The International Journal of Cardiovascular Imaging

, Volume 34, Issue 9, pp 1459–1469 | Cite as

Impact of different coarctation therapies on aortic stiffness: phase-contrast MRI study

  • Michal Schäfer
  • Gareth J. Morgan
  • Max B. Mitchell
  • Michael Ross
  • Alex J. Barker
  • Kendall S. Hunter
  • Brian Fonseca
  • Michael DiMaria
  • Daniel Vargas
  • D. Dunbar Ivy
  • Neil Wilson
  • Lorna P. Browne
Original Paper


Coarctation of the aorta has been associated with increased thoracic aortic stiffness in adolescents and young adults. However, the effects of different therapeutic strategies on aortic stiffness in a young population is unknown. This study aimed to non-invasively assess aortic stiffness between different repair or intervention strategies in patients with coarctation of the aorta. Forty-nine coarctation patients who underwent either surgery (n = 26), balloon angioplasty (n = 14), or stent implantation (n = 12), and 26 age- and size-matched normotensive healthy controls underwent evaluation of thoracic aortic stiffness and flow hemodynamics via phase-contrast cardiac magnetic resonance. In children who had undergone surgical repair or balloon angioplasty, ascending aortic stiffness was increased when measured via pulse wave velocity (PWV) when compared to normal controls (all P < 0.05). Furthermore, ascending aortic distensibility and relative area change (RAC) was significantly lower in surgically and balloon treated groups (both P < 0.01). Stiffness (PWV), distensibility, and RAC in the ascending aorta were not statistically different between stented patients and controls. The ascending aorta of children following surgical repair or balloon angioplasty demonstrated signs of elevated stiffness, whereas those treated by stent implantation showed no difference in stiffness markers when compared to normal controls.


Aortic coarctation CMR Stiffness Flow imaging 



This research was supported in part by The Jayden de Luca Foundation.

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest.


