Assessment of left ventricular systolic function in hypertrophic cardiomyopathy patients with myocardial injury: a study based on layer-specific speckle tracking echocardiaography

Abstract

We conducted this study to investigate left ventricle (LV) systolic function in endocardial, mid-myocardial, and epicardial layers by two-dimensional (2D) speckle tracking echocardiography (STE) in hypertrophic cardiomyopathy (HCM) patients with myocardial injury indexed by elevated serum cardiac troponin I (cTnI). Twenty-nine HCM patients with myocardial injury, thirty-five HCM patients without myocardial injury, and ninty-one healthy controls were enrolled in this study. Serum cTnI > 0.026 ng/mL was defined as myocardial injury. LV longitudinal and circumferential strain (LS and CS) were assessed in endocardial, mid-myocardial and epicardial layers. Layer-specific LS and CS differed significantly (all P < 0.001) among all three groups in all three layers, in a descending order from healthy controls to HCM patients without myocardial injury to HCM patients with myocardial injury. Layer-specific LS and CS were decreased the most in HCM patients with myocardial injury indexed by elevated seum cTnI (all P < 0.05). In HCM patients with myocardial injury, layer-specific LS and CS were significantly lower in the segments with greater hypertrophy (segmental thickness ≥ 15 mm) (all P < 0.001) except for endocardial CS (P > 0.05). Layer-specific evaluation of LV strain may improve understanding of impaired LV systolic function in HCM patients with myocardial injury, thus preventing further damage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kubo T, Kitaoka H, Okawa M, Yamanaka S, Hirota T, Hoshikawa E, Hayato K, Yamasaki N, Matsumura Y, Yasuda N, Sugiura T, Doi YL (2010) Serum cardiac troponin I is related to increased left ventricular wall thickness, left ventricular dysfunction, and male gender in hypertrophic cardiomyopathy. Clin Cardiol 33(2):1–7. https://doi.org/10.1002/clc.20622

    Article  Google Scholar 

  2. 2.

    Collinson PO, Saenger AK, Apple FS, Ifcc CC (2019) High sensitivity, contemporary and point-of-care cardiac troponin assays: educational aids developed by the IFCC committee on clinical application of cardiac bio-markers. Clin Chem Lab Med 57(5):623–632. https://doi.org/10.1515/cclm-2018-1211

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Timmer SA, Knaapen P (2013) Coronary microvascular function, myocardial metabolism, and energetics in hypertrophic cardiomyopathy: insights from positron emission tomography. Eur Heart J Cardiovasc Imaging 14(2):95–101. https://doi.org/10.1093/ehjci/jes242

    Article  PubMed  Google Scholar 

  4. 4.

    Hladij R, Rajtar-Salwa R, Dimitrow PP (2017) Troponin as ischemic biomarker is related with all three echocardiographic risk factors for sudden death in hypertrophic cardiomyopathy (ESC guidelines 2014). Cardiovasc Ultrasound 15(1):24. https://doi.org/10.1186/s12947-017-0115-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kubo T, Kitaoka H, Okawa M, Yamanaka S, Hirota T, Baba Y, Hayato K, Yamasaki N, Matsumura Y, Yasuda N, Sugiura T, Doi YL (2011) Combined measurements of cardiac troponin I and brain natriuretic peptide are useful for predicting adverse outcomes in hypertrophic cardiomyopathy. Circ J 75(4):919–926. https://doi.org/10.1253/circj.cj-10-0782

    Article  PubMed  Google Scholar 

  6. 6.

    Huang J, Yan ZN, Fan L, Rui YF, Song XT (2017) Left ventricular systolic function changes in hypertrophic cardiomyopathy patients detected by the strain of different myocardium layers and longitudinal rotation. BMC Cardiovasc Disord 17(1):214. https://doi.org/10.1186/s12872-017-0651-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Skaarup KG, Iversen A, Jorgensen PG, Olsen FJ, Grove GL, Jensen JS, Biering-Sorensen T (2018) Association between layer-specific global longitudinal strain and adverse outcomes following acute coronary syndrome. Eur Heart J Cardiovasc Imaging 19(12):1334–1342. https://doi.org/10.1093/ehjci/jey004

    Article  PubMed  Google Scholar 

  8. 8.

    Agarwal A, Yousefzai R, Shetabi K, Samad F, Aggarwal S, Cho C, Bush M, Jan MF, Khandheria BK, Paterick TE, Tajik AJ (2017) Relationship of cardiac troponin to systolic global longitudinal strain in hypertrophic cardiomyopathy. Echocardiography 34(10):1470–1477. https://doi.org/10.1111/echo.13645

    Article  PubMed  Google Scholar 

  9. 9.

