Association between late gadolinium enhancement and global longitudinal strain in patients with rheumatic mitral stenosis

  • Amiliana M. SoesantoEmail author
  • Dwita Rian Desandri
  • Teuku Muhammad Haykal
  • Manoefris Kasim
Original Paper


The correlation between the extent of myocardial fibrosis and subclinical left ventricle (LV) systolic dysfunction in rheumatic mitral stenosis (MS) has not been widely studied. We sought to evaluate the correlation between the extent of LV myocardial fibrosis quantified by late gadolinium enhancement (LGE) using cardiac magnetic resonance (CMR) and global longitudinal strain (GLS) by speckle tracking echocardiography (STE) in patients with rheumatic MS. We prospectively evaluated 36 consecutive rheumatic MS patients who were planning to undergo mitral valve surgery. Then we evaluate the correlation between the extent of LV myocardial fibrosis quantified by LGE CMR and the systolic LV function by GLS using STE. Thirty-six patients with mean age of 45.7 ± 9.9 years old, showed mean LGE was 4.9 ± 2.7%. The mean LV ejection fraction (EF) measured by CMR was 50 ± 10.8%, and the mean LV GLS was 13.5 ± 3.9%. There was a moderate correlation between GLS and LGE (r − 0.432, p = 0.009). There were no correlations between GLS with mitral valve area (MVA) with r 0.149, p = 0.385, mean mitral valve gradient (MVG) with r -0.078, p = 0.653, and LVEF (r 0.299, p = 0.076). There was a moderate correlation between LGE and GLS in patients with rheumatic MS.


Myocardial fibrosis Global longitudinal strain Late gadolinium enhancement Cardiac magnetic resonance Rheumatic mitral stenosis 



Body Mass Index


Cardiac magnetic resonance


Global longitudinal strain


Late gadolinium enhancement


Left atrium


Left Atrial Volume Index


Left ventricular


Left Ventricular End-Diastolic Volume Index


Left ventricular ejection fraction


Left Ventricular End-Systolic Volume Index


Left Ventricular Mass Index


Mean pulmonary arterial pressure


Mitral stenosis


Mitral valve area


Mitral valve gradient


Rheumatic heart disease


Right ventricle


Right Ventricular End-Diastolic Volume Index


Right ventricular ejection fraction


Right Ventricular End-Systolic Volume Index


Speckle tracking echocardiography


Tricuspid annular plane systolic excursion


Compliance with ethical standards

Conflict of interest

All authors declare that there are no conflicts of interest.

Supplementary material

10554_2018_1511_MOESM1_ESM.docx (265 kb)
Supplementary material 1 (DOCX 265 KB)


