Skip to main content
Log in

Prognostic importance of mechanical dyssynchrony in predicting heart failure development after ST-segment elevation myocardial infarction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the prognostic value of mechanical dyssynchrony defined as the standard deviation of the time to peak longitudinal strain (SD T2P LS) in predicting the development of heart failure (HF) after an ST-segment elevation myocardial infarction (STEMI). Three hundred and seventy-three patients were admitted with STEMI and treated with primary percutaneous coronary intervention. Left ventricular (LV) mechanical dyssynchrony was examined through speckle tracking echocardiography and defined as SD T2P LS. The association with the outcome of HF hospitalization was assessed using Cox proportional hazard models. During a median follow-up of 5.12 years, 144 patients (38.6%) were admitted due to HF. Worse dyssynchrony was associated with the outcome in unadjusted and multivariable analysis (multivariable hazard ratio 1.05, 95% confidence interval 1.00–1.10, p-value 0.039, per 10 ms increase), but not after further adjustment for LV ejection fraction (LVEF), E/e′ and global longitudinal strain (GLS) (hazard ratio 1.01, 95% confidence interval 1.00–1.07, p-value 0.71, per 10 ms increase), nor in a model only adjusting for GLS (hazard ratio 1.01, 95% confidence interval 1.00–1.06, p-value 0.61, per 10 ms increase). These findings were reproduced in a competing risk analysis treating all-cause mortality as a competing risk. LV mechanical dyssynchrony, as assessed by SD T2P LS is not an independent predictor of post-STEMI HF development and mechanical dyssynchrony does not provide independent prognostic information regarding HF when GLS is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used in this study is based on human patients and is therefore governed by the Danish Data Protection Agency. In order to gain access to the data, any additional researcher is required to file a formal application to the Danish Data Protection Agency. Therefore, the authors cannot grant access to the data used in this study unless anyone interested is approved by the Danish Data Protection Agency.

References

  1. Voigt J-U, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 28:183–193. https://doi.org/10.1016/j.echo.2014.11.003

    Article  Google Scholar 

  2. Mądry W, Karolczak MA (2016) Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part II. J Ultrason 16:304–316. https://doi.org/10.15557/JoU.2016.0031

    Article  PubMed  PubMed Central  Google Scholar 

  3. Voigt J-U, Lindenmeier G, Exner B et al (2003) Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 16:415–423

    Article  PubMed  Google Scholar 

  4. Asanuma T, Nakatani S (2015) Myocardial ischaemia and post-systolic shortening. Heart (Br Card Soc) 101:509–516. https://doi.org/10.1136/heartjnl-2013-305403

    Article  Google Scholar 

  5. Bijnens B, Claus P, Weidemann F et al (2007) Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation 116:2453–2464. https://doi.org/10.1161/CIRCULATIONAHA.106.684357

    Article  PubMed  Google Scholar 

  6. Meimoun P, Abouth S, Clerc J et al (2015) Usefulness of two-dimensional longitudinal strain pattern to predict left ventricular recovery and in-hospital complications after acute anterior myocardial infarction treated successfully by primary angioplasty. J Am Soc Echocardiogr 28:1366–1375. https://doi.org/10.1016/j.echo.2015.07.022

    Article  PubMed  Google Scholar 

  7. Nucifora G, Bertini M, Marsan NA et al (2010) Impact of left ventricular dyssynchrony early on left ventricular function after first acute myocardial infarction. Am J Cardiol 105:306–311. https://doi.org/10.1016/j.amjcard.2009.09.028

    Article  PubMed  Google Scholar 

  8. Gorcsan J, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58:1401–1413. https://doi.org/10.1016/j.jacc.2011.06.038

    Article  Google Scholar 

  9. Gorcsan J, Sogaard P, Bax JJ et al (2016) Association of persistent or worsened echocardiographic dyssynchrony with unfavourable clinical outcomes in heart failure patients with narrow QRS width: a subgroup analysis of the EchoCRT trial. Eur Heart J 37:49–59. https://doi.org/10.1093/eurheartj/ehv418

    Article  PubMed  Google Scholar 

  10. Biering-Sørensen T, Shah SJ, Anand I et al (2017) Prognostic importance of left ventricular mechanical dyssynchrony in heart failure with preserved ejection fraction. Eur J Heart Fail. https://doi.org/10.1002/ejhf.789

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stankovic I, Putnikovic B, Janicijevic A et al (2015) Myocardial mechanical and QTc dispersion for the detection of significant coronary artery disease. Eur Heart J Cardiovasc Imaging 16:1015–1022. https://doi.org/10.1093/ehjci/jev029

    Article  PubMed  Google Scholar 

  12. Leong DP, Hoogslag GE, Piers SRD et al (2015) The relationship between time from myocardial infarction, left ventricular dyssynchrony, and the risk for ventricular arrhythmia: speckle-tracking echocardiographic analysis. J Am Soc Echocardiogr 28:470–477. https://doi.org/10.1016/j.echo.2014.12.012

    Article  PubMed  Google Scholar 

  13. Haugaa KH, Grenne BL, Eek CH et al (2013) Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 6:841–850. https://doi.org/10.1016/j.jcmg.2013.03.005

    Article  PubMed  Google Scholar 

  14. Shin S-H, Hung C-L, Uno H et al (2010) Mechanical dyssynchrony after myocardial infarction in patients with left ventricular dysfunction, heart failure, or both. Circulation 121:1096–1103. https://doi.org/10.1161/CIRCULATIONAHA.109.863795

