Skip to main content
Log in

Left ventricular myocardial T1 mapping and strain analysis evaluate cardiac abnormality in hypothyroidism

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiovascular Magnetic Resonance (CMR)-based T1 mapping and Heart Deformation Analysis (CMR-HDA) can assess the myocardial tissue characteristic and strain of cardiomyopathy. Whether they can assess cardiac abnormality of hypothyroidism (HT) is unknown. We aim to analysis left ventricular (LV) T1 values and strain of patients with overt HT (OHT) and subclinical HT (SHT) with CMR-based T1 mapping and HDA. This study prospectively included 32 OHT patients, 23 SHT patients and 27 healthy controls who underwent CMR. LV T1 mapping was obtained with a Modified Look-Locker Inversion Recovery sequence while LV circumferential strain (LVCS) and radial strain (LVRS), LV longitudinal strain (LVLS) were respectively analyzed on the short-axial and four-chamber cines with HDA. LV Eject Fraction among three groups were similar (p = 0.676). LV myocardial T1 correlated with LVCS (r = 0.734, p < 0.001) and LVRS (r = − 0.340, p = 0.011). LV myocardial T1 of OHT patients significantly increased in comparison with SHT patients (t = 5.403, p < 0.001) and normal controls (t = 10.197, p < 0.001), meanwhile, LV myocardial T1 of SHT patients were higher than that of controls (t = 2.629, p = 0.013). Compared with SHT patients (t = 1.925, p = 0.031) and normal controls (t = 2.875, p = 0.006), LVCS of OHT patients reduced while LVCS of SHT patients were lower than that of normal controls (t = 2.451, p = 0.020). LVRS of SHT patients were higher than OHT patients (t = 2.778, p = 0.008), but comparable to normal controls (t = 1.134, p = 0.266). LVLS of SHT and OHT significantly impaired in comparison with normal control. The increased LV myocardial T1 value and reduced strain were found in HT. CMR-based LV myocardial T1 and stain analysis are useful to evaluate myocardial tissue characteristic and mechanics in both overt and subclinical hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CMR:

Cardiovascular magnetic resonance

HDA:

Heart deformation analysis

HT:

Hypothyroidism

OHT:

Overt hypothyroidism

SHT:

Subclinical hypothyroidism

LVCS:

Left ventricular circumferential strain

LVRS:

Left ventricular radial strain

LVLS:

Left ventricular longitudinal strain

LVSS:

Left ventricular shear strain

LVEF:

LV eject fraction

TSH:

Thyroid-stimulating hormone

FT4:

Free thyroxine

FT3:

Free triiodothyronine

Tg-Ab:

Antithyroglobulin

TPO-Ab:

Antithyroid peroxidase antibody

TE:

Echo time

TR:

Repetition time

MOLLI:

Modified look-locker inversion recovery

SSFP:

Steady state free precession

ESV:

End diastolic volume

EDV:

End systolic volume

SV:

Stroke volume

ECV:

Extracellular volume fraction

References

  1. Cooper DS (2001) Clinical practice. Subclinical hypothyroidism. N Engl J Med 345:260–265

    Article  CAS  PubMed  Google Scholar 

  2. Danzi S, Klein I (2012) Thyroid hormone and the cardiovascular system. Med Clin North Am 96:257–268

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM (2008) Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol 294:H2137–H2143

    Article  CAS  PubMed  Google Scholar 

  4. Sunbul M, Durmus E, Kivrak T, Yildiz H, Kanar BG, Ozben B et al (2013) Left ventricular strain and strain rate by two dimensional speckle tracking echocardiographyin patients with subclinical hypothyroidism. Eur Rev Med Pharmacol Sci 17:3323–3328

    CAS  PubMed  Google Scholar 

  5. Tadic M, Ilic S, Kostic N, Caparevic Z, Celic V (2014) Subclinical hypothyroidism and left ventricular mechanics: a three-dimensional speckle tracking study. J Clin Endocrinol Metab 99:307–314

    Article  CAS  PubMed  Google Scholar 

  6. Chitiboi T, Axel L (2017) Magnetic resonance imaging of myocardial strain: a review of current approaches. J Magn Reson Imaging 46:1263–1280

