Assessment of aortic valve tract dynamics using automatic tracking of 3D transesophageal echocardiographic images

  • Sandro QueirósEmail author
  • Pedro Morais
  • Wolfgang Fehske
  • Alexandros Papachristidis
  • Jens-Uwe Voigt
  • Jaime C. Fonseca
  • Jan D’hooge
  • João L. Vilaça
Original Paper


The assessment of aortic valve (AV) morphology is paramount for planning transcatheter AV implantation (TAVI). Nowadays, pre-TAVI sizing is routinely performed at one cardiac phase only, usually at mid-systole. Nonetheless, the AV is a dynamic structure that undergoes changes in size and shape throughout the cardiac cycle, which may be relevant for prosthesis selection. Thus, the aim of this study was to present and evaluate a novel software tool enabling the automatic sizing of the AV dynamically in three-dimensional (3D) transesophageal echocardiography (TEE) images. Forty-two patients who underwent preoperative 3D-TEE images were retrospectively analyzed using the software. Dynamic measurements were automatically extracted at four levels, including the aortic annulus. These measures were used to assess the software’s ability to accurately and reproducibly quantify the conformational changes of the aortic root and were validated against automated sizing measurements independently extracted at distinct time points. The software extracted physiological dynamic measurements in less than 2 min, that were shown to be accurate (error 2.2 ± 26.3 mm2 and 0.0 ± 2.53 mm for annular area and perimeter, respectively) and highly reproducible (0.85 ± 6.18 and 0.65 ± 7.90 mm2 of intra- and interobserver variability, respectively, in annular area). Using the maximum or minimum measured values rather than mid-systolic ones for device sizing resulted in a potential change of recommended size in 7% and 60% of the cases, respectively. The presented software tool allows a fast, automatic and reproducible dynamic assessment of the AV morphology from 3D-TEE images, with the extracted measures influencing the device selection depending on the cardiac moment used to perform its sizing. This novel tool may thus ease and potentially increase the observer’s confidence during prosthesis’ size selection at the preoperative TAVI planning.


Aortic valve sizing 3D transesophageal echocardiography Transcatheter aortic valve implantation Dynamic morphology assessment Tracking software tool 



This work was funded by projects “NORTE-01-0145-FEDER-000013” and “NORTE-01-0145-FEDER-024300”, supported by Northern Portugal Regional Operational Programme (Norte2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has also been funded by FEDER funds, through Competitiveness Factors Operational Programme (COMPETE), and by national funds, through the FCT—Fundação para a Ciência e Tecnologia, under the scope of the project POCI-01-0145-FEDER-007038. The authors also acknowledge support from FCT and the European Social Found, through Programa Operacional Capital Humano (POCH), in the scope of the PhD grant SFRH/BD/93443/2013 (S. Queirós). The authors would also like to thank Judith Simons (St. Vinzenz-Hospital, Cologne, Germany) and Mahvish T. Elahi (KU Leuven, Leuven, Belgium) for their technical assistance in collecting all patient/image data.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10554_2019_1532_MOESM1_ESM.avi (8.7 mb)
Supplementary material 1 (AVI 8868 KB)
10554_2019_1532_MOESM2_ESM.avi (11.7 mb)
Supplementary material 2 (AVI 11994 KB)
10554_2019_1532_MOESM3_ESM.avi (4.1 mb)
Supplementary material 3 (AVI 4181 KB)
10554_2019_1532_MOESM4_ESM.avi (7.8 mb)
Supplementary material 4 (AVI 8011 KB)
10554_2019_1532_MOESM5_ESM.avi (10.1 mb)
Supplementary material 5 (AVI 10314 KB)


