Cancer and Metastasis Reviews

, Volume 25, Issue 2, pp 203–220 | Cite as

Molecular mechanisms of metastasis

  • Dave S. B. Hoon
  • Minoru Kitago
  • Joseph Kim
  • Takuji Mori
  • Adriano Piris
  • Katherine Szyfelbein
  • Martin C. MihmJr.
  • S. David Nathanson
  • Timothy P. Padera
  • Ann F. Chambers
  • Sharon A. Vantyghem
  • Ian C. MacDonald
  • Steven C. Shivers
  • Marwan Alsarraj
  • Douglas S. Reintgen
  • Bernward Passlick
  • Wulf Sienel
  • Klaus Pantel


A major topic covered at the First International Symposium on Cancer Metastasis and the Lymphovascular System was the molecular mechanisms of metastasis. This has become of major interest in recent years as we have discovered new metastasis-related genes and gained understanding of the molecular events of lymphatic metastasis. The symposium covered new aspects and important questions related to the events of metastasis in both humans and animals. The basic and clinical related research covered in this topic represented many disciplines. The presentations showed novel findings and at the same time, raised many new unanswered questions, indicating the limited knowledge we still have regarding the molecular events of metastasis. The hope is that further unraveling of the direct and indirect molecular events of lymphatic metastasis will lead to new approaches in developing effective therapeutics.


Chemokines Intravital videoscopy Lymphatic vessels Lymph node Metastasis Oncogenes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paget S: The distribution of secondary growths in cancer of the breast. Lancet 1: 571–573, 1889Google Scholar
  2. 2.
    Zlotnik A, Yoshie O: Chemokines: A new classification system and their role in immunity. Immunity 12: 121–127, 2000PubMedGoogle Scholar
  3. 3.
    Moser B, Loetscher P: Lymphocyte traffic control by chemokines. Nat Immunol 2: 123–128, 2001PubMedGoogle Scholar
  4. 4.
    Lu W, Gersting JA, Maheshwari A, Christensen RD, Calhoun DA: Developmental expression of chemokine receptor genes in the human fetus. Early Hum Dev 81: 489–496, 2005PubMedGoogle Scholar
  5. 5.
    Mori T, Kim J, Yamano T, Takeuchi H, Huang S, Umetani N, Koyanagi K, Hoon DS: Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res 65: 1800–1807, 2005PubMedGoogle Scholar
  6. 6.
    Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS: CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res 10: 2351–2358, 2004PubMedGoogle Scholar
  7. 7.
    Kato M, Kitayama J, Kazama S, Nagawa H: Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res 5: R144–150, 2003PubMedGoogle Scholar
  8. 8.
    Rot A, von Andrian UH: Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annu Rev Immunol 22: 891–928, 2004PubMedGoogle Scholar
  9. 9.
    Sallusto F, Mackay CR: Chemoattractants and their receptors in homeostasis and inflammation. Curr Opin Immunol 16: 724–731, 2004PubMedGoogle Scholar
  10. 10.
    Hjelmstrom P, Fjell J, Nakagawa T, Sacca R, Cuff CA, Ruddle NH: Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am J Pathol 156: 1133–1138, 2000PubMedGoogle Scholar
  11. 11.
    Gunzer M, Schafer A, Borgmann S, Grabbe S, Zanker KS, Brocker EB, Kampgen E, Friedl P: Antigen presentation in extracellular matrix: Interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13: 323–332, 2000PubMedGoogle Scholar
  12. 12.
    Willimann K, Legler DF, Loetscher M, Roos RS, Delgado MB, Clark-Lewis I, Baggiolini M, Moser B: The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 28: 2025–2034, 1998PubMedGoogle Scholar
  13. 13.
    Locati M, Bonecchi R, Corsi MM: Chemokines and their receptors: Roles in specific clinical conditions and measurement in the clinical laboratory. Am J Clin Pathol 123 Suppl: S82–95, 2005PubMedGoogle Scholar
  14. 14.
    Bacon K, Baggiolini M, Broxmeyer H, Horuk R, Lindley I, Mantovani A, Maysushima K, Murphy P, Nomiyama H, Oppenheim J, Rot A, Schall T, Tsang M, Thorpe R, Van Damme J, Wadhwa M, Yoshie O, Zlotnik A, Zoon K: Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res 22: 1067–1068, 2002PubMedGoogle Scholar
  15. 15.
    Crowson A, Magro C, Mihm M: The melanocytic proliferations: A comprehensive textbook of pigmented lesions. Wisley-Liss, New York, 2001Google Scholar
  16. 16.
    Clark WH Jr, From L, Bernardino EA, Mihm MC: The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29: 705–727, 1969PubMedGoogle Scholar
  17. 17.
    Clark WH Jr, Elder DE, Guerry Dt, Braitman LE, Trock BJ, Schultz D, Synnestvedt M, Halpern AC: Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81: 1893–1904, 1989PubMedGoogle Scholar
  18. 18.
    Elder DE, Guerry Dt, Epstein MN, Zehngebot L, Lusk E, Van Horn M, Clark WH Jr: Invasive malignant melanomas lacking competence for metastasis. Am J Dermatopathol 6(Suppl): 55–61, 1984PubMedGoogle Scholar
  19. 19.
