Left atrial strain imaging differentiates cardiac amyloidosis and hypertensive heart disease


Echocardiographic diagnosis of cardiac amyloidosis (CA) can be difficult to differentiate from increased left ventricular (LV) wall thickness from hypertensive heart disease. The aim of this study was to evaluate left atrial (LA) function and deformation using strain and strain rate (SR) imaging in cardiac amyloidosis. We reviewed 44 cases of CA confirmed by tissue biopsy or a combination of clinical and cardiac imaging data. Cases were classified according two subgroups: amyloid light chain (AL) or amyloid transthyretin (ATTR). These subjects underwent 2D-Speckle tracking echocardiographic derived (STE) LA strain analysis. These were compared to 25 hypertensive (HT) patients with increased LV wall thickness. The three phases of LA function were evaluated using strain and strain rate parameters. Despite a similar increase in LV wall thickness, all LA strain parameters were significantly reduced in the AL cohort compared to the HT cohort (reservoir strain/LAs: 11.0 vs. 24.8%, p < 0.05). The ATTR cohort had significantly thicker LV walls and higher atrial fibrillation burden compared to AL and HT patients but similar reduction in LA strain values compared to AL group. A reservoir strain (S-LAs) cut off value of 20% was 86.4% sensitive and 88.6% specific for detecting CA compared to HT heart disease in this cohort. LA strain parameters were able to identify LA dysfunction in all types of CA. LA function in CA is significantly worse compared with hypertensive patients despite similar increase in LV wall thickness. In combination with other clinical and imaging features, LA strain may provide incremental value in differentiating cardiac amyloidosis from increased wall thickness secondary to hypertension.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Nochioka K, Quarta CC, Claggett B, Roca GQ, Rapezzi C, Falk RH, Solomon SD (2017) Left atrial structure and function in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging 18(10):1128–1137

    PubMed  Google Scholar 

  2. 2.

    Falk RH, Dubrey SW (2010) Amyloid heart disease. Prog Cardiovasc Dis 52(4):347–361

    Article  Google Scholar 

  3. 3.

    Mohty D, Damy T, Cosnay P, Echahidi N, Casset-Senon D, Virot P, Jaccard A (2013) Cardiac amyloidosis: updates in diagnosis and management. Arch Cardiovasc Dis 106(10):528–540

    Article  Google Scholar 

  4. 4.

    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412

    CAS  Article  Google Scholar 

  5. 5.

    Shukla A, Wong D, Humphries JA, Fitzgerald BT, Newbigin K, Bashford J, Scalia GM (2017) Transthyretin cardiac amyloidosis: a noninvasive multimodality approach to diagnosis using transthoracic echocardiography, 99m-Tc-labeled phosphate bone scanning, and cardiac magnetic resonance imaging. CASE (Philadelphia, PA) 1(2):49–53

    Google Scholar 

  6. 6.

    Lee SP, Park JB, Kim HK, Kim YJ, Grogan M, Sohn DW (2019) Contemporary imaging diagnosis of cardiac amyloidosis. J Cardiovasc Imaging 27(1):1–10

    Article  Google Scholar 

  7. 7.

    Fitzgerald BT, Bashford J, Newbigin K, Scalia GM (2017) Regression of cardiac amyloidosis following stem cell transplantation: a comparison between echocardiography and cardiac magnetic resonance imaging in long-term survivors. Int J Cardiol Heart Vasculature 14:53–57

    Article  Google Scholar 

  8. 8.

    Alexander KM, Evangelisti A, Witteles RM (2019) Emerging therapies for transthyretin cardiac amyloidosis. Curr Treat Options Cardiovasc Med 21(8):40

    Article  Google Scholar 

  9. 9.

    Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, Kristen AV, Grogan M et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379(11):1007–1016

    CAS  Article  Google Scholar 

  10. 10.

    Scalia GM, Scalia IG, Kierle R, Beaumont R, Cross DB, Feenstra J, Burstow DJ, Fitzgerald BT et al (2016) ePLAR - The echocardiographic pulmonary to left atrial ratio - A novel non-invasive parameter to differentiate pre-capillary and post-capillary pulmonary hypertension. Int J Cardiol 212:379–386

    Article  Google Scholar 

  11. 11.

    Rausch K, Shiino K, Putrino A, Lam AK, Scalia GM, Chan J (2019) Reproducibility of global left atrial strain and strain rate between novice and expert using multi-vendor analysis software. Int J Cardiovasc Imaging 35(3):419–426

    Article  Google Scholar 

  12. 12.

    Rausch K, Shiino K, Putrino A, Lam AK, Scalia GM, Chan J (2018) Reproducibility of global left atrial strain and strain rate between novice and expert using multi-vendor analysis software. Int J Cardiovasc Imaging 35:419

    Article  Google Scholar 

  13. 13.

    Mohty D, Petitalot V, Magne J, Fadel BM, Boulogne C, Rouabhia D, ElHamel C, Lavergne D et al (2018) Left atrial function in patients with light chain amyloidosis: a transthoracic 3D speckle tracking imaging study. J Cardiol 71(4):419–427

    Article  Google Scholar 

  14. 14.

    de Gregorio C, Dattilo G, Casale M, Terrizzi A, Donato R, Di Bella G (2016) Left atrial morphology, size and function in patients with transthyretin cardiac amyloidosis and primary hypertrophic cardiomyopathy- comparative strain imaging study. Circul J 80(8):1830–1837

    Article  Google Scholar 

  15. 15.

    Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM (2017) LA Strain for categorization of LV diastolic dysfunction. JACC Cardiovasc Imaging 10(7):735–743

    Article  Google Scholar 

  16. 16.

    Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, Schellberg D, Zugck C et al (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60(12):1067–1076

    Article  Google Scholar 

  17. 17.