  1. 1.
    Bilen E, Kurt M, Tanboga IH et al (2011) Severity of mitral stenosis and left ventricular mechanics: a speckle tracking study. Cardiology 119:108–115CrossRefPubMedGoogle Scholar
  2. 2.
    Ozdemir AO, Kaya CT, Ozcan OU et al (2010) Prediction of subclinical left ventricular dysfunction with longitudinal two-dimensional strain and strain rate imaging in patients with mitral stenosis. Int J Cardiovasc Imaging 26:397–404CrossRefPubMedGoogle Scholar
  3. 3.
    Ozdemir K, Altunkeser BB, Gok H et al (2002) Analysis of the myocardial velocities in patients with mitral stenosis. J Am Soc Echocardiogr 15:1472–1478CrossRefPubMedGoogle Scholar
  4. 4.
    Lee YS, Lee CP (1990) Ultrastructural pathological study of left ventricular myocardium in patients with isolated rheumatic mitral stenosis with normal or abnormal left ventricular function. Jpn Heart J 31:435–448CrossRefPubMedGoogle Scholar
  5. 5.
    Holzer JA, Karliner JS, O’Rourke RA et al (1973) Quantitative angiographic analysis of the left ventricle in patients with isolated rheumatic mitral stenosis. Br Heart J 35:497–502CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Klein AJ, Carroll JD (2006) Left ventricular dysfunction and mitral stenosis. Heart Fail Clin 2:443–452CrossRefPubMedGoogle Scholar
  7. 7.
    Bax JJ, Delgado V (2017) Advanced imaging in valvular heart disease. Nat Rev Cardiol 14(4):209–223CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffmann R, Altiok E, Friedman Z, Becker M, Frick M (2014) Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography in comparison to late gadolinium enhancement cardiac magnetic resonance for analysis of myocardial fibrosis in severe aortic stenosis. Am J Cardiol 114:1083–1088CrossRefPubMedGoogle Scholar
  9. 9.
    Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS et al (2010) Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol 56:278–287CrossRefPubMedGoogle Scholar
  10. 10.
    Edwards NC. Mood WE, Yuan M et al (2014) Quantification of left ventricular interstitial fibrosis in asymptomatic chronic primary degenerative mitral regurgitation. Circ Cardiovasc Imaging 7:946–953CrossRefPubMedGoogle Scholar
  11. 11.
    Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Society for cardiovascular magnetic resonance, & board of trustees task force on standardized protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson, 15(1):35CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mikami Y, Kolman L, Joncas SX et al (2014) Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 16:1–9CrossRefGoogle Scholar
  13. 13.
    Baumgartner H, Hung J, Bermejo J, Chambers J, Evangelista A (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 22(1):1–23CrossRefPubMedGoogle Scholar
  14. 14.
    Diker E, Aydogdu S, Ozdemir M et al (1996) Prevalence and predictors of atrial fibrillation in rheumatic valvular heart disease. Am J Cardiol 77(1):96–98CrossRefPubMedGoogle Scholar
  15. 15.
    Sharma SK, Verma SH (2015) A Clinical Evaluation of Atrial Fibrillation in Rheumatic Heart Disease. J Assoc Phys India 63(6):22–25Google Scholar
  16. 16.
    Lee H-H, Lee M-K, Lee W-H (2016) Atrial fibrillation per se was a major determinant of global left ventricular longitudinal systolic strain. Medicine 95(26):e4038CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Russo C, Jin Z, Elkind MSV et al (2014) Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain n a community-based cohort. Eur J Heart Fail 16:1301–1309CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shaper AG, Hutt MSR, Coles RM (1968) Necropsy study of endomyocardial fibrosis and rheumatic heart disease in Uganda 1950–1965. Brit Heart J 30:391CrossRefPubMedGoogle Scholar
  19. 19.
    Kim L, Kim DK, Yang WI (2008) Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci 23(1):41–48CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xiao H, Lei H, Qin S (2010) TGF-β1 expression and atrial myocardium fibrosis increase in atrial fibrillation secondary to rheumatic heart disease. Clin Cardiol 33:3, 149–156CrossRefPubMedGoogle Scholar
  21. 21.
    Chaikriangkrai K, Lopez-Mattei JC, Lawrie G et al (2014) Prognostic value of delayed enhancement cardiac magnetic resonance imaging in mitral valve repair. Ann Thorac Surg 98:1557–1563CrossRefPubMedGoogle Scholar
  22. 22.
    Han Y, Peters DC, Salton CJ et al (2008) Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC Cardiovasc Imaging 1(3):294–303CrossRefPubMedGoogle Scholar
  23. 23.
    Meel R, Nethononda R, Libhaber E et al (2018) Assessment of myocardial fibrosis by late gadolinium enhancement imaging and biomarkers of collagen metabolism in chronic rheumatic mitral regurgitation. Cardiovasc J Afr 6:1–5Google Scholar
  24. 24.
    Shaper AG, Wight DH (1963) Endomyocardial fibrosis and rheumatic heart disease. Lancet 25:502Google Scholar
  25. 25.
    Sengupta PP, Mohan JC, Mehta V et al (2004) Effects of percutaneous mitral commissurotomy on longitudinal left ventricular dynamics in mitral stenosis: quantitative assessment by tissue velocity imaging. J Am Soc Echocardiogr 17:824–828CrossRefPubMedGoogle Scholar
  26. 26.
    Abou R, Leung M, Khidir MJH et al (2017) Influence of aging on level and layer-specific left ventricular longitudinal strain in subject without structural heart disease. Am J Cardiol 120(11):2065–2072CrossRefPubMedGoogle Scholar
  27. 27.
    Ng ACT, Prevedello F, Dolci G et al (2018) Impact of diabetes and increasing body mass index category on left ventricular systolic and diastolic function. J Am Soc Echocardiogr 31(8):916–925CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Amiliana M. Soesanto
    • 1
    Email author
  • Dwita Rian Desandri
    • 1
  • Teuku Muhammad Haykal
    • 1
  • Manoefris Kasim
    • 1
  1. 1.Department of Cardiology and Vascular Medicine, Faculty of MedicineUniversitas Indonesia / National Cardiovascular Center Harapan KitaJakartaIndonesia

Personalised recommendations