    Gimotty PA, Guerry D, Ming ME, Elenitsas R, Xu X, Czerniecki B, Spitz F, Schuchter L, Elder D: Thin primary cutaneous malignant melanoma: A prognostic tree for 10-year metastasis is more accurate than American Joint Committee on Cancer staging. J Clin Oncol 22: 3668–3676, 2004PubMedGoogle Scholar
  20. 20.
    King R, Googe PB, Weilbaecher KN, Mihm MC Jr, Fisher DE: Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. Am J Surg Pathol 25: 51–57, 2001PubMedGoogle Scholar
  21. 21.
    Li LX, Crotty KA, Scolyer RA, Thompson JF, Kril JJ, Palmer AA, McCarthy SW: Use of multiple cytometric markers improves discrimination between benign and malignant melanocytic lesions: A study of DNA microdensitometry, karyometry, argyrophilic staining of nucleolar organizer regions and MIB1-Ki67 immunoreactivity. Melanoma Res 13: 581–586, 2003PubMedGoogle Scholar
  22. 22.
    Piepkorn M: Melanoma genetics: An update with focus on the CDKN2A(p16)/ARF tumor suppressors. J Am Acad Dermatol 42: 705–722, 2000PubMedGoogle Scholar
  23. 23.
    Wang H, Presland RB, Piepkorn M: A search for CDKN2A/p16INK4a mutations in melanocytic nevi from patients with melanoma and spouse controls by use of laser-captured microdissection. Arch Dermatol 141: 177–180, 2005PubMedGoogle Scholar
  24. 24.
    Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE, Herlyn M: Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63: 756–759, 2003PubMedGoogle Scholar
  25. 25.
    Loewe R, Kittler H, Fischer G, Fae I, Wolff K, Petzelbauer P: BRAF kinase gene V599E mutation in growing melanocytic lesions. J Invest Dermatol 123: 733–736, 2004PubMedGoogle Scholar
  26. 26.
    Christensen C, Guldberg P: Growth factors rescue cutaneous melanoma cells from apoptosis induced by knockdown of mutated (V600E) B-RAF. Oncogene 24: 6292–6302, 2005PubMedGoogle Scholar
  27. 27.
    Kato Y, Lambert CA, Colige AC, Mineur P, Noel A, Frankenne F, Foidart JM, Baba M, Hata R, Miyazaki K, Tsukuda M: Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J Biol Chem 280: 10938–10944, 2005PubMedGoogle Scholar
  28. 28.
    Nikkola J, Vihinen P, Vlaykova T, Hahka-Kemppinen M, Heino J, Pyrhonen S: Integrin chains beta1 and alphav as prognostic factors in human metastatic melanoma. Melanoma Res 14: 29–37, 2004PubMedGoogle Scholar
  29. 29.
    Bogenrieder T, Herlyn M: Axis of evil: Molecular mechanisms of cancer metastasis. Oncogene 22: 6524–6536, 2003PubMedGoogle Scholar
  30. 30.
    Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI: BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15: 249–254, 2005PubMedGoogle Scholar
  31. 31.
    Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW: Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58: 1515–1520, 1998PubMedGoogle Scholar
  32. 32.
    Duncan LM, Deeds J, Cronin FE, Donovan M, Sober AJ, Kauffman M, McCarthy JJ: Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19: 568–576, 2001PubMedGoogle Scholar
  33. 33.
    Deeds J, Cronin F, Duncan LM: Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol 31: 1346–1356, 2000PubMedGoogle Scholar
  34. 34.
    Kashani-Sabet M, Shaikh L, Miller JR 3rd, Nosrati M, Ferreira CM, Debs RJ, Sagebiel RW: NF-kappa B in the vascular progression of melanoma. J Clin Oncol 22: 617–623, 2004PubMedGoogle Scholar
  35. 35.
    Kuphal S, Poser I, Jobin C, Hellerbrand C, Bosserhoff AK: Loss of E-cadherin leads to upregulation of NFkappaB activity in malignant melanoma. Oncogene 23: 8509–8519, 2004PubMedGoogle Scholar
  36. 36.
    Zheng M, Ekmekcioglu S, Walch ET, Tang CH, Grimm EA: Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res 14: 165–171, 2004PubMedGoogle Scholar
  37. 37.
    Amiri KI, Richmond A: Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev 24: 301–313, 2005PubMedGoogle Scholar
  38. 38.
    Amiri KI, Horton LW, LaFleur BJ, Sosman JA, Richmond A: Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: Implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res 64: 4912–4918, 2004PubMedGoogle Scholar
  39. 39.
    Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, Anderson KC: Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102: 8567–8572, 2005PubMedGoogle Scholar
  40. 40.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64: 7099–7109, 2004PubMedGoogle Scholar
  41. 41.
    Leader RW, Padgett GA: The genesis and validation of animal models. Am J Pathol 101: S11–16, 1980PubMedGoogle Scholar
  42. 42.
    Liotta LA: Mechanisms of cancer invasion and metastasis. Important Adv Oncol 28–41, 1985Google Scholar
  43. 43.
    Fidler IJ: Selection of successive tumour lines for metastasis. Nat New Biol 242: 148–149, 1973PubMedGoogle Scholar
  44. 44.
    Fidler I: Molecular biology of cancer: Invasion and metastasis. In DeVita V, Hellman S, Rosenberg S (Eds) Cancer: Principles and Practice of Oncology. Lippincott-Raven, Philadelphia, pp 135–152, 1997Google Scholar
  45. 45.
