al. (2004). Polymorphisms of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and IL-18 and the risk of ovarian cancer. Gynecologic Oncology, 95, 672–679.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, Z. Y., Gaggero. A., Rubartelli, A., Rosso, O., Miotti, S., & Mezzanzanica, D., et al. (2002). Expression of interleukin-18 in human ovarian carcinoma and normal ovarian epithelium: evidence for defective processing in tumor cells. International Journal of Cancer, 98, 873–878.

    Article  CAS  Google Scholar 

  43. Le Page, C., Ouellet, V., Madore, J., Hudson, T. J., Tonin, P. N., & Provencher, D. M., et al. (2006). From gene profiling to diagnostic markers: IL-18 and FGF-2 complement CA125 as serum-based markers in epithelial ovarian cancer. International Journal of Cancer, 118, 1750–1758.

    Article  CAS  Google Scholar 

  44. Thalmann, G. N., Sermier, A., Rentsch, C., Mohrle, K., Cecchini, M. G., & Studer, U. E. (2000). Urinary Interleukin-8 and 18 predict the response of superficial bladder cancer to intravesical therapy with bacillus Calmette–Guerin. Journal of Urology, 164, 2129–2133.

    Article  PubMed  CAS  Google Scholar 

  45. Bukan, N., Sozen, S., Coskun, U., Sancak, B., Gunel, N., & Bozkirli, I., et al. (2003). Serum interleukin-18 and nitric oxide activity in bladder carcinoma. European Cytokine Network, 14, 163–167.

    PubMed  CAS  Google Scholar 

  46. Eto, M., Koga, H., Noma, H., Yamaguchi, A., Yoshikai, Y., & Naito, S. (2005). Importance of urinary interleukin-18 in intravesical immunotherapy with bacillus Calmette–Guerin for superficial bladder tumors. Urologia Internationalis, 75, 114–118.

    Article  PubMed  CAS  Google Scholar 

  47. Luo, Y., Yamada, H., Chen, X., Ryan, A. A., Evanoff, D. P., & Triccas, J. A., et al. (2004). Recombinant Mycobacterium bovis bacillus Calmette–Guerin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clinical and Experimental Immunology, 137, 24–34.

    Article  PubMed  CAS  Google Scholar 

  48. Sozen, S., Coskun, U., Sancak, B., Bukan, N., Gunel, N., & Tunc, L., et al. (2004). Serum levels of interleukin-18 and nitrite+nitrate in renal cell carcinoma patients with different tumor stage and grade. Neoplasma, 51, 25–29.

    PubMed  CAS  Google Scholar 

  49. Lebel-Binay, S., Thiounn, N., De Pinieux, G., Vieillefond, A., Debre, B., & Bonnefoy, J. Y. et al. (2003). IL-18 is produced by prostate cancer cells and secreted in response to interferons. International Journal of Cancer, 106, 827–835.

    Article  CAS  Google Scholar 

  50. Zhang, B., Wang, Y., Zheng, G. G., Ma, X. T., Li, G., & Zhang, F. K., et al. (2002). Clinical significance of IL-18 gene over-expression in AML. Leukemia Research, 26, 887–892.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang, B., Wu, K. F., Cao, Z. Y., Rao, Q., Ma, X. T., & Zheng, G. G., et al. (2004). IL-18 increases invasiveness of HL-60 myeloid leukemia cells: up-regulation of matrix metalloproteinases-9 (MMP-9) expression. Leukemia Research, 28, 91–95.

    Article  PubMed  CAS  Google Scholar 

  52. Alexandrakis, M. G., Passam, F. H., Sfiridaki, K., Moschandrea, J., Pappa, C., & Liapi, D., et al. (2004). Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leukemia Research, 28, 259–266.

    Article  PubMed  CAS  Google Scholar 

  53. Airoldi, I., Raffaghello, L., Cocco, C., Guglielmino, R., Roncella, S., & Fedeli, F., et al. (2004). Heterogeneous expression of interleukin-18 and its receptor in B-cell lymphoproliferative disorders deriving from naive, germinal center, and memory B lymphocytes. Clinical Cancer Research, 10(1 Pt 1), 144–154.

    Article  PubMed  CAS  Google Scholar 

  54. Mazodier, K., Marin, V., Novick, D., Farnarier, C., Robitail, S., & Schleinitz, N., et al. (2005). Severe imbalance of IL-18/IL-18bp in patients with secondary hemophagocytic syndrome. Blood, 106, 3483–3489.