    Okada K, Yamada S, Iwano H, Nishino H, Nakabachi M, Yokoyama S, Abe A, Ichikawa A, Kaga S, Nishida M, Hayashi T, Murai D, Mikami T, Tsutsui H (2015) Myocardial shortening in 3 orthogonal directions and its transmural variation in patients with nonobstructive hypertrophic cardiomyopathy. Circ J 79(11):2471–2479. https://doi.org/10.1253/circj.CJ-15-0646

    Article  PubMed  Google Scholar 

  10. 10.

    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jenab Y, Pourjafari M, Darabi F, Boroumand MA, Zoroufian A, Jalali A (2014) Prevalence and determinants of elevated high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J Cardiol 63(2):140–144. https://doi.org/10.1016/j.jjcc.2013.07.008

    Article  PubMed  Google Scholar 

  12. 12.

    Moreno V, Hernandez-Romero D, Vilchez JA, Garcia-Honrubia A, Cambronero F, Casas T, Gonzalez J, Martinez P, Climent V, de la Morena G, Valdes M, Marin F (2010) Serum levels of high-sensitivity troponin T: a novel marker for cardiac remodeling in hypertrophic cardiomyopathy. J Cardiac Fail 16(12):950–956. https://doi.org/10.1016/j.cardfail.2010.07.245

    CAS  Article  Google Scholar 

  13. 13.

    Gebka A, Rajtar-Salwa R, Dziewierz A, Petkow-Dimitrow P (2018) Painful and painless myocardial ischemia detected by elevated level of high-sensitive troponin in patients with hypertrophic cardiomyopathy. Adv Interv Cardiol 14(2):195–198. https://doi.org/10.5114/aic.2018.76413

    Article  Google Scholar 

  14. 14.

    Authors/Task Force m, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779. https://doi.org/10.1093/eurheartj/ehu284

    Article  Google Scholar 

  15. 15.

    Rajtar-Salwa R, Hladij R, Dimitrow PP (2017) Elevated level of troponin but not N-terminal probrain natriuretic peptide is associated with increased risk of sudden cardiac death in hypertrophic cardiomyopathy calculated according to the ESC guidelines 2014. Dis Mark 2017:9417908. https://doi.org/10.1155/2017/9417908

    CAS  Article  Google Scholar 

  16. 16.

    Ho CY, Day SM, Colan SD, Russell MW, Towbin JA, Sherrid MV, Canter CE, Jefferies JL, Murphy AM, Cirino AL, Abraham TP, Taylor M, Mestroni L, Bluemke DA, Jarolim P, Shi L, Sleeper LA, Seidman CE, Orav EJ, Investigators HC (2017) The burden of early phenotypes and the influence of wall thickness in hypertrophic cardiomyopathy mutation carriers: findings from the HCMNet study. JAMA Cardiol 2(4):419–428. https://doi.org/10.1001/jamacardio.2016.5670

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hori Y, Iguchi M, Heishima Y, Yamashita Y, Nakamura K, Hirakawa A, Kitade A, Ibaragi T, Katagi M, Sawada T, Yuki M, Kanno N, Inaba H, Isayama N, Onodera H, Iwasa N, Kino M, Narukawa M, Uchida S (2018) Diagnostic utility of cardiac troponin I in cats with hypertrophic cardiomyopathy. J Vet Intern Med 32(3):922–929. https://doi.org/10.1111/jvim.15131

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Borgeat K, Sherwood K, Payne JR, Luis Fuentes V, Connolly DJ (2014) Plasma cardiac troponin I concentration and cardiac death in cats with hypertrophic cardiomyopathy. J Vet Intern Med 28(6):1731–1737. https://doi.org/10.1111/jvim.12459

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chen X, Nakatani S (2011) Transmural myocardial strain gradient: a new and robust quantitative index of left ventricular wall motion based on myocardial strain imaging. Echocardiography 28(2):181–187. https://doi.org/10.1111/j.1540-8175.2010.01287.x

    Article  PubMed  Google Scholar 

  20. 20.

    Yazaki K, Takahashi K, Shigemitsu S, Yamada M, Iso T, Kobayashi M, Akimoto K, Tamaichi H, Fujimura J, Saito M, Nii M, Shimizu T (2018) In-depth insight into the mechanisms of cardiac dysfunction in patients with childhood cancer after anthracycline treatment using layer-specific strain analysis. Circ J 82(3):715–723. https://doi.org/10.1253/circj.CJ-17-0874

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Jin X, Ma C, Wang Y, Yang J (2017) A case of loeffler endocarditis that showed endomyocardial systolic dysfunction detected by layer specific strain analysis. Int Heart J 58(6):1001–1003. https://doi.org/10.1536/ihj.16-422

    Article  PubMed  Google Scholar 

  22. 22.