    Carr I: Lymphatic metastasis. Cancer Metastasis Rev 2: 307–317, 1983PubMedGoogle Scholar
  46. 46.
    Dunnington DJ, Buscarino C, Gennaro D, Greig R, Poste G: Characterization of an animal model of metastatic colon carcinoma. Int J Cancer 39: 248–254, 1987PubMedGoogle Scholar
  47. 47.
    Mead MJ, Nathanson SD, Lee M, Peterson E: Prophylactic lymphadenectomy for B16 melanoma in C57/BL6 mice: Survival based on size and heterogeneous variant of the primary. J Surg Res 38: 319–327, 1985PubMedGoogle Scholar
  48. 48.
    Stephenson RA, Dinney CP, Gohji K, Ordonez NG, Killion JJ, Fidler IJ: Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J Natl Cancer Inst 84: 951–957, 1992PubMedGoogle Scholar
  49. 49.
    Vandendris M, Dumont P, Semal P, Heimann R, Atassi G: Investigation of a new murine model of regional lymph node metastasis: Characteristics of the model and applications. Clin Exp Metastasis 3: 7–19, 1985PubMedGoogle Scholar
  50. 50.
    Sleeman JP, Krishnan J, Kirkin V, Baumann P: Markers for the lymphatic endothelium: In search of the holy grail? Microsc Res Tech 55: 61–69, 2001PubMedGoogle Scholar
  51. 51.
    Lymboussaki A, Achen MG, Stacker SA, Alitalo K: Growth factors regulating lymphatic vessels. Curr Top Microbiol Immunol 251: 75–82, 2000PubMedGoogle Scholar
  52. 52.
    Eriksson U, Alitalo K: Structure, expression and receptor-binding properties of novel vascular endothelial growth factors. Curr Top Microbiol Immunol 237: 41–57, 1999PubMedGoogle Scholar
  53. 53.
    Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG: LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144: 789–801, 1999PubMedGoogle Scholar
  54. 54.
    Kaipainen A, Korhonen J, Pajusola K, Aprelikova O, Persico MG, Terman BI, Alitalo K: The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J Exp Med 178: 2077–2088, 1993PubMedGoogle Scholar
  55. 55.
    Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K: Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92: 3566–3570, 1995PubMedGoogle Scholar
  56. 56.
    Weiss L: The pathobiology of metastasis within the lymphatic system. Surg Oncol Clin N Am 5: 15–24, 1996PubMedGoogle Scholar
  57. 57.
    Witte MH, Way DL, Witte CL, Bernas M: Lymphangiogenesis: Mechanisms, significance and clinical implications. Exs 79: 65–112, 1997PubMedGoogle Scholar
  58. 58.
    Nathanson SD, Zarbo RJ, Wachna DL, Spence CA, Andrzejewski TA, Abrams J: Microvessels that predict axillary lymph node metastases in patients with breast cancer. Arch Surg 135: 586–593; discussion 593–584, 2000Google Scholar
  59. 59.
    Alitalo K, Carmeliet P: Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219–227, 2002PubMedGoogle Scholar
  60. 60.
    Minsky BD, Mies C, Rich TA, Recht A: Lymphatic vessel invasion is an independent prognostic factor for survival in colorectal cancer. Int J Radiat Oncol Biol Phys 17: 311–318, 1989PubMedGoogle Scholar
  61. 61.
    Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST: Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93: 1638–1643, 2001PubMedGoogle Scholar
  62. 62.
    Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K: Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276: 1423–1425, 1997PubMedGoogle Scholar
  63. 63.
    Dvorak HF: Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20: 4368–4380, 2002PubMedGoogle Scholar
  64. 64.
    Nathanson SD, Nelson L: Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann Surg Oncol 1: 333–338, 1994PubMedGoogle Scholar
  65. 65.
    Boucher Y, Jain RK: Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse. Cancer Res 52: 5110–5114, 1992PubMedGoogle Scholar
  66. 66.
    Nathanson SD, Anaya P, Avery M, Hetzel FW, Sarantou T, Havstad S: Sentinel lymph node metastasis in experimental melanoma: Relationships among primary tumor size, lymphatic vessel diameter and 99mTc-labeled human serum albumin clearance. Ann Surg Oncol 4: 161–168, 1997PubMedGoogle Scholar
  67. 67.
    Avery M, Nathanson SD, Hetzel FW: Lymph flow from murine footpad tumors before and after sublethal hyperthermia. Radiat Res 132: 50–53, 1992PubMedGoogle Scholar
  68. 68.
    Nathanson SD, Haas GP, Bobrowski R, Lee M, Tilley B, Schultz L, Hetzel F: Regional lymph node and pulmonary metastases after local hyperthermia of melanomas in C57BL/6 mice. Int J Radiat Oncol Biol Phys 13: 243–249, 1987PubMedGoogle Scholar
  69. 69.
    Boardman KC, Swartz MA: Interstitial flow as a guide for lymphangiogenesis. Circ Res 92: 801–808, 2003PubMedGoogle Scholar
  70. 70.
    Liotta LA, Kohn EC: The microenvironment of the tumour-host interface. Nature 411: 375–379, 2001PubMedGoogle Scholar
  71. 71.
    Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK: Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296: 1883–1886, 2002PubMedGoogle Scholar
  72. 72.
    Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K, Harkonen PL: VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer 98: 946–951, 2002PubMedGoogle Scholar
  73. 73.
    Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7: 192–198, 2001PubMedGoogle Scholar
  74. 74.
    Chang L, Farnebo F, Mulligan R, Folkman J, Kaipainen A: A mechanism for regulation of lymphangiogenesis independent of angiogenesis. In: Amer Assoc Canc Research Annual Meeting, San Francisco, April 6–10, 2002Google Scholar
  75. 75.
    Diperna CA, Bart RD, Sievers EM, Ma Y, Starnes VA, Bremner RM: Cyclooxygenase-2 inhibition decreases primary and metastatic tumor burden in a murine model of orthotopic lung adenocarcinoma. J Thorac Cardiovasc Surg 126: 1129–1133, 2003PubMedGoogle Scholar
  76. 76.
    Qian CN, Takahashi M, Kahnoski RJ, Teh BT: Effect of sildenafil citrate on an orthotopic prostate cancer growth and metastasis model. J Urol 170: 994–997, 2003PubMedGoogle Scholar
  77. 77.
    Nathanson SD: Insights into the mechanisms of lymph node metastasis. Cancer 98: 413–423, 2003PubMedGoogle Scholar
  78. 78.
    Jain RK: Barriers to drug delivery in solid tumors. Sci Am 271: 58–65, 1994PubMedGoogle Scholar
  79. 79.
    Boucher Y, Baxter LT, Jain RK: Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Res 50: 4478–4484, 1990PubMedGoogle Scholar
  80. 80.
    Gullino P: Angiogenesis, tumor vascularization, and potential interference with tumor growth. In: Mihich E (ed), Biological responses to cancer, Plenum Press, New York, pp 1–20, 1985Google Scholar
  81. 81.
    Lee FC, Tilghman RC: Lymph vessels in rabbit carcinoma with a note on the normal lymph vessel structure of the testis. Archives of Surgery 26: 602–616, 1933Google Scholar
  82. 82.
    Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK: Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Res 60: 4324–4327, 2000PubMedGoogle Scholar
  83. 83.
    Pepper MS: Lymphangiogenesis and tumor metastasis: Myth or reality? Clin Cancer Res 7: 462–468, 2001PubMedGoogle Scholar
  84. 84.
    de Waal RM, van Altena MC, Erhard H, Weidle UH, Nooijen PT, Ruiter DJ: Lack of lymphangiogenesis in human primary cutaneous melanoma. Consequences for the mechanism of lymphatic dissemination. Am J Pathol 150: 1951–1957, 1997PubMedGoogle Scholar
  85. 85.
    Achen MG, McColl BK, Stacker SA: Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7: 121–127, 2005PubMedGoogle Scholar
  86. 86.
    Jain RK, Fenton BT: Intratumoral lymphatic vessels: A case of mistaken identity or malfunction? J Natl Cancer Inst 94: 417–421, 2002PubMedGoogle Scholar
  87. 87.
    Pepper MS, Tille JC, Nisato R, Skobe M: Lymphangiogenesis and tumor metastasis. Cell Tissue Res 314: 167–177, 2003PubMedGoogle Scholar
  88. 88.
    Saharinen P, Tammela T, Karkkainen MJ, Alitalo K: Lymphatic vasculature: Development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 25: 387–395, 2004PubMedGoogle Scholar
  89. 89.
    Padera TP, Stoll BR, So PT, Jain RK: Conventional and high-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol Imaging 1: 9–15, 2002PubMedGoogle Scholar
  90. 90.
    Williams CS, Leek RD, Robson AM, Banerji S, Prevo R, Harris AL, Jackson DG: Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol 200: 195–206, 2003PubMedGoogle Scholar
  91. 91.
    Maula SM, Luukkaa M, Grenman R, Jackson D, Jalkanen S, Ristamaki R: Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res 63: 1920–1926, 2003PubMedGoogle Scholar
  92. 92.
    Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M: Tumor lymphangiogenesis: A novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162: 1951–1960, 2003PubMedGoogle Scholar
  93. 93.
    Padera TP, Boucher Y, Jain RK: Correspondence re: Maula S, et al.: Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinoma of the head and neck. Cancer Res 63: 1920–1926, 2003; Cancer Res 63: 8555–8556; author reply 8558, 2003Google Scholar
  94. 94.
    Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK: Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: Clinical implications. Cancer Res 59: 3776–3782, 1999PubMedGoogle Scholar
  95. 95.
    Schmid-Schonbein GW: The second valve system in lymphatics. Lymphat Res Biol 1: 25–29; discussion 29–31, 2003PubMedGoogle Scholar
  96. 96.
    Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schonbein GW: Evidence for a second valve system in lymphatics: Endothelial microvalves. Faseb J 15: 1711–1717, 2001PubMedGoogle Scholar
  97. 97.
    Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, Jain RK: Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 52: 6553–6560, 1992PubMedGoogle Scholar
  98. 98.
    Isaka N, Padera TP, Hagendoorn J, Fukumura D, Jain RK: Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res 64: 4400–4404, 2004PubMedGoogle Scholar
  99. 99.
    Gashev AA, Davis MJ, Zawieja DC: Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol 540: 1023–1037, 2002PubMedGoogle Scholar
  100. 100.