  1. 1.
    Familiari A, Morlando M, Khalil A et al (2017) Risk factors for coarctation of the aorta on prenatal ultrasoundclinical perspective. Circulation 135(8):772–785CrossRefPubMedGoogle Scholar
  2. 2.
    Rosenthal E (2005) Coarctation of the aorta from fetus to adult: curable condition or life long disease process? Heart 91(11):1495–1502CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    de Divitiis M, Pilla C, Kattenhorn M et al. Vascular dysfunction after repair of coarctation of the aorta: impact of early surgery. Circulation. 2001;104(Supplement 1):I-165–I-170CrossRefGoogle Scholar
  4. 4.
    Cowley CG, Orsmond GS, Feola P, McQuillan L, Shaddy RE (2005) Long-term, randomized comparison of balloon angioplasty and surgery for native coarctation of the aorta in childhood. Circulation 111(25):3453–3456CrossRefPubMedGoogle Scholar
  5. 5.
    Rodés-Cabau J, Miró J, Dancea A et al (2007) Comparison of surgical and transcatheter treatment for native coarctation of the aorta in patients ≥ 1 year old. The Quebec Native Coarctation of the Aorta Study. Am Heart J 154(1):186–192CrossRefPubMedGoogle Scholar
  6. 6.
    Walhout RJ, Lekkerkerker JC, Oron GH, Bennink GBWE., Meijboom EJ (2004) Comparison of surgical repair with balloon angioplasty for native coarctation in patients from 3 months to 16 years of age. Eur J Cardiothorac Surg 25(5):722–727CrossRefPubMedGoogle Scholar
  7. 7.
    Shaddy RE, Boucek MM, Sturtevant JE et al (1993) Comparison of angioplasty and surgery for unoperated coarctation of the aorta. Circulation 87(3):793–799CrossRefPubMedGoogle Scholar
  8. 8.
    Quail MA, Short R, Pandya B et al (2017) Abnormal wave reflections and left ventricular hypertrophy late after coarctation of the aorta repair. Hypertension 69:501–509CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hager A, Kanz S, Kaemmerer H, Schreiber C, Hess J. Coarctation Long-term Assessment (COALA): significance of arterial hypertension in a cohort of 404 patients up to 27 years after surgical repair of isolated coarctation of the aorta, even in the absence of restenosis and prosthetic material. J Thorac Cardiovasc Surg. 2007;134(3)Google Scholar
  10. 10.
    Nayak KS, Nielsen J-F, Bernstein MA et al (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17(1):71CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wentland AL, Grist TM, Wieben O (2014) Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther 4(2):193–206PubMedPubMedCentralGoogle Scholar
  12. 12.
    Ibrahim E-SH, Johnson KR, Miller AB, Shaffer JM, White RD (2010) Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques. J Cardiovasc Magn Reson 12(1):26CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mitchell GF, Hwang SJ, Vasan RS et al (2010) Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121(4):505–511CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Townsend RR, Wilkinson IB, Schiffrin EL et al (2015) Recommendations for improving and standardizing vascular research on arterial stiffness. Hypertension 66(3):698–722CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Swoboda PP, Erhayiem B, Kan R et al (2018) Cardiovascular magnetic resonance measures of aortic stiffness in asymptomatic patients with type 2 diabetes: association with glycaemic control and clinical outcomes. Cardiovasc Diabetol BioMed Central 17(1):1–9CrossRefGoogle Scholar
  16. 16.
    Ou P, Celermajer DS, Jolivet O et al (2008) Increased central aortic stiffness and left ventricular mass in normotensive young subjects after successful coarctation repair. Am Heart J 155(1):187–193CrossRefPubMedGoogle Scholar
  17. 17.
    Wegner P, Kees J, Jerosch-Herold M et al (2016) Aortic stiffening and its impact on left atrial volumes and function in patients after successful coarctation repair: a multiparametric cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 18(1):56CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schäfer M, Ivy DD, Abman SH et al (2017) Apparent aortic stiffness in children with pulmonary arterial hypertension. Circ Cardiovasc Imaging 10(2):e005817CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Forouzan O, Warczytowa J, Wieben O, François CJ, Chesler NC (2015) Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. J Cardiovasc Magn Reson 17(1):109CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barker AJ, Markl M, Bürk J et al (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466CrossRefPubMedGoogle Scholar
  21. 21.
    Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for Cardiac MRI assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3(1):65–76CrossRefPubMedGoogle Scholar
  22. 22.
    Allen BD, Van Ooij P, Barker AJ et al (2015) Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve. J Magn Reson Imaging 42(4):954–963CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vogt M, Kühn A, Baumgartner D et al (2005) Impaired elastic properties of the ascending aorta in newborns before and early after successful coarctation repair: proof of a systemic vascular disease of the prestenotic arteries? Circulation 111(24):3269–3273CrossRefPubMedGoogle Scholar
  24. 24.
    Mivelaz Y, Leung MT, Zadorsky MT, De Souza AM, Potts JE, Sandor GGS (2016) Noninvasive assessment of vascular function in postoperative cardiovascular disease (Coarctation of the Aorta, Tetralogy of Fallot, and Transposition of the Great Arteries). Am J Cardiol 118(4):597–602CrossRefPubMedGoogle Scholar
  25. 25.
    Quail MA, Knight DS, Steeden JA et al (2015) Noninvasive pulmonary artery wave intensity analysis in pulmonary hypertension. AJP Hear Circ Physiol 308(12):H1603-11Google Scholar
  26. 26.
    Guzzardi DG, Barker AJ, van Ooij P et al (2015) Valve-related hemodynamics mediate human bicuspid aortopathy. J Am Coll Cardiol 66(8):892–900CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mattace-Raso FUS, Hofman A, Verwoert GC et al (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’ Eur Heart J 31(19):2338–2350CrossRefGoogle Scholar
  28. 28.
    Meijboom F, Schneider EP, Lyko C et al (2013) Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur Heart J Cardiovasc Imaging 14(8):797–804CrossRefGoogle Scholar
  29. 29.
    Mahadevia R, Barker AJ, Schnell S et al (2014) Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129(6):673–682CrossRefPubMedGoogle Scholar
  30. 30.
    Riesenkampff E, Fernandes JF, Meier S et al (2014) Pressure fields by flow-sensitive, 4D, velocity-encoded CMR in patients with aortic coarctation. JACC Cardiovasc Imaging 7(9):920–926CrossRefPubMedGoogle Scholar
  31. 31.
    Lorenz R, Bock J, Barker A et al (2014) 4D flow magnetic resonance imaging in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn Reson Med 71(4):1542–1553CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Michal Schäfer
    • 1
  • Gareth J. Morgan
    • 1
  • Max B. Mitchell
    • 2
  • Michael Ross
    • 2
  • Alex J. Barker
    • 3
  • Kendall S. Hunter
    • 4
  • Brian Fonseca
    • 1
  • Michael DiMaria
    • 1
  • Daniel Vargas
    • 6
  • D. Dunbar Ivy
    • 1
  • Neil Wilson
    • 1
  • Lorna P. Browne
    • 5
  1. 1.Division of Cardiology, Heart Institute, Children’s Hospital ColoradoUniversity of Colorado DenverAuroraUSA
  2. 2.Division of Congenital Heart Surgery, Heart Institute, Children’s Hospital ColoradoUniversity of Colorado DenverAuroraUSA
  3. 3.Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  4. 4.Department of Bioengineering, College of Engineering and Applied SciencesUniversity of Colorado DenverAuroraUSA
  5. 5.Department of Radiology, Children’s Hospital ColoradoUniversity of Colorado DenverAuroraUSA
  6. 6.Department of Radiology, University of Colorado HospitalUniversity of Colorado DenverAuroraUSA

Personalised recommendations