    Koyama J, Falk RH (2010) Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging 3(4):333–342

    Article  Google Scholar 

  18. 18.

    Fitzgerald BT, Bashford J, Scalia GM (2017) Regression of the anatomic cardiac features of amyloid light chain cardiac amyloidosis accompanied by normalization of global longitudinal strain. CASE (Philadelphia, PA) 1(2):46–48

    Google Scholar 

  19. 19.

    Mohty D, Pibarot P, Dumesnil JG, Darodes N, Lavergne D, Echahidi N, Virot P, Bordessoule D et al (2011) Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis. Arch Cardiovasc Dis 104(12):611–618

    Article  Google Scholar 

  20. 20.

    Tuzovic M, Kobayashi Y, Wheeler M, Barrett C, Liedtke M, Lafayette R, Schrier S, Haddad F et al (2017) Functional cardiac recovery and hematologic response to chemotherapy in patients with light-chain amyloidosis (from the Stanford University Amyloidosis Registry). Am J Cardiol 120(8):1381–1386

    Article  Google Scholar 

  21. 21.

    Sanchis K, Cariou E, Colombat M, Ribes D, Huart A, Cintas P, Fournier P, Rollin A et al (2019) Atrial fibrillation and subtype of atrial fibrillation in cardiac amyloidosis: clinical and echocardiographic features, impact on mortality. Amyloid 26(3):128–138

    Article  Google Scholar 

  22. 22.

    Inaba Y, Yuda S, Kobayashi N, Hashimoto A, Uno K, Nakata T, Tsuchihashi K, Miura T et al (2005) Strain rate imaging for noninvasive functional quantification of the left atrium: comparative studies in controls and patients with atrial fibrillation. J Am Soc Echocardiogr 18(7):729–736

    Article  Google Scholar 

  23. 23.

    Sugimoto T, Robinet S, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, Caballero L et al (2018) Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 19(6):630–638

    Article  Google Scholar 

  24. 24.

    Pathan F, D'Elia N, Nolan MT, Marwick TH, Negishi K (2017) Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr 30(1):59–70.e8

    Article  Google Scholar 

  25. 25.

    Liao JN, Chao TF, Kuo JY, Sung KT, Tsai JP, Lo CI, Lai YH, Su CH et al (2017) Age, sex, and blood pressure-related influences on reference values of left atrial deformation and mechanics from a large-scale Asian population. Circ Cardiovasc Imaging 10(10):e006077

    Article  Google Scholar 

Download references



Author information




KR—concept and design, data collection, primary author of manuscript. GMS—concept and design, critical revision of article. KS—interobserver variability data collection. NE—data collection, critical revision of article. AL—concept and design, drafting article, critical revision of article. DGP—concept and design, critical revision of article. JC—concept and design, oversight of data collection, statistical analysis, drafting article, critical revision of article.

Corresponding author

Correspondence to Jonathan Chan.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Data including study vendor, year of study and strain values for the amyloid and hypertensive cohorts

Disease state Vendor Year of study Reservoir strain (S-LAs Conduit strain (S-LAe) Contractile strain (S-LAa)
AL GE 2017 11.87   
AL Phillips 2018 7.94 4.895 3.045
AL Phillips 2016 8.77 5.85 2.92
AL Phillips 2010 22.955 7.75 15.205
AL Phillips 2015 6.795 3.11 3.685
AL Phillips 2015 9.09 4.87 4.22
AL Phillips 2011 7.44 4.455 2.985
AL GE 2017 2.245 1.385 0.86
AL Phillips 2017 27.655 16.285 11.37
AL GE 2015 12.64 4.805 7.835
AL GE 2017 3.65   
ATTR GE 2015 12.64 4.805 7.835
ATTR GE 2017 3.65   
ATTR GE 2018 6.245 3.995 2.25
ATTR Phillips 2016 3.27 2.73 0.535
ATTR GE 2016 5.46 3.58 1.88
ATTR GE 2017 10.21   
ATTR Phillips 2019 5.00   
ATTR GE 2018 4.13   
ATTR GE 2017 5.57   
ATTR GE 2017 15.84 5.40 10.45
ATTR GE 2017 15.87 6.53 9.34
ATTR GE 2018 6.10   
ATTR Phillips 2014 19.51   
ATTR Phillips 2018 10.78 8.18 2.60
ATTR GE 2017 6.60   
ATTR Phillips 2018 7.71   
ATTR Phillips 2017 3.73   
ATTR GE 2019 6.22   
ATTR Phillips 2015 10.08   
ATTR Phillips 2015 25.70 15.47 10.24
ATTR GE 2015 9.95 3.41 6.54
ATTR GE 2016 5.70 4.63 1.07
ATTR GE 2015 7.30   
ATTR GE 2014 5.21   
ATTR GE 2015 6.10   
ATTR GE 2017 4.82   
ATTR GE 2013 7.34   
ATTR Phillips 2010 20.71 6.92 13.79
ATTR HP7500 2004 2.49   
ATTR Phillips 2017 6.30 4.61 1.69
ATTR Phillips 2018 28.70 4.94 15.77
ATTR Phillips 2016 9.18   
ATTR Siemens 2016 2.37   
ATTR Phillips 2017 8.34 5.48 2.86
ATTR GE 2015 32.64 15.91 13.65

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rausch, K., Scalia, G.M., Sato, K. et al. Left atrial strain imaging differentiates cardiac amyloidosis and hypertensive heart disease. Int J Cardiovasc Imaging 37, 81–90 (2021). https://doi.org/10.1007/s10554-020-01948-9

Download citation


  • Cardiac amyloidosis
  • Left atrial strain
  • Atrial deformation
  • Hypertension