    Zhao H, Lee AP, Li Z, Qiao Z, Fan Y, An D, Xu J, Pu J, Shen X, Ge H, He B (2016) Impact of intramyocardial hemorrhage and microvascular obstruction on cardiac mechanics in reperfusion injury: a speckle-tracking echocardiographic study. J Am Soc Echocardiogr 29(10):973–982. https://doi.org/10.1016/j.echo.2016.06.011

    Article  PubMed  Google Scholar 

  23. 23.

    Funabashi N, Takaoka H, Ozawa K, Kamata T, Uehara M, Komuro I, Kobayashi Y (2018) Quantitative differentiation of LV myocardium with and without layer-specific fibrosis using MRI in hypertrophic cardiomyopathy and layer-specific strain TTE analysis. Int Heart J 59(3):523–530. https://doi.org/10.1536/ihj.17-208

    Article  PubMed  Google Scholar 

  24. 24.

    Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Executive Group on behalf of the Joint European Society of Cardiology/American College of Cardiology/American Heart Association/World Heart Federation Task Force for the Universal Definition of Myocardial I (2018) Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 72(18):2231–2264. https://doi.org/10.1016/j.jacc.2018.08.1038

    Article  Google Scholar 

  25. 25.

    Hasler S, Manka R, Greutmann M, Gamperli O, Schmied C, Tanner FC, Biaggi P, Luscher TF, Keller DI, Gruner C (2016) Elevated high-sensitivity troponin T levels are associated with adverse cardiac remodelling and myocardial fibrosis in hypertrophic cardiomyopathy. Swiss Med Wkly 146:w14285. https://doi.org/10.4414/smw.2016.14285

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115(18):2418–2425. https://doi.org/10.1161/CIRCULATIONAHA.106.657023

    Article  PubMed  Google Scholar 

  27. 27.

    Hladij R, Rajtar-Salwa R, Petkow Dimitrow P (2017) Associaton of elevated troponin levels with increased heart rate and higher frequency of nonsustained ventricular tachycardia in hypertrophic cardiomyopathy. Pol Arc Intern Med 126(6):445–447. https://doi.org/10.20452/pamw.4053

    Article  Google Scholar 

  28. 28.

    Shyu JJ, Cheng CH, Erlandson RA, Lin JH, Liu SK (2002) Ultrastructure of intramural coronary arteries in pigs with hypertrophic cardiomyopathy. Cardiovasc Pathol 11(2):104–111. https://doi.org/10.1016/s1054-8807(01)00101-6

    Article  PubMed  Google Scholar 

  29. 29.

    Gutierrez-Barrios A, Camacho-Jurado F, Diaz-Retamino E, Gamaza-Chulian S, Agarrado-Luna A, Oneto-Otero J, Del Rio-Lechuga A, Benezet-Mazuecos J (2015) Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance. Cardiovasc Revasc Med 16(7):426–428. https://doi.org/10.1016/j.carrev.2015.06.008

    Article  PubMed  Google Scholar 

  30. 30.

    Moody WE, Schmitt M, Arumugam P (2019) Coronary microvascular dysfunction in hypertrophic cardiomyopathy detected by Rubidium-82 positron emission tomography and cardiac magnetic resonance imaging. J Nucl Cardiol 26(2):666–670. https://doi.org/10.1007/s12350-018-1245-4

    Article  PubMed  Google Scholar 

  31. 31.

    Timmer SA, Germans T, Gotte MJ, Russel IK, Dijkmans PA, Lubberink M, ten Berg JM, ten Cate FJ, Lammertsma AA, Knaapen P, van Rossum AC (2010) Determinants of myocardial energetics and efficiency in symptomatic hypertrophic cardiomyopathy. Eur J Nucl Med Mol Imaging 37(4):779–788. https://doi.org/10.1007/s00259-009-1350-3

    Article  PubMed  Google Scholar 

  32. 32.

    Kimura K, Takenaka K, Ebihara A, Uno K, Iwata H, Sata M, Kohro T, Morita H, Yatomi Y, Nagai R (2011) Reproducibility and diagnostic accuracy of three-layer speckle tracking echocardiography in a swine chronic ischemia model. Echocardiography 28(10):1148–1155. https://doi.org/10.1111/j.1540-8175.2011.01517.x

    Article  PubMed  Google Scholar 

  33. 33.