  1. 1.
    Osnabrugge RL, Mylotte D, Head SJ, Van Mieghem NM, Nkomo VT, LeReun CM, Bogers AJ, Piazza N, Kappetein AP (2013) Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol 62(11):1002–1012CrossRefGoogle Scholar
  2. 2.
    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607CrossRefGoogle Scholar
  3. 3.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease. Circulation 129(23):521–643Google Scholar
  4. 4.
    Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A (2012) Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 33(19):2451–2496CrossRefPubMedGoogle Scholar
  5. 5.
    Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, Thourani VH, Tuzcu EM, Miller DC, Herrmann HC (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 374(17):1609–1620CrossRefGoogle Scholar
  6. 6.
    Min JK, Berman DS, Leipsic J (2013) Multimodality imaging for transcatheter aortic valve replacement. Springer Science & Business Media, BerlinGoogle Scholar
  7. 7.
    Zamorano J, Gonçalves A, Lancellotti P, Andersen KA, González-Gómez A, Monaghan M, Brochet E, Wunderlich N, Gafoor S, Gillam LD (2016) The use of imaging in new transcatheter interventions: an EACVI review paper. Eur Heart J Cardiovasc Imaging 17(8):835–835afCrossRefPubMedGoogle Scholar
  8. 8.
    Bloomfield GS, Gillam LD, Hahn RT, Kapadia S, Leipsic J, Lerakis S, Tuzcu M, Douglas PS (2012) A practical guide to multimodality imaging of transcatheter aortic valve replacement. JACC Cardiovasc Imaging 5(4):441–455CrossRefGoogle Scholar
  9. 9.
    Hamdan A, Guetta V, Konen E, Goitein O, Segev A, Raanani E, Spiegelstein D, Hay I, Di Segni E, Eldar M (2012) Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J Am Coll Cardiol 59(2):119–127CrossRefPubMedGoogle Scholar
  10. 10.
    Suchá D, Tuncay V, Prakken NH, Leiner T, van Ooijen PM, Oudkerk M, Budde RP (2015) Does the aortic annulus undergo conformational change throughout the cardiac cycle? A systematic review. Eur Heart J Cardiovasc Imaging 16(12):1307–1317PubMedGoogle Scholar
  11. 11.
    Murphy DT, Blanke P, Alaamri S, Naoum C, Rubinshtein R, Pache G, Precious B, Berger A, Raju R, Dvir D (2016) Dynamism of the aortic annulus: effect of diastolic versus systolic CT annular measurements on device selection in transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr 10(1):37–43CrossRefPubMedGoogle Scholar
  12. 12.
    Blanke P, Russe M, Leipsic J, Reinöhl J, Ebersberger U, Suranyi P, Siepe M, Pache G, Langer M, Schoepf UJ (2012) Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. JACC Cardiovasc Interv 5(9):984–994CrossRefPubMedGoogle Scholar
  13. 13.
    von Aspern K, Foldyna B, Etz C, Hoyer A, Girrbach F, Holzhey D, Lücke C, Grothoff M, Linke A, Mohr F (2015) Effective diameter of the aortic annulus prior to transcatheter aortic valve implantation: influence of area-based versus perimeter-based calculation. Int J Cardiovasc Imaging 31(1):163–169CrossRefGoogle Scholar
  14. 14.
    Mehrotra P, Flynn AW, Jansen K, Tan TC, Mak G, Julien HM, Zeng X, Picard MH, Passeri JJ, Hung J (2015) Differential left ventricular outflow tract remodeling and dynamics in aortic stenosis. J Am Soc Echocardiogr 28(11):1259–1266CrossRefPubMedGoogle Scholar
  15. 15.
    Bersvendsen J, Beitnes JO, Urheim S, Aakhus S, Samset E (2014) Automatic measurement of aortic annulus diameter in 3-dimensional transoesophageal echocardiography. BMC Med Imaging 14(1):31CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ionasec RI, Voigt I, Georgescu B, Wang Y, Houle H, Vega-Higuera F, Navab N, Comaniciu D (2010) Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans Med Imaging 29(9):1636–1651CrossRefPubMedGoogle Scholar
  17. 17.
    Veronesi F, Corsi C, Mor-Avi V, Sugeng L, Wienert L, Lang R, Lamberti C (2009) Quantification of aortic valve stenosis using transesophageal real-time 3D echocardiographic images. In: Computers in Cardiology 2009. IEEE. pp 37–40Google Scholar
  18. 18.
    Barbosa D, Heyde B, Dietenbeck T, Friboulet D, D’hooge J, Bernard O (2013) Fast left ventricle tracking in 3D echocardiographic data using anatomical affine optical flow. In: Functional Imaging and Modeling of the Heart (FIMH2013). pp 191–199Google Scholar
  19. 19.
    Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL, Friboulet D, Bernard O, D’hooge J (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18(7):1115–1131CrossRefPubMedGoogle Scholar
  20. 20.
    Queirós S, Vilaça JL, Morais P, Fonseca JC, D’hooge J, Barbosa D (2017) Fast left ventricle tracking using localized anatomical affine optical flow. Int J Numer Methods Biomed Eng 33(11):e2871. CrossRefGoogle Scholar
  21. 21.
    Queirós S, Morais P, Dubois C, Voigt J-U, Fehske W, Kuhn A, Achenbach T, Fonseca JC, Vilaça JL, D’hooge J (2018) Validation of a novel software tool for automatic aortic annulus sizing in 3D transesophageal echocardiographic images. J Am Soc Echocardiogr 31(4):515–525.e515CrossRefPubMedGoogle Scholar