    Shirasawa Y, Ikomi F, Ohhashi T: Physiological roles of endogenous nitric oxide in lymphatic pump activity of rat mesentery in vivo. Am J Physiol Gastrointest Liver Physiol 278: G551–556, 2000PubMedGoogle Scholar
  101. 101.
    von der Weid PY: ATP-sensitive K+ channels in smooth muscle cells of guinea-pig mesenteric lymphatics: Role in nitric oxide and beta-adrenoceptor agonist-induced hyperpolarizations. Br J Pharmacol 125: 17–22, 1998PubMedGoogle Scholar
  102. 102.
    Mizuno R, Koller A, Kaley G: Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins. Am J Physiol 274: R790–796, 1998PubMedGoogle Scholar
  103. 103.
    Hagendoorn J, Padera TP, Kashiwagi S, Isaka N, Noda F, Lin MI, Huang PL, Sessa WC, Fukumura D, Jain RK: Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ Res 95: 204–209, 2004PubMedGoogle Scholar
  104. 104.
    Leu AJ, Berk DA, Yuan F, Jain RK: Flow velocity in the superficial lymphatic network of the mouse tail. Am J Physiol 267: H1507–1513, 1994PubMedGoogle Scholar
  105. 105.
    Hagendoorn J, Padera TP, Fukumura D, Jain RK: Molecular regulation of microlymphatic formation and function: Role of nitric oxide. Trends Cardiovasc Med 15: 169–173, 2005PubMedGoogle Scholar
  106. 106.
    Nemoto T, Vana J, Bedwani RN, Baker HW, McGregor FH, Murphy GP: Management and survival of female breast cancer: Results of a national survey by the American College of Surgeons. Cancer 45: 2917–2924, 1980PubMedGoogle Scholar
  107. 107.
    McGuire WL: Prognostic factors for recurrence and survival in human breast cancer. Breast Cancer Res Treat 10: 5–9, 1987PubMedGoogle Scholar
  108. 108.
    Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, Borgen PI, Clark GM, Edge SB, Hayes DF, Hughes LL, Hutter RV, Morrow M, Page DL, Recht A, Theriault RL, Thor A, Weaver DL, Wieand HS, Greene FL: Staging system for breast cancer: Revisions for the 6th edition of the AJCC Cancer Staging Manual. Surg Clin North Am 83: 803–819, 2003PubMedGoogle Scholar
  109. 109.
    Thor A: A revised staging system for breast cancer. Breast J 10 (Suppl 1): S15–18, 2004PubMedGoogle Scholar
  110. 110.
    MacDonald IC, Groom AC, Chambers AF: Cancer spread and micrometastasis development: Quantitative approaches for in vivo models. Bioessays 24: 885–893, 2002PubMedGoogle Scholar
  111. 111.
    Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572, 2002PubMedGoogle Scholar
  112. 112.
    Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer 4: 448–456, 2004PubMedGoogle Scholar
  113. 113.
    Price JE, Polyzos A, Zhang RD, Daniels LM: Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50: 717–721, 1990PubMedGoogle Scholar
  114. 114.
    Price JE, Zhang RD: Studies of human breast cancer metastasis using nude mice. Cancer Metastasis Rev 8: 285–297, 1990PubMedGoogle Scholar
  115. 115.
    Zhang RD, Fidler IJ, Price JE: Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 11: 204–215, 1991PubMedGoogle Scholar
  116. 116.
    Vantyghem SA, Allan AL, Postenka CO, Al-Katib W, Keeney M, Tuck AB, Chambers AF: A New Model for Lymphatic Metastasis: Development of a Variant of the MDA-MB-468 human Breast Cancer Cell Line that Aggressively Metastasizes to Lymph Nodes. Clin Exp Metastasis 22: 351–361, 2005PubMedGoogle Scholar
  117. 117.
    Savagner P: Leaving the neighborhood: Molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23: 912–923, 2001PubMedGoogle Scholar
  118. 118.
    Tuck AB, Chambers AF: The role of osteopontin in breast cancer: Clinical and experimental studies. J Mammary Gland Biol Neoplasia 6: 419–429, 2001PubMedGoogle Scholar
  119. 119.
    Cook AC, Tuck AB, McCarthy S, Turner JG, Irby RB, Bloom GC, Yeatman TJ, Chambers AF: Osteopontin induces multiple changes in gene expression that reflect the six “hallmarks of cancer” in a model of breast cancer progression. Mol Carcinog 43: 225–236, 2005PubMedGoogle Scholar
  120. 120.
    Furger KA, Allan AL, Wilson SM, Hota C, Vantyghem SA, Postenka CO, Al-Katib W, Chambers AF, Tuck AB: Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res 1: 810–819, 2003PubMedGoogle Scholar
  121. 121.
    Varghese HJ, MacKenzie LT, Groom AC, Ellis CG, Chambers AF, MacDonald IC: Mapping of the functional microcirculation in vital organs using contrast-enhanced in vivo video microscopy. Am J Physiol Heart Circ Physiol 288: H185–193, 2005PubMedGoogle Scholar
  122. 122.
    MacDonald IC, Steinman DA, Groom AC, Chambers AF: Lymphatic changes during early tumor development. In: 3rd Era of Hope Meeting, Department of Defense Breast Cancer Research Program, Orlando, FL, Sept 26–28, 2002Google Scholar
  123. 123.
    Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M, Khokha R, Chambers AF, Groom AC: Fate of melanoma cells entering the microcirculation: Over 80 survive and extravasate. Cancer Res 55: 2520–2523, 1995PubMedGoogle Scholar
  124. 124.
    Koop S, Schmidt EE, MacDonald IC, Morris VL, Khokha R, Grattan M, Leone J, Chambers AF, Groom AC: Independence of metastatic ability and extravasation: Metastatic ras-transformed and control fibroblasts extravasate equally well. Proc Natl Acad Sci USA 93: 11080–11084, 1996PubMedGoogle Scholar
  125. 125.
    Morris VL, Schmidt EE, MacDonald IC, Groom AC, Chambers AF: Sequential steps in hematogenous metastasis of cancer cells studied by in vivo videomicroscopy. Invasion Metastasis 17: 281–296, 1997PubMedGoogle Scholar
  126. 126.
    Naumov GN, Wilson SM, MacDonald IC, Schmidt EE, Morris VL, Groom AC, Hoffman RM, Chambers AF: Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112(Pt 12): 1835–1842, 1999PubMedGoogle Scholar
  127. 127.
    Varghese HJ, Mackenzie LT, Groom AC, Ellis CG, Ryan A, MacDonald IC, Chambers AF: In vivo videomicroscopy reveals differential effects of the vascular-targeting agent ZD6126 and the anti-angiogenic agent ZD6474 on vascular function in a liver metastasis model. Angiogenesis 7: 157–164, 2004PubMedGoogle Scholar
  128. 128.
    Reintgen D, Cruse CW, Wells K, Berman C, Fenske N, Glass F, Schroer K, Heller R, Ross M, Lyman G, et al.: The orderly progression of melanoma nodal metastases. Ann Surg 220: 759–767, 1994PubMedGoogle Scholar
  129. 129.
    Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, Foshag LJ, Cochran AJ: Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127: 392–399, 1992PubMedGoogle Scholar
  130. 130.
    Morton DL, Thompson JF, Essner R, Elashoff R, Stern SL, Nieweg OE, Roses DF, Karakousis CP, Mozzillo N, Reintgen D, Wang HJ, Glass EC, Cochran AJ: Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: A multicenter trial. Multicenter Selective Lymphadenectomy Trial Group. Ann Surg 230: 453–463; discussion 463–455, 1999PubMedGoogle Scholar
  131. 131.
    Giuliano AE, Dale PS, Turner RR, Morton DL, Evans SW, Krasne DL: Improved axillary staging of breast cancer with sentinel lymphadenectomy. Ann Surg 222: 394–399; discussion 399–401, 1995PubMedGoogle Scholar
  132. 132.
    Messina JL, Glass LF, Cruse CW, Berman C, Ku NK, Reintgen DS: Pathologic examination of the sentinel lymph node in malignant melanoma. Am J Surg Pathol 23: 686–690, 1999PubMedGoogle Scholar
  133. 133.
    Shivers SC, Wang X, Li W, Joseph E, Messina J, Glass LF, DeConti R, Cruse CW, Berman C, Fenske NA, Lyman GH, Reintgen DS: Molecular staging of malignant melanoma: Correlation with clinical outcome. Jama 280: 1410–1415, 1998PubMedGoogle Scholar
  134. 134.
    Cochran AJ, Morton DL, Stern S, Lana AM, Essner R, Wen DR: Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: Implications for tumor biology and treatment. Mod Pathol 14: 604–608, 2001PubMedGoogle Scholar
  135. 135.
    Essner R, Kojima M: Dendritic cell function in sentinel nodes. Oncology (Williston Park) 16: 27–31, 2002Google Scholar
  136. 136.
    Movassagh M, Spatz A, Davoust J, Lebecque S, Romero P, Pittet M, Rimoldi D, Lienard D, Gugerli O, Ferradini L, Robert C, Avril MF, Zitvogel L, Angevin E: Selective accumulation of mature DC-Lamp + dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Res 64: 2192–2198, 2004PubMedGoogle Scholar
  137. 137.
    Schule J, Bergkvist L, Hakansson L, Gustafsson B, Hakansson A: Down-regulation of the CD3-zeta chain in sentinel node biopsies from breast cancer patients. Breast Cancer Res Treat 74: 33–40, 2002PubMedGoogle Scholar
  138. 138.
    Leong SP, Peng M, Zhou YM, Vaquerano JE, Chang JW: Cytokine profiles of sentinel lymph nodes draining the primary melanoma. Ann Surg Oncol 9: 82–87, 2002PubMedGoogle Scholar
  139. 139.
    Sato K, Tamaki K, Bunnell CA, Hiraide H, Mochizuki H: [Advances in sentinel node biopsy for breast cancer]. Gan To Kagaku Ryoho 31: 1601–1607, 2004PubMedGoogle Scholar
  140. 140.
    Van den Eynde BJ, Boon T: Tumor antigens recognized by T lymphocytes. Int J Clin Lab Res 27: 81–86, 1997PubMedGoogle Scholar
  141. 141.
    Wang RF, Rosenberg SA: Human tumor antigens for cancer vaccine development. Immunol Rev 170: 85–100, 1999PubMedGoogle Scholar
  142. 142.
