Quantitative evaluation of coronary artery visibility on CT angiography in Kawasaki disease: young vs. old children


Coronary artery visibility on coronary CT angiography has rarely been investigated in young children with Kawasaki disease. This retrospective study was performed to quantitatively evaluate and compare coronary artery visibility with sufficient quality to measure it on coronary CT angiography among younger and older children with Kawasaki disease. Seventy-eight consecutive children with Kawasaki disease who underwent coronary CT angiography were divided into two groups: group 1 (age ≤ 6 years; n = 37) and group 2 (age > 6 years and < 18 years; n = 41). The visibility of the right coronary artery, left anterior descending artery, and left circumflex artery was quantitatively evaluated by dividing the length of the assessable coronary artery by the length of the corresponding groove, and compared between the two groups. The coronary artery visibility in group 1 was significantly lower than that in group 2 for the right coronary artery (77.8 ± 26.3% vs. 94.2 ± 13.6%, p < 0.002) and left anterior descending artery (54.8 ± 19.5% vs. 69.6 ± 21.3%, p < 0.003, but the difference was not significant for the left circumflex artery (43.7 ± 23.1% vs. 43.9 ± 26.7%, p > 0.9). In both groups, the visibility of the right coronary artery was the highest, followed by those of the left anterior descending artery and left circumflex artery. Compared with older children with Kawasaki disease, younger children with Kawasaki disease demonstrate significantly lower visibility of the right coronary artery and left anterior descending artery on coronary CT angiography. In contrast, the visibility of the left circumflex artery showed no significant difference between younger and older children with Kawasaki disease.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Goo HW, Park IS, Ko JK, Kim YH (2006) Coronary CT angiography and MR angiography of Kawasaki disease. PediatrRadiol 36(7):697–705. https://doi.org/10.1007/s00247-006-0182-6

    Article  Google Scholar 

  2. 2.

    Dietz SM, Tacke CE, Kuipers IM, Wiegman A, de Winter RJ, Burns JC, Gordon JB, Groenink M, Kuijpers TW (2015) Cardiovascular imaging in children and adults following Kawasaki disease. Insights Imaging 6(6):697–705. https://doi.org/10.1007/s13244-015-0422-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tsuda E, Singhal M (2018) Role of imaging studies in Kawasaki disease. Int J Rheum Dis 21(1):56–63. https://doi.org/10.1111/1756-185X.13210

    Article  PubMed  Google Scholar 

  4. 4.

    Goo HW (2015) Coronary artery imaging in children. Korean J Radiol 16(2):239–250. https://doi.org/10.3348/kjr.2015.16.2.239

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF (2011) Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology 259(1):240–247. https://doi.org/10.1148/radiol.10100828

    Article  PubMed  Google Scholar 

  6. 6.

    Singh S, Sharma D, Bhattad S, Phillip S (2016) Recent advances in Kawasaki disease-proceedings of the 3rd Kawasaki disease summit, chandigarh, 2014. Indian J Pediatr. 83(1):47–52. https://doi.org/10.1007/s12098-015-1858-4

    Article  PubMed  Google Scholar 

  7. 7.

    Singhal M, Gupta P, Singh S (2017) Khandelwal N (2017)Computed tomography coronary angiography is the way forward for evaluation of children with Kawasaki disease. Glob Cardiol Sci Pract 3:e201728. https://doi.org/10.21542/gcsp.2017.28

    Article  Google Scholar 

  8. 8.

    Singhal M, Singh S, Gupta P, Sharma A, Khandelwal N, Burns JC (2018) Computed tomography coronary angiography for evaluation of children with Kawasaki disease. Curr Probl Diagn Radiol 47(4):238–244. https://doi.org/10.1067/j.cpradiol.2017.09.013

    Article  PubMed  Google Scholar 

  9. 9.

    Kim JW, Goo HW (2013) Coronary artery abnormalities in Kawasaki disease: comparison between CT and MR coronary angiography. Acta Radiol 54(2):156–163. https://doi.org/10.1258/ar.2012.120484

    Article  PubMed  Google Scholar 

  10. 10.

    Tsai IC, Lee T, Chen MC, Fu YC, Jan SL, Wang CC, Chang Y (2007) Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 37(8):818–825. https://doi.org/10.1007/s00247-007-0512-3

    Article  PubMed  Google Scholar 

  11. 11.

    Ben Saad M, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39(7):668–676. https://doi.org/10.1007/s00247-009-1209-6

    Article  PubMed  Google Scholar 

  12. 12

    Goo HW, Yang DH (2010) Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs single-source non-ECG-synchronized spiral scan. PediatrRadiol 40(10):1670–1680. https://doi.org/10.1007/s00247-010-1693-8

    Article  Google Scholar 

  13. 13.

    Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41(2):244–249. https://doi.org/10.1007/s00247-010-1804-6

    Article  PubMed  Google Scholar 

  14. 14.

    Duan Y, Wang X, Cheng Z, Wu D, Wu L (2012) Application of prospective ECG-triggered dual-source CT coronary angiography for infants and children with coronary artery aneurysms due to Kawasaki disease. Br J Radiol 85(1020):e1190–e1197. https://doi.org/10.1259/bjr/18174517

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E (2004) Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology 232(3):669–676. https://doi.org/10.1148/radiol.2323031225

    Article  PubMed  Google Scholar 

  16. 16.

    Uribe S, Hussain T, Valverde I, Tejos C, Irarrazaval P, Fava M, Beerbaum P, Botnar RM, Razavi R, Schaeffter T, Greil GF (2011) Congenital heart disease in children: coronary MR angiography during systole and diastole with dual cardiac phase whole-heart imaging. Radiology 260(1):232–240. https://doi.org/10.1148/radiol.11101659

    Article  PubMed  Google Scholar 

  17. 17.

    Piccini D, Monney P, Sierro C, Coppo S, Bonanno G, van Heeswijk RB, Chaptinel J, Vincenti G, de Blois J, Koestner SC, Rutz T, Littmann A, Zenge MO, Schwitter J, Stuber M (2014) Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients. Radiology 270(2):378–386. https://doi.org/10.1148/radiol.13132045

    Article  PubMed  Google Scholar 

  18. 18.

    Nezafat M, Henningsson M, Ripley DP, Dedieu N, Greil G, Greenwood JP, Bӧrnert P, Plein S, Botnar RM (2016) Coronary MR angiography at 3T: fat suppression versus water-fat separation. MAGMA 29(5):733–738. https://doi.org/10.1007/s10334-016-0550-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Heer T, Reiter S, Trißler M, Höfling B, von Knobelsdorff-Brenkenhoff F, Pilz G (2017) Effect of nitroglycerin on the performance of MR coronary angiography. J Magn Reson Imaging 45(5):1419–1428. https://doi.org/10.1002/jmri.25483

    Article  PubMed  Google Scholar 

  20. 20.

    Goo HW (2010) State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 11(1):4–18. https://doi.org/10.3348/kjr.2010.11.1.4

    Article  PubMed  Google Scholar 

  21. 21.

    Goo HW (2011) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41(7):839–847. https://doi.org/10.1007/s00247-011-2121-4

    Article  PubMed  Google Scholar 

  22. 22.

    Tricarico F, Hlavacek AM, Schoepf UJ, Ebersberger U, Nance JW Jr, Vliegenthart R, Cho YJ, Spears JR, Secchi F, Savino G, Marano R, Schoenberg SO, Bonomo L, Apfaltrer P (2013) Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol 23(5):1306–1315. https://doi.org/10.1007/s00330-012-2734-5

    Article  PubMed  Google Scholar 

  23. 23.

    Goo HW, Allmendinger T (2017) Combined ECG- and respiratory-triggered CT of the lung to reduce respiratory misregistration artifacts between imaging slabs in free-breathing children: initial experience. Korean J Radiol 18(5):860–866. https://doi.org/10.3348/kjr.2017.18.5.860

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Goo HW (2018) Combined prospectively electrocardiography- and respiratory-triggered sequential cardiac computed tomography in free-breathing children: success rate and image quality. Pediatr Radiol 48(7):923–931. https://doi.org/10.1007/s00247-018-4114-z

    Article  PubMed  Google Scholar 

  25. 25.

    Goo HW (2012) CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 13(1):1–11. https://doi.org/10.3348/kjr.2012.13.1.1

    Article  PubMed  Google Scholar 

  26. 26.

    Gebhard C, Fuchs TA, Stehli J, Gransar H, Berman DS, Budoff MJ, Achenbach S, Al-Mallah M, Andreini D, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan KM, Chow BJ, Cury RC, Delago A, Gomez MJ, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kim YJ, Leipsic J, Lin FY, Maffei E, Pontone G, Raff G, Shaw LJ, Villines TC, Dunning AM, Min JK, Kaufmann PA (2015) Coronary dominance and prognosis in patients undergoing coronary computed tomographic angiography: results from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) registry. Eur Heart J Cardiovasc Imaging 16(8):853–862. https://doi.org/10.1093/ehjci/jeu314

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Yamasaki Y, Kawanami S, Kamitani T, Sagiyama K, Shin S, Hino T, Nagata H, Yabuuchi H, Nagao M, Honda H (2018) Patient-related factors influencing detectability of coronary arteries in 320-row CT angiography in infants with complex congenital heart disease. Int J Cardiovasc Imaging 34(9):1485–1491. https://doi.org/10.1007/s10554-018-1363-8

    Article  PubMed  Google Scholar 

  28. 28.