    Article  PubMed  CAS  Google Scholar 

  55. Kobashi, K., Iwagaki, H., Yoshino, T., Morimoto, Y., Kohka, H., & Kodama, M., et al. (2001). Down-regulation of IL-18 receptor in cancer patients: its clinical significance. Anticancer Research, 21, 3285–3293.

    PubMed  CAS  Google Scholar 

  56. Smith, V. P., Bryant, N. A., & Alcami, A. (2000). Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. Journal of General Virology, 81, 1223–1231.

    PubMed  CAS  Google Scholar 

  57. Xiang, Y., Moss, B. (1999). IL-18 binding and inhibition of interferon induction by human poxvirus-encoded proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11537.

    Article  PubMed  CAS  Google Scholar 

  58. Lee, S. J., Cho, Y. S., Cho, M. C., Shim, J. H., Lee, K. A., & Ko, K. K., et al. (2001). Both E6 and E7 oncoproteins of human papillomavirus 16 inhibit IL-18-induced IFN-gamma production in human peripheral blood mononuclear and NK cells. Journal of Immunology, 167, 497–504.

    CAS  Google Scholar 

  59. Lee, K. A., Cho, K. J., Kim, S. H., Shim, J. H., Lim, J. S., & Cho, D. H., et al. (2005). IL-18 E42A mutant is resistant to the inhibitory effects of HPV-16 E6 and E7 oncogenes on the IL-18-mediated immune response. Cancer Letter, 229, 261–270.

    Article  CAS  Google Scholar 

  60. Jonak, Z. L., Trulli, S., Maier, C., McCabe, F. L., Kirkpatrick, R., & Johanson, K., et al. (2002). High-dose recombinant interleukin-18 induces an effective Th1 immune response to murine MOPC-315 plasmacytoma. Journal of Immunotherapy, 25(Suppl 1), S20–S27.

    Article  PubMed  CAS  Google Scholar 

  61. Yamashita, K., Iwasaki, T., Tsujimura, T., Sugihara, A., Yamada, N., & Ueda, H., et al. (2002). Interleukin-18 inhibits lodging and subsequent growth of human multiple myeloma cells in the bone marrow. Oncology Reports, 9, 1237–1244.

    PubMed  CAS  Google Scholar 

  62. Okamoto, T., Yamada, N., Tsujimura, T., Sugihara, A., Nishizawa, Y., & Ueda, H., et al. (2004). Inhibition by interleukin-18 of the growth of Dunn osteosarcoma cells. Journal of Interferon & Cytokine Research, 24, 161–167.

    Article  CAS  Google Scholar 

  63. Arai, N., Akamatsu, S., Arai, S., Toshimori, Y., Hanaya, T., & Tanimoto, T., et al. (2000). Interleukin-18 in combination with IL-2 enhances natural killer cell activity without inducing large amounts of IFN-gamma in vivo. Journal of Interferon & Cytokine Research, 20, 217–224.

    Article  CAS  Google Scholar 

  64. Son, Y. I., Dallal, R. M., & Lotze, M. T. (2003). Combined treatment with interleukin-18 and low-dose interleukin-2 induced regression of a murine sarcoma and memory response. Journal of Immunotherapy, 26, 234–240.

    Article  PubMed  CAS  Google Scholar 

  65. Redlinger, R. E. Jr, Mailliard, R. B., Lotze, M. T., & Barksdale, E. M. Jr (2003). Synergistic interleukin-18 and low-dose interleukin-2 promote regression of established murine neuroblastoma in vivo. Journal of Pediatric Surgery, 38, 301–307.

    Article  PubMed  Google Scholar 

  66. Osaki, T., Peron, J. M., Cai, Q., Okamura, H., Robbins, P. D., & Kurimoto, M., et al. (1998). IFNgamma-inducing factor/IL-18 administration mediates IFNgamma-and IL-12-independent antitumor effects. Journal of Immunology, 160, 1742–1749.

    CAS  Google Scholar 

  67. Yao, N. S., Chen, Y. M., Perng, R. P., & Whang-Peng, J. (2002). Additive effect of Interleukin-12 and Interleukin-18 on the T-helper cell pathway of malignant pleural effusion. Lung, 180, 15–24.

    Article  PubMed  CAS  Google Scholar 

  68. Li, Q., Carr, A. L., Donald, E. J., Skitzki, J. J., Okuyama, R., & Stoolman L. M., et al. (2005). Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type 1 pattern. Cancer Research, 65, 1063–1070.