    Mackensen A, Carcelain G, Viel S, Raynal MC, Michalaki H, Triebel F, Bosq J, Hercend T: Direct evidence to support the immunosurveillance concept in a human regressive melanoma. J Clin Invest 93: 1397–1402, 1994PubMedGoogle Scholar
  143. 143.
    Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Teates D, Neese P, Grosh WW, Petroni G, Engelhard VH, Slingluff CL Jr.: Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer 92: 703–711, 2001PubMedGoogle Scholar
  144. 144.
    Janssen-Heijnen ML, Gatta G, Forman D, Capocaccia R, Coebergh JW: Variation in survival of patients with lung cancer in Europe, 1985–1989. EUROCARE Working Group. Eur J Cancer 34: 2191–2196, 1998Google Scholar
  145. 145.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ: Cancer statistics, 2005. CA Cancer J Clin 55: 10–30, 2005PubMedGoogle Scholar
  146. 146.
    el-Torky M, el-Zeky F, Hall JC: Significant changes in the distribution of histologic types of lung cancer. A review of 4928 cases. Cancer 65: 2361–2367, 1990PubMedGoogle Scholar
  147. 147.
    Martini N, Bains MS, Burt ME, Zakowski MF, McCormack P, Rusch VW, Ginsberg RJ: Incidence of local recurrence and second primary tumors in resected stage I lung cancer. J Thorac Cardiovasc Surg 109: 120–129, 1995PubMedGoogle Scholar
  148. 148.
    Mountain CF, Dresler CM: Regional lymph node classification for lung cancer staging. Chest 111: 1718–1723, 1997PubMedGoogle Scholar
  149. 149.
    Okada M, Nishio W, Sakamoto T, Harada H, Uchino K, Tsubota N: Long-term survival and prognostic factors of five-year survivors with complete resection of non-small cell lung carcinoma. J Thorac Cardiovasc Surg 126: 558–562, 2003PubMedGoogle Scholar
  150. 150.
    Kubuschok B, Passlick B, Izbicki JR, Thetter O, Pantel K: Disseminated tumor cells in lymph nodes as a determinant for survival in surgically resected non-small-cell lung cancer. J Clin Oncol 17: 19–24, 1999PubMedGoogle Scholar
  151. 151.
    Latza U, Niedobitek G, Schwarting R, Nekarda H, Stein H: Ber-EP4: New monoclonal antibody which distinguishes epithelia from mesothelial. J Clin Pathol 43: 213–219, 1990PubMedGoogle Scholar
  152. 152.
    Momburg F, Moldenhauer G, Hammerling GJ, Moller P: Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res 47: 2883–2891, 1987PubMedGoogle Scholar
  153. 153.
    Oosterhuis JW, Theunissen PH, Bollen EC: Improved pre-operative mediastinal staging in non-small-cell lung cancer by serial sectioning and immunohistochemical staining of lymph-node biopsies. Eur J Cardiothorac Surg 20: 335–338, 2001PubMedGoogle Scholar
  154. 154.
    Lugo TG, Braun S, Cote RJ, Pantel K, Rusch V: Detection and measurement of occult disease for the prognosis of solid tumors. J Clin Oncol 21: 2609–2615, 2003PubMedGoogle Scholar
  155. 155.
    El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD, Godfrey TE: Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem 50: 564–573, 2004PubMedGoogle Scholar
  156. 156.
    Zippelius A, Kufer P, Honold G, Kollermann MW, Oberneder R, Schlimok G, Riethmuller G, Pantel K: Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow. J Clin Oncol 15: 2701–2708, 1997PubMedGoogle Scholar
  157. 157.
    Salerno CT, Frizelle S, Niehans GA, Ho SB, Jakkula M, Kratzke RA, Maddaus MA: Detection of occult micrometastases in non-small cell lung carcinoma by reverse transcriptase-polymerase chain reaction. Chest 113: 1526–1532, 1998PubMedGoogle Scholar
  158. 158.
    D'Cunha J, Corfits AL, Herndon JE 2nd, Kern JA, Kohman LJ, Patterson GA, Kratzke RA, Maddaus MA: Molecular staging of lung cancer: Real-time polymerase chain reaction estimation of lymph node micrometastatic tumor cell burden in stage I non-small cell lung cancer–preliminary results of Cancer and Leukemia Group B Trial 9761. J Thorac Cardiovasc Surg 123: 484–491; discussion 491, 2002PubMedGoogle Scholar
  159. 159.
    Wang XT, Sienel W, Eggeling S, Ludwig C, Stoelben E, Mueller J, Klein CA, Passlick B: Detection of disseminated tumor cells in mediastinoscopic lymph node biopsies and lymphadenectomy specimens of patients with NSCLC by quantitative RT-PCR. Eur J Cardiothorac Surg 28: 26–32, 2005PubMedGoogle Scholar
  160. 160.
    Mountain CF: Revisions in the International System for Staging Lung Cancer. Chest 111: 1710–1717, 1997PubMedGoogle Scholar
  161. 161.
    Chen ZL, Perez S, Holmes EC, Wang HJ, Coulson WF, Wen DR, Cochran AJ: Frequency and distribution of occult micrometastases in lymph nodes of patients with non-small-cell lung carcinoma. J Natl Cancer Inst 85: 493–498, 1993PubMedGoogle Scholar
  162. 162.