    Funabashi N, Takaoka H, Ozawa K, Kobayashi Y (2018) Endocardial fibrotic lesions have a greater effect on peak longitudinal strain than epicardial fibrotic lesions in hypertrophic cardiomyopathy patients. Int Heart J 59(2):347–353. https://doi.org/10.1536/ihj.17-021

    Article  PubMed  Google Scholar 

  34. 34.

    Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, Lafitte S (2006) Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 47(6):1175–1181. https://doi.org/10.1016/j.jacc.2005.10.061

    Article  PubMed  Google Scholar 

  35. 35.

    Carasso S, Yang H, Woo A, Vannan MA, Jamorski M, Wigle ED, Rakowski H (2008) Systolic myocardial mechanics in hypertrophic cardiomyopathy: novel concepts and implications for clinical status. J Am Soc Echocardiogr 21(6):675–683. https://doi.org/10.1016/j.echo.2007.10.021

    Article  PubMed  Google Scholar 

  36. 36.

    Ozawa K, Funabashi N, Takaoka H, Kamata T, Kanaeda A, Saito M, Nomura F, Kobayashi Y (2015) Characteristic myocardial strain identified in hypertrophic cardiomyopathy subjects with preserved left ventricular ejection fraction using a novel multi-layer transthoracic echocardiography technique. Int J Cardiol 184:237–243. https://doi.org/10.1016/j.ijcard.2015.01.070

    Article  PubMed  Google Scholar 

  37. 37.

    Huang X, Yue Y, Wang Y, Deng Y, Liu L, Di Y, Sun S, Chen D, Fan L, Cao J (2018) Assessment of left ventricular systolic and diastolic abnormalities in patients with hypertrophic cardiomyopathy using real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging. Cardiovasc Ultrasound 16(1):23. https://doi.org/10.1186/s12947-018-0142-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Dobrovie M, Bezy S, Unlu S, Chakraborty B, Petrescu A, Duchenne J, Beela AS, Voigt JU (2019) How does regional hypertrophy affect strain measurements with different speckle-tracking methods? J Am Soc Echocardiogr 32(11):1444–1450. https://doi.org/10.1016/j.echo.2019.06.008

    Article  PubMed  Google Scholar 

  39. 39.

    Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG (2014) Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 7(1):11–19. https://doi.org/10.1161/CIRCIMAGING.113.000842

    Article  PubMed  Google Scholar 

  40. 40.

    Kwon DH, Smedira NG, Rodriguez ER, Tan C, Setser R, Thamilarasan M, Lytle BW, Lever HM, Desai MY (2009) Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol 54(3):242–249. https://doi.org/10.1016/j.jacc.2009.04.026

    Article  PubMed  Google Scholar 

  41. 41.

    Esposito R, Santoro C, Sorrentino R, Riccio E, Citro R, Buonauro A, Di Risi T, Imbriaco M, Trimarco B, Pisani A, Galderisi M, Naples A-F (2019) Layer-specific longitudinal strain in Anderson-Fabry disease at diagnosis: a speckle tracking echocardiography analysis. Echocardiography 36(7):1273–1281. https://doi.org/10.1111/echo.14399

    Article  PubMed  Google Scholar 

  42. 42.

    Shi RY, An DA, Chen BH, Wu R, Wu CW, Du L, Zhu J, Jiang M, Xu JR, Wu LM (2019) High T2-weighted signal intensity is associated with myocardial deformation in hypertrophic cardiomyopathy. Sci Rep 9(1):2644. https://doi.org/10.1038/s41598-019-39456-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank all the participants for their cooperation and are grateful for the support of Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University.

Funding

This study was supported by grants from the National Natural Science Foundation of China (81701703 to D.S.), the Shenyang Science and Technology Plan Project (19-112-4-061 to J.Y.), and the Youth Scholar Supporting Plan Project of China Medical University (QGZD2018039 to W.L.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Dandan Sun.

Ethics declarations

Conflict of interest

There is no conflict of interest about this work.

Ethical approval

Ethics approval was obtained from the Institutional Ethics Committee of China Medical University. Each participant provided written informed consent after receiving a detailed description of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Supplementary file2 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, Y., Liu, Y. et al. Assessment of left ventricular systolic function in hypertrophic cardiomyopathy patients with myocardial injury: a study based on layer-specific speckle tracking echocardiaography. Int J Cardiovasc Imaging (2020). https://doi.org/10.1007/s10554-020-01921-6

Download citation

Keywords

  • Hypertrophic cardiomyopathy
  • Layer-specific strain
  • Myocardial injury