    PubMed  Google Scholar 

  69. Osaki, T., Hashimoto, W., Gambotto, A., Okamura, H., Robbins, P. D., & Kurimoto, M., et al. (1999). Potent antitumor effects mediated by local expression of the mature form of the interferon-gamma inducing factor, interleukin-18 (IL-18). Gene Theraphy, 6, 808–815.

    Article  CAS  Google Scholar 

  70. Tatsumi, T., Gambotto, A., Robbins, P. D., & Storkus, W. J. (2002). Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Research, 62, 5853–5858.

    PubMed  CAS  Google Scholar 

  71. Ju, D. W., Tao, Q., Lou, G., Bai, M., He, L., & Yang, Y., et al. (2001). Interleukin 18 transfection enhances antitumor immunity induced by dendritic cell–tumor cell conjugates. Cancer Research, 61, 3735–3740.

    PubMed  CAS  Google Scholar 

  72. Tatsumi, T., Huang, J., Gooding, W. E., Gambotto, A., Robbinsm, P. D., & Vujanovic, N. L., et al. (2003). Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Research, 63, 6378–6386.

    PubMed  CAS  Google Scholar 

  73. Hegardt, P., Widegren, B., Li, L., Sjogren, B., Kjellman, C., & Sur, I., et al. (2001). Nitric oxide synthase inhibitor and IL-18 enhance the anti-tumor immune response of rats carrying an intrahepatic colon carcinoma. Cancer Immunology and Immunotherapy, 50, 491–501.

    Article  PubMed  CAS  Google Scholar 

  74. Iigo, M., Shimamura, M., Matsuda, E., Fujita, K., Nomoto, H., & Satoh, J., et al. (2004). Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa: a possible explanation for inhibition of carcinogenesis and metastasis. Cytokine, 25, 36–44.

    Article  PubMed  CAS  Google Scholar 

  75. Merendino, R. A., Ruello, A., Cascinu, S., Ferlazzo, B., Bene, A., & Bonanno, D., et al. (2002). Influence of 5-fluorouracil and folinic acid on interleukin-18 production in colorectal cancer patients. International Journal of Biological Markers, 17, 63–66.

    PubMed  CAS  Google Scholar 

  76. Carbone, A., Rodeck, U., Mauri, F. A., Sozzi, M., Gaspari, F., & Smirne, C., et al. (2005). Human pancreatic carcinoma cells secrete bioactive interleukin-18 after treatment with 5-fluorouracil: implications for anti-tumor immune response. Cancer Biol Ther, 4, 31–241.

    Google Scholar 

  77. Coughlin, C. M., Salhany, K. E., Wysocka, M., Aruga, E., Kurzawa, H., & Chang A. E., et al. (1998). Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. Journal of Clinical Investigation, 101, 1441–1452.

    PubMed  CAS  Google Scholar 

  78. Cao, R., Farnebo, J., Kurimoto, M., & Cao, Y. (1999). Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB Journal, 13, 2195–2202.

    PubMed  CAS  Google Scholar 

  79. Shimamura, M., Yamamoto, Y., Ashino, H., Oikawa, T., Hazato, T., & Tsuda, H., et al. (2004). Bovine lactoferrin inhibits tumor-induced angiogenesis. International Journal of Cancer, 111, 111–116.

    Article  CAS  Google Scholar 

  80. Nakata, A., Tsujimura, T., Sugihara, A., Okamura, H., Iwasaki, T., & Shinkai, K., et al. (1999). Inhibition by interleukin 18 of osteolytic bone metastasis by human breast cancer cells. Anticancer Research 19, 4131–4138.

    PubMed  CAS  Google Scholar 

  81. Iwasaki, T., Yamashita, K., Tsujimura, T., Kashiwamura, S., Tsutsui, H., & Kaisho, T., et al. (2002). Interleukin-18 inhibits osteolytic bone metastasis by human lung cancer cells possibly through suppression of osteoclastic bone-resorption in nude mice. Journal of Immunotherapy, 25 Suppl 1, S52–S60.

    Article  PubMed  CAS  Google Scholar 

  82. Nakamura, Y., Yamada, N., Ohyama, H., Nakasho, K., Nishizawa, Y., & Okamoto, T., et al. (2006). Effect of interleukin-18 on metastasis of mouse osteosarcoma cells. Cancer Immunology and immunotherapy, 12, 1–8, Jan.

    Google Scholar 

  83. Golab, J., & Stoklosa, T. (2005). Technology evaluation: SB-485232, GlaxoSmithKline. Current Opinion in Molecular Therapeutics, 7, 85–93.