    Maruyama R, Sugio K, Mitsudomi T, Saitoh G, Ishida T, Sugimachi K: Relationship between early recurrence and micrometastases in the lymph nodes of patients with stage I non-small-cell lung cancer. J Thorac Cardiovasc Surg 114: 535–543, 1997PubMedGoogle Scholar
  163. 163.
    Dobashi K, Sugio K, Osaki T, Oka T, Yasumoto K: Micrometastatic P53-positive cells in the lymph nodes of non-small-cell lung cancer: Prognostic significance. J Thorac Cardiovasc Surg 114: 339–346, 1997PubMedGoogle Scholar
  164. 164.
    Ahrendt SA, Yang SC, Wu L, Roig CM, Russell P, Westra WH, Jen J, Brock MV, Heitmiller RF, Sidransky D: Molecular assessment of lymph nodes in patients with resected stage I non-small cell lung cancer: Preliminary results of a prospective study. J Thorac Cardiovasc Surg 123: 466–473; discussion 473–464, 2002PubMedGoogle Scholar
  165. 165.
    Le Pimpec-Barthes F, Danel C, Lacave R, Ricci S, Bry X, Lancelin F, Leber C, Milleron B, Fleury-Feith J, Riquet M, Bernaudin JF: Association of CK19 mRNA detection of occult cancer cells in mediastinal lymph nodes in non-small cell lung carcinoma and high risk of early recurrence. Eur J Cancer 41: 306–312, 2005PubMedGoogle Scholar
  166. 166.
    Kawano R, Hata E, Ikeda S, Sakaguchi H: Micrometastasis to lymph nodes in stage I left lung cancer patients. Ann Thorac Surg 73: 1558–1562, 2002PubMedGoogle Scholar
  167. 167.
    Scheunemann P, Izbicki JR, Pantel K: Tumorigenic potential of apparently tumor-free lymph nodes. N Engl J Med 340: 1687, 1999PubMedGoogle Scholar
  168. 168.
    Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, Speicher MR, Riethmuller G: Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci USA 96: 4494–4499, 1999PubMedGoogle Scholar
  169. 169.
    Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G: Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85: 1419–1424, 1993PubMedGoogle Scholar
  170. 170.
    Uhr JW, Scheuermann RH, Street NE, Vitetta ES: Cancer dormancy: Opportunities for new therapeutic approaches. Nat Med 3: 505–509, 1997PubMedGoogle Scholar
  171. 171.
    Passlick B, Sienel W, Seen-Hibler R, Wockel W, Thetter O, Pantel K: The 17-1A antigen is expressed on primary, metastatic and disseminated non-small cell lung carcinoma cells. Int J Cancer 87: 548–552, 2000PubMedGoogle Scholar
  172. 172.
    Wu J, Ohta Y, Minato H, Tsunezuka Y, Oda M, Watanabe Y, Watanabe G: Nodal occult metastasis in patients with peripheral lung adenocarcinoma of 2.0 cm or less in diameter. Ann Thorac Surg 71: 1772–1777; discussion 1777–1778, 2001PubMedGoogle Scholar
  173. 173.
    Ohta Y, Oda M, Wu J, Tsunezuka Y, Hiroshi M, Nonomura A, Watanabe G: Can tumor size be a guide for limited surgical intervention in patients with peripheral non-small cell lung cancer? Assessment from the point of view of nodal micrometastasis. J Thorac Cardiovasc Surg 122: 900–906, 2001PubMedGoogle Scholar
  174. 174.
    Gu CD, Osaki T, Oyama T, Inoue M, Kodate M, Dobashi K, Oka T, Yasumoto K: Detection of micrometastatic tumor cells in pN0 lymph nodes of patients with completely resected nonsmall cell lung cancer: Impact on recurrence and Survival. Ann Surg 235: 133–139, 2002PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Dave S. B. Hoon
    • 1
  • Minoru Kitago
    • 1
  • Joseph Kim
    • 1
  • Takuji Mori
    • 1
  • Adriano Piris
    • 2
  • Katherine Szyfelbein
    • 2
  • Martin C. MihmJr.
    • 2
  • S. David Nathanson
    • 3
  • Timothy P. Padera
    • 4
  • Ann F. Chambers
    • 5
  • Sharon A. Vantyghem
    • 5
  • Ian C. MacDonald
    • 6
  • Steven C. Shivers
    • 7
  • Marwan Alsarraj
    • 7
  • Douglas S. Reintgen
    • 7
  • Bernward Passlick
    • 8
  • Wulf Sienel
    • 8
  • Klaus Pantel
    • 9
  1. 1.Department of Molecular OncologyJohn Wayne Cancer InstituteSanta MonicaUSA
  2. 2.Department of Pathology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.Josephine Ford Cancer CenterHenry Ford Health SystemDetroitUSA
  4. 4.E.L. Steele Laboratories for Tumor Biology, Radiation OncologyMassachusetts General HospitalBostonUSA
  5. 5.London Regional Cancer ProgramLondonCanada
  6. 6.Department of Medical BiophysicsUniversity of Western OntarioLondonCanada
  7. 7.Lakeland Regional Cancer CenterLakelandUSA
  8. 8.Department of Thoracic SurgeryAlbert-Ludwigs-University FreiburgFreiburgGermany
  9. 9.Institute of Tumor BiologyUniversity Medical CenterHamburgGermany

Personalised recommendations