    Okada M, Nakashima Y, Nomura T, Miura T, Nao T, Yoshimura M, Sano Y, Matsunaga N (2015) Coronary vasodilation by the use of sublingual nitroglycerin using 64-slice dual-source coronary computed tomography angiography. J Cardiol 65(3):230–236. https://doi.org/10.1016/j.jjcc.2014.05.012

    Article  PubMed  Google Scholar 

  29. 29.

    Watanabe H, Kamiyama H, Kato M, Komori A, Abe Y, Ayusawa M (2018) Appropriate use of a beta-blocker in paediatric coronary CT angiography. Cardiol Young 28(10):1148–1153. https://doi.org/10.1017/S104795111800118X

    Article  PubMed  Google Scholar 

  30. 30.

    Rigsby CK, deFreitas RA, Nicholas AC, Leidecker C, Johanek AJ, Anley P, Wang D, Uejima T (2010) Safety and efficacy of a drug regimen to control heart rate during 64-slice ECG-gated coronary CTA in children. Pediatr Radiol 40(12):1880–1889. https://doi.org/10.1007/s00247-010-1711-x

    Article  PubMed  Google Scholar 

  31. 31.

    Hong SH, Goo HW, Maeda E, Choo KS, Tsai IC, Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group (2019) User-friendly vendor-specific guideline for pediatric cardiothoracic computed tomography provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: Part 1. Imaging techniques. Korean J Radiol 20(2):190–204. https://doi.org/10.3348/kjr.2018.0571

    Article  PubMed  Google Scholar 

  32. 32.

    Meyersohn NM, Szilveszter B, Staziaki PV, Scholtz JE, Takx RAP, Hoffmann U, Ghoshhajra BB (2017) Coronary CT angiography in the emergency department utilizing second and third generation dual source CT. J Cardiovasc Comput Tomogr 11(4):249–257. https://doi.org/10.1016/j.jcct.2017.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ochs MM, Siepen FAD, Fritz T, Andre F, Gitsioudis G, Korosoglou G, Seitz S, Bogomazov Y, Schlett CL, Sokiranski R, Sommer A, Gückel F, Brado M, Kauczor HU, Görich J, Friedrich MGW, Katus HA, Buss SJ (2017) Limits of the possible: diagnostic image quality in coronary angiography with third-generation dual-source CT. Clin Res Cardiol 106(7):485–492. https://doi.org/10.1007/s00392-017-1077-2

    Article  PubMed  Google Scholar 

  34. 34.

    Goh YG, Ong CC, Tan G, Liang CR, Soomar SM, Terence Lim CW, Quek SC, Teo LSL (2018) Coronary manifestations of Kawasaki Disease in computed tomography coronary angiography. J Cardiovasc Comput Tomogr 12(4):275–280. https://doi.org/10.1016/j.jcct.2017.12.003

    Article  PubMed  Google Scholar 

  35. 35.

    Chen PT, Lin MT, Chen YS, Chen SJ, Wu MH (2017) Computed tomography predict regression of coronary artery aneurysm in patients with Kawasaki disease. J Formos Med Assoc 116(10):806–814. https://doi.org/10.1016/j.jfma.2017.07.001

    Article  PubMed  Google Scholar 

  36. 36.

    van Stijn-Bringas DD, Planken RN, Groenink M, Streekstra GJ, Kuijpers TW, Kuipers IM (2020) Coronary artery assessment in Kawasaki disease with dual-source CT angiography to uncover vascular pathology. Eur Radiol 30(1):432–441. https://doi.org/10.1007/s00330-019-06367-6

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hyun Woo Goo.

Ethics declarations

Conflict of interest

All authors declare that they have no financial or non-financial conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goo, H.W. Quantitative evaluation of coronary artery visibility on CT angiography in Kawasaki disease: young vs. old children. Int J Cardiovasc Imaging 37, 1085–1092 (2021). https://doi.org/10.1007/s10554-020-02054-6

Download citation


  • Computed tomography angiography
  • Coronary artery disease
  • Coronary artery visibility
  • Infants and children
  • Kawasaki disease