    Article  PubMed  Google Scholar 

  7. Lin K, Collins J, Chowdhary V, Markl M, Carr JC (2016) Heart deformation analysis: measuring regional myocardial velocity with MR imaging. Int J Cardiovasc Imaging 32:1103–1111

    Article  PubMed  PubMed Central  Google Scholar 

  8. Canepa M, Pozios I, Vianello PF, Ameri P, Brunelli C, Ferrucci L et al (2016) Distinguishing ventricular septal bulge versus hypertrophic cardiomyopathy in the elderly. 102:1087–1094

  9. Diao KY, Yang ZG, Xu HY, Liu X, Zhang Q, Shi K et al (2016) Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J Cardiovasc Magn Reson 18:92

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gao X, Liu M, Qu A, Chen Z, Jia Y, Yang N et al (2016) Native magnetic resonance T1-mapping identifies diffuse myocardial injury in hypothyroidism. PLoS ONE 11:e0151266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao Z, Gao X, Liu M, Chen Z, Yang N, Jia YM et al (2018) Diffuse myocardial injuries are present in subclinical hypothyroidism: a clinical study using myocardial T1-mapping quantification. Sci Rep 8:4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Everts ME, Verhoeven FA, Bezstarosti K, Moerings EP, Hennemann G, Visser TJ et al (1996) Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology 137:4235–4242

    Article  CAS  PubMed  Google Scholar 

  13. Brenta G, Mutti LA, Schnitman M, Fretes O, Perrone A, Matute ML (2003) Assessment of left ventricular diastolic function by radionuclide ventriculography at rest and exercise in subclinical hypothyroidism, and its response to L-thyroxine therapy. Am J Cardiol 91:1327–1330

    Article  CAS  PubMed  Google Scholar 

  14. Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E (2015) Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging 8:1444–1460

    Article  PubMed  Google Scholar 

  15. Xie Q, Li H, Li C, Bai W, Li C, Peng Y et al (2014) Assessment of left ventricular global systolic function using real-time three-dimensional speckle-tracking echocardiography in patients with hypothyroidism. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 31:58–63

    CAS  PubMed  Google Scholar 

  16. Lin K, Collins JD, Chowdhary V, Markl M, Carr JC (2016) Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: a proof of concept study in patients with cardiomyopathy and healthy subjects. Eur J Radiol 85:1811–1817

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wiig H, Reed RK, Tenstad O (2000) Interstitial fluid pressure, composition of interstitium, and interstitial exclusion of albumin in hypothyroid rats. Am J Physiol Heart Circ Physiol 278:H1627–H1639

    Article  CAS  PubMed  Google Scholar 

  18. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP et al (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  19. Perea RJ, Ortiz-Perez JT, Sole M, Cibeira MT, de Caralt TM, Prat-Gonzalez S et al (2015) T1 mapping: characterisation of myocardial interstitial space. Insights Imaging 6:189–202

    Article  PubMed  Google Scholar 

  20. Graham-Brown MP, March DS, Churchward DR, Stensel DJ, Singh A, Arnold R et al (2016) Novel cardiac nuclear magnetic resonance method for noninvasive assessment of myocardial fibrosis in hemodialysis patients. Kidney Int 90:835–844

    Article  PubMed  Google Scholar 

  21. Homsi R, Luetkens JA, Skowasch D, Pizarro C, Sprinkart AM, Gieseke J et al (2017) Left ventricular myocardial fibrosis, atrophy, and impaired contractility in patients with pulmonary arterial hypertension and a preserved left ventricular function: a cardiac magnetic resonance study. J Thorac Imaging 32:36–42

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by Beijing Natural Science Foundation (7182149) and National Natural Science Foundation of China (81871328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, W., Zhang, P. et al. Left ventricular myocardial T1 mapping and strain analysis evaluate cardiac abnormality in hypothyroidism. Int J Cardiovasc Imaging 35, 507–515 (2019). https://doi.org/10.1007/s10554-018-1456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1456-4

Keywords

Navigation