    PubMed  CAS  Google Scholar 

  84. Vidal-Vanaclocha, F., Amezaga, C., Asumendi, A., Kaplanski, G., & Dinarello, C. A. (1994). Interleukin-1 receptor blockade reduces the number and size of murine B16 melanoma hepatic metastases. Cancer Research, 54, 2667–2672.

    PubMed  CAS  Google Scholar 

  85. Vidal-Vanaclocha, F., Fantuzzi, G., Mendoza, L., Fuentes, A. M., Anasagasti, M. J., & Martin, J., et al. (2000). IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proceedings of the National Academy of Sciences of the United States of America, 97, 734–739.

    Article  PubMed  CAS  Google Scholar 

  86. Mendoza, L., Carrascal, T., De Luca, M., Fuentes, A. M., Salado, C., & Blanco, J., et al. (2001). Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18-activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in the murine liver. Hepatology, 34, 298–310.

    Article  PubMed  CAS  Google Scholar 

  87. Jiang, D., Ying, W., Lu, Y., Wan, J., Zhai, Y., & Liu, W. et al. (2003). Identification of metastasis-associated proteins by proteomic analysis and functional exploration of interleukin-18 in metastasis. Proteomics, 3, 724–737.

    Article  PubMed  CAS  Google Scholar 

  88. Cho, D., Song, H., Kim, Y. M., Houh, D., Hur, D. Y., & Park, H., et al. (2000). Endogenous interleukin-18 modulates immune escape of murine melanoma cells by regulating the expression of Fas ligand and reactive oxygen intermediates. Cancer Research, 60, 2703–2709.

    PubMed  CAS  Google Scholar 

  89. Cho, D., Seung Kang, J., Hoon Park, J., Kim, Y. I., Hahm, E., & Lee, J., et al. (2002). The enhanced IL-18 production by UVB irradiation requires ROI and AP-1 signaling in human keratinocyte cell line (HaCaT). Biochemical and Biophysical Research Communications, 298, 289–295.

    Article  PubMed  CAS  Google Scholar 

  90. Hue, J., Kim, A., Song, H., Choi, I., Park, H., & Kim, T., et al. (2005). IL-18 enhances SCF production of melanoma cells by regulating ROI and p38 MAPK activity. Immunology Letters, 96, 211–217.

    Article  PubMed  CAS  Google Scholar 

  91. Telleria, N., Carrascal, T., Beaskoetxea, J., Salado, C., Egilegor, E., & Mendoza, L., et al. (2006). Interleukin-18 upregulates very late antigen-4 expression from melanoma cell variants of low intracellular glutathione content, via oxidative stress-induced autocrine tumor necrosis factor-alpha. Cancer Research.

  92. Majima, T., Ichikura, T., Chochi, K., Kawabata, T., Tsujimoto, H., & Sugasawa H., et al. (2006). Exploitation of interleukin-18 by gastric cancers for their growth and evasion of host immunity. International Journal of Cancer, 118, 388–395.

    Article  CAS  Google Scholar 

  93. Park, C. C., Morel, J. C., Amin, M. A., Connors, M. A., Harlow, L. A., & Koch, A. E. (2001). Evidence of IL-18 as a novel angiogenic mediator. Journal of Immunology, 167, 1644–1653.

    CAS  Google Scholar 

  94. Gerdes, N., Sukhova, G. K., Libby, P., Reynolds, R. S., Young, J. L., & Schonbeck, U. (2002). Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. Journal of Experimental Medicine, 195, 245–257.

    Article  PubMed  CAS  Google Scholar 

  95. Qiao, H., Sonoda, K. H., Sassa, Y., Hisatomi, T., Yoshikawa, H., & Ikeda, Y., et al. (2004). Abnormal retinal vascular development in IL-18 knockout mice. Laboratory Investigation, 84, 973–980.

    Article  PubMed  CAS  Google Scholar 

  96. Cho, M. L., Jung, Y. O., Moon, Y. M., Min, S. Y., Yoon, C. H., & Lee, S. H., et al. (2006). Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunology Letters, 103, 159–166.

    Article  PubMed  CAS  Google Scholar 

  97. Mendoza, L., Gutierrez, V., Carrascal, T., Valcárcel, M., Dinarello, C. A., & Vidal-Vanaclocha, F. (2006). Interleukin-18 mediates proangiogenic action of vascular endothelial growth factor on myofibroblast and endothelial cell recruitment into hepatic melanoma metastasis. Hepatology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Vidal-Vanaclocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal-Vanaclocha, F., Mendoza, L., Telleria, N. et al. Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev 25, 417–434 (2006). https://doi.org/10.1007/s10555-006-9013-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9013-3

Keywords

Navigation