    Article  PubMed  Google Scholar 

  15. Antoni ML, Boden H, Hoogslag GE et al (2011) Prevalence of dyssynchrony and relation with long-term outcome in patients after acute myocardial infarction. Am J Cardiol 108:1689–1696. https://doi.org/10.1016/j.amjcard.2011.07.037

    Article  PubMed  Google Scholar 

  16. Westholm C, Johnson J, Jernberg T, Winter R (2013) The prognostic value of mechanical left ventricular dyssynchrony in patients with acute coronary syndrome. Cardiovasc Ultrasound 11:35. https://doi.org/10.1186/1476-7120-11-35

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cong T, Sun Y, Shang Z et al (2015) Prognostic value of speckle tracking echocardiography in patients with ST-elevation myocardial infarction treated with late percutaneous intervention. Echocardiogr Mt Kisco N 32:1384–1391. https://doi.org/10.1111/echo.12864

    Article  Google Scholar 

  18. Shah AM, Solomon SD (2012) Myocardial deformation imaging: current status and future directions. Circulation 125:e244–e248. https://doi.org/10.1161/CIRCULATIONAHA.111.086348

    Article  PubMed  Google Scholar 

  19. Fontana A, Zambon A, Cesana F et al (2012) Tissue Doppler, triplane echocardiography, and speckle tracking echocardiography: different ways of measuring longitudinal myocardial velocity and deformation parameters. A comparative clinical study. Echocardiogr Mt Kisco N 29:428–437. https://doi.org/10.1111/j.1540-8175.2011.01618.x

    Article  Google Scholar 

  20. Ng ACT, Tran DT, Newman M et al (2008) Comparison of left ventricular dyssynchrony by two-dimensional speckle tracking versus tissue Doppler imaging in patients with non-ST-elevation myocardial infarction and preserved left ventricular systolic function. Am J Cardiol 102:1146–1150. https://doi.org/10.1016/j.amjcard.2008.06.033

    Article  PubMed  Google Scholar 

  21. Olsen FJ, Pedersen S, Jensen JS, Biering-Sørensen T (2016) Global longitudinal strain predicts incident atrial fibrillation and stroke occurrence after acute myocardial infarction. Medicine (Baltimore) 95:e5338. https://doi.org/10.1097/MD.0000000000005338

    Article  Google Scholar 

  22. Biering-Sørensen T, Jensen JS, Pedersen SH et al (2016) Regional longitudinal myocardial deformation provides incremental prognostic information in patients with ST-segment elevation myocardial infarction. PLoS ONE 11:e0158280. https://doi.org/10.1371/journal.pone.0158280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biering-Sørensen T, Jensen JS, Pedersen S et al (2014) Doppler tissue imaging is an independent predictor of outcome in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Am Soc Echocardiogr 27:258–267. https://doi.org/10.1016/j.echo.2013.11.005

    Article  PubMed  Google Scholar 

  24. Biering-Sørensen T, Mogelvang R, Søgaard P et al (2013) Prognostic value of cardiac time intervals by tissue Doppler imaging M-mode in patients with acute ST-segment-elevation myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging 6:457–465. https://doi.org/10.1161/CIRCIMAGING.112.000230

    Article  PubMed  Google Scholar 

  25. Kümler T, Gislason GH, Kirk V et al (2008) Accuracy of a heart failure diagnosis in administrative registers. Eur J Heart Fail 10:658–660. https://doi.org/10.1016/j.ejheart.2008.05.006

    Article  PubMed  Google Scholar 

  26. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  27. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17:1321–1360. https://doi.org/10.1093/ehjci/jew082

    Article  PubMed  Google Scholar 

  28. Stone GW, Selker HP, Thiele H et al (2016) Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J Am Coll Cardiol 67:1674–1683. https://doi.org/10.1016/j.jacc.2016.01.069

    Article  PubMed  Google Scholar 

  29. Hillis GS, Møller JE, Pellikka PA et al (2004) Noninvasive estimation of left ventricular filling pressure by E/e’ is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol 43:360–367. https://doi.org/10.1016/j.jacc.2003.07.044

    Article  PubMed  Google Scholar 

  30. Munk K, Andersen NH, Terkelsen CJ et al (2012) Global left ventricular longitudinal systolic strain for early risk assessment in patients with acute myocardial infarction treated with primary percutaneous intervention. J Am Soc Echocardiogr 25:644–651. https://doi.org/10.1016/j.echo.2012.02.003

    Article  PubMed  Google Scholar 

  31. Antoni ML, Mollema SA, Delgado V et al (2010) Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J 31:1640–1647. https://doi.org/10.1093/eurheartj/ehq105

    Article  PubMed  Google Scholar 

  32. Bochenek T, Wita K, Tabor Z et al (2011) Value of speckle-tracking echocardiography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction treated by primary percutaneous intervention. J Am Soc Echocardiogr 24:1342–1348. https://doi.org/10.1016/j.echo.2011.09.003

    Article  PubMed  Google Scholar 

  33. Bière L, Donal E, Terrien G et al (2014) Longitudinal strain is a marker of microvascular obstruction and infarct size in patients with acute ST-segment elevation myocardial infarction. PLoS ONE 9:e86959. https://doi.org/10.1371/journal.pone.0086959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noringriis, I., Modin, D., Pedersen, S.H. et al. Prognostic importance of mechanical dyssynchrony in predicting heart failure development after ST-segment elevation myocardial infarction. Int J Cardiovasc Imaging 35, 87–97 (2019). https://doi.org/10.1007/s10554-018-1443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1443-9

Keywords

Navigation