  22. 22.
    Heyde B, Barbosa D, Claus P, Maes F, D’hooge J (2013) Three-dimensional cardiac motion estimation based on non-rigid image registration using a novel transformation model adapted to the heart. In: Statistical atlases and computational models of the heart. Imaging and modelling challenges. Springer. pp 142–150Google Scholar
  23. 23.
    Kasel AM, Cassese S, Bleiziffer S, Amaki M, Hahn RT, Kastrati A, Sengupta PP (2013) Standardized imaging for aortic annular sizing: implications for transcatheter valve selection. JACC Cardiovasc Imaging 6(2):249–262CrossRefPubMedGoogle Scholar
  24. 24.
    Kenny C, Monaghan M (2015) How to assess aortic annular size before transcatheter aortic valve implantation (TAVI): the role of echocardiography compared with other imaging modalities. Heart 101(9):727–736. CrossRefPubMedGoogle Scholar
  25. 25.
    Bland JM, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476):307–310CrossRefGoogle Scholar
  26. 26.
    Piazza N, de Jaegere P, Schultz C, Becker AE, Serruys PW, Anderson RH (2008) Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Interv 1(1):74–81CrossRefPubMedGoogle Scholar
  27. 27.
    Elattar MA, Vink LW, van Mourik MS, Baan J Jr, Planken RN, Marquering HA (2017) Dynamics of the aortic annulus in 4D CT angiography for transcatheter aortic valve implantation patients. PLoS ONE 12(9):e0184133CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Looi J-L, Lee AP-W, Fang F, Hsiung MC, Sun J-P, Yin W-H, Wei J, Tsai S-K, Wan S, Wong RH (2015) Abnormal mitral–aortic intervalvular coupling in mitral valve diseases: a study using real-time three-dimensional transesophageal echocardiography. Clin Res Cardiol 104(10):831–842CrossRefPubMedGoogle Scholar
  29. 29.
    Caballero L, Saura D, Oliva-Sandoval MJ, González-Carrillo J, Espinosa MD, García-Navarro M, Valdés M, Lancellotti P, de la Morena G (2017) Three-dimensional morphology of the left ventricular outflow tract: impact on grading aortic stenosis severity. J Am Soc Echocardiogr 30(1):28–35CrossRefPubMedGoogle Scholar
  30. 30.
    Khamooshian A, Amador Y, Hai T, Jeganathan J, Saraf M, Mahmood E, Matyal R, Khabbaz KR, Mariani M, Mahmood F (2017) Dynamic three-dimensional geometry of the aortic valve apparatus—a feasibility study. J Cardiothorac Vasc Anesth 31(4):1290–1300CrossRefPubMedGoogle Scholar
  31. 31.
    Tsang W, Veronesi F, Sugeng L, Weinert L, Takeuchi M, Jeevanandam V, Lang RM (2013) Mitral valve dynamics in severe aortic stenosis before and after aortic valve replacement. J Am Soc Echocardiogr 26(6):606–614CrossRefPubMedGoogle Scholar
  32. 32.
    Queirós S, Papachristidis A, Barbosa D, Theodoropoulos KC, Fonseca JC, Monaghan MJ, Vilaça JL, D’ hooge J (2016) Aortic valve tract segmentation from 3D-TEE using shape-based B-spline explicit active surfaces. IEEE Trans Med Imaging 35(9):2015–2025. CrossRefPubMedGoogle Scholar
  33. 33.
    Prihadi EA, van Rosendael PJ, Vollema EM, Bax JJ, Delgado V, Marsan NA (2018) Feasibility, accuracy, and reproducibility of aortic annular and root sizing for transcatheter aortic valve replacement using novel automated three-dimensional echocardiographic software: comparison with multi–detector row computed tomography. J Am Soc Echocardiogr 31(4):505–514.e503CrossRefPubMedGoogle Scholar
  34. 34.
    Doddamani S, Bello R, Friedman MA, Banerjee A, Bowers JH, Kim B, Vennalaganti PR, Ostfeld RJ, Gordon GM, Malhotra D (2007) Demonstration of left ventricular outflow tract eccentricity by real time 3D echocardiography: implications for the determination of aortic valve area. Echocardiography 24(8):860–866CrossRefPubMedGoogle Scholar
  35. 35.
    Flachskampf FA, Wouters PF, Edvardsen T, Evangelista A, Habib G, Hoffman P, Hoffmann R, Lancellotti P, Pepi M, Imaging EAoC (2014) Recommendations for transoesophageal echocardiography: EACVI update 2014. Eur Heart J Cardiovasc Imaging 15(4):353–365CrossRefPubMedGoogle Scholar
  36. 36.
    Papachristidis A, Papitsas M, Roper D, Wang Y, Dworakowski R, Byrne J, Wendler O, MacCarthy P, Monaghan MJ (2017) Three-dimensional measurement of aortic annulus dimensions using area or circumference for transcatheter aortic valve replacement valve sizing: does it make a difference? J Am Soc Echocardiogr 30(9):871–878CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Lab on Cardiovascular Imaging and DynamicsKU LeuvenLeuvenBelgium
  4. 4.Algoritmi Center, School of EngineeringUniversity of MinhoGuimarãesPortugal
  5. 5.Department of CardiologySt Vinzenz-HospitalCologneGermany
  6. 6.King’s College Hospital NHS Foundation TrustLondonUK
  7. 7.Department of CardiologyUniversity Hospital LeuvenLeuvenBelgium
  8. 8.2Ai-Polytechnic Institute of Cávado and AveBarcelosPortugal

Personalised recommendations