Prevalence, determinants, and prognostic significance of exercise-induced pulmonary hypertension in patients with hypertrophic cardiomyopathy

  • Yasuhiro Hamatani
  • Makoto Amaki
  • Rika Yonezawa
  • Yoshiki Yanagi
  • Yoshito Jo
  • Masashi Amano
  • Atsushi Okada
  • Hiroyuki Takahama
  • Takuya Hasegawa
  • Hideaki Kanzaki
  • Satoshi Yasuda
  • Chisato IzumiEmail author
Original Paper


Exercise-induced pulmonary hypertension (EIPH) is associated with worse outcomes in patients with heart failure or valvular heart disease. However, little is known regarding the implications of EIPH in hypertrophic cardiomyopathy (HCM) patients. We retrospectively reviewed data of consecutive HCM patients who underwent clinically indicated exercise echocardiography using a semi-supine bicycle ergometer at our hospital. EIPH was defined as pulmonary artery systolic pressure ≥ 60 mmHg during exercise. The incidences of HCM-related mortality and HCM-related morbidity during follow-up period were evaluated. Of 42 patients (mean age 59 ± 21 years; 4 with resting obstruction, 19 with provoked obstruction, and 19 without obstruction), 16 (38%) developed EIPH. Patients with EIPH had significantly longer resting E wave deceleration time (271 ± 116 vs. 213 ± 66 ms; P = 0.04), higher resting pulmonary artery systolic pressure (35 ± 6 vs. 31 ± 5 mmHg; P = 0.04), and higher B-type natriuretic peptide level (283 [222, 465] vs. 142 [54, 423] pg/ml; P = 0.04) than those without EIPH. Kaplan–Meier curve analysis demonstrated that EIPH was significantly associated with HCM-related morbidity (log-rank; P = 0.01). In Cox regression analysis, EIPH was a significant predictor of HCM-related morbidity (hazard ratio: 5.98, 95% confidence interval 1.36–41.07; P = 0.02). In conclusion, EIPH was documented in about one-third of HCM patients. EIPH was a significant predictor of HCM-related morbidity in patients with HCM.


Exercise-induced pulmonary hypertension Hypertrophic cardiomyopathy Exercise echocardiography 



We sincerely appreciate the help of the sonographer (Aiko Koda and Hitomi Nishimura), and medical staff in the National Cerebral and Cardiovascular Center.


This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37(1):67–119. CrossRefGoogle Scholar
  2. 2.
    Vachiery JL, Adir Y, Barbera JA, Champion H, Coghlan JG, Cottin V, De Marco T, Galie N, Ghio S, Gibbs JS, Martinez F, Semigran M, Simonneau G, Wells A, Seeger W (2013) Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 62(25 Suppl):D100–D108. CrossRefPubMedGoogle Scholar
  3. 3.
    Tumminello G, Lancellotti P, Lempereur M, D’Orio V, Pierard LA (2007) Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur Heart J 28(5):569–574. CrossRefPubMedGoogle Scholar
  4. 4.
    Shim CY, Kim SA, Choi D, Yang WI, Kim JM, Moon SH, Lee HJ, Park S, Choi EY, Chung N, Ha JW (2011) Clinical outcomes of exercise-induced pulmonary hypertension in subjects with preserved left ventricular ejection fraction: implication of an increase in left ventricular filling pressure during exercise. Heart 97(17):1417–1424. CrossRefPubMedGoogle Scholar
  5. 5.
    Lancellotti P, Magne J, Dulgheru R, Ancion A, Martinez C, Pierard LA (2015) Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiol 115(10):1454–1461. CrossRefPubMedGoogle Scholar
  6. 6.
    Magne J, Lancellotti P, Pierard LA (2010) Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation 122(1):33–41. CrossRefGoogle Scholar
  7. 7.
    Lancellotti P, Magne J, Donal E, O’Connor K, Dulgheru R, Rosca M, Pierard LA (2012) Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation 126(7):851–859. CrossRefPubMedGoogle Scholar
  8. 8.
    Covella M, Rowin EJ, Hill NS, Preston IR, Milan A, Opotowsky AR, Maron BJ, Maron MS, Maron BA (2017) Mechanism of progressive heart failure and significance of pulmonary hypertension in obstructive hypertrophic cardiomyopathy. Circ Heart Fail 10(4):e003689. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Musumeci MB, Mastromarino V, Casenghi M, Tini G, Francia P, Maruotti A, Romaniello A, Magri D, Lillo R, Adduci C, Volpe M, Autore C (2017) Pulmonary hypertension and clinical correlates in hypertrophic cardiomyopathy. Int J Cardiol 248:326–332. CrossRefPubMedGoogle Scholar
  10. 10.
    Ong KC, Geske JB, Hebl VB, Nishimura RA, Schaff HV, Ackerman MJ, Klarich KW, Siontis KC, Coutinho T, Dearani JA, Ommen SR, Gersh BJ (2016) Pulmonary hypertension is associated with worse survival in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17(6):604–610. CrossRefPubMedGoogle Scholar
  11. 11.
    Geske JB, Konecny T, Ommen SR, Nishimura RA, Sorajja P, Schaff HV, Ackerman MJ, Gersh BJ (2014) Surgical myectomy improves pulmonary hypertension in obstructive hypertrophic cardiomyopathy. Eur Heart J 35(30):2032–2039. CrossRefPubMedGoogle Scholar
  12. 12.
    Finocchiaro G, Knowles JW, Pavlovic A, Perez M, Magavern E, Sinagra G, Haddad F, Ashley EA (2014) Prevalence and clinical correlates of right ventricular dysfunction in patients with hypertrophic cardiomyopathy. Am J Cardiol 113(2):361–367. CrossRefPubMedGoogle Scholar
  13. 13.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1–39 e14. CrossRefGoogle Scholar
  14. 14.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 58 (25):e212–e260. CrossRefPubMedGoogle Scholar
  15. 15.
    Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779. CrossRefPubMedGoogle Scholar
  16. 16.
    Wigle ED (2001) Cardiomyopathy: the diagnosis of hypertrophic cardiomyopathy. Heart 86(6):709–714CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lim AY, Kim C, Park SJ, Choi JO, Lee SC, Park SW (2017) Clinical characteristics and determinants of exercise-induced pulmonary hypertension in patients with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 18(3):276–283. CrossRefPubMedGoogle Scholar
  18. 18.
    Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20(9):1021–1041. CrossRefPubMedGoogle Scholar
  19. 19.
    Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, Edvardsen T, Garbi M, Ha JW, Kane GC, Kreeger J, Mertens L, Pibarot P, Picano E, Ryan T, Tsutsui JM, Varga A (2016) The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 17(11):1191–1229. CrossRefGoogle Scholar
  20. 20.
    Suzuki K, Hirano Y, Yamada H, Murata M, Daimon M, Takeuchi M, Seo Y, Izumi C, Akaishi M (2018) Practical guidance for the implementation of stress echocardiography. J Echocardiogr. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kamijima R, Suzuki K, Izumo M, Kuwata S, Mizukoshi K, Takai M, Kou S, Hayashi A, Kida K, Harada T, Akashi YJ (2017) Predictors of exercise-induced pulmonary hypertension in patients with asymptomatic degenerative mitral regurgitation: mechanistic insights from 2D speckle-tracking echocardiography. Sci Rep 7:40008. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Suzuki K, Izumo M, Yoneyama K, Mizukoshi K, Kamijima R, Kou S, Takai M, Kida K, Watanabe S, Omiya K, Nobuoka S, Akashi YJ (2015) Influence of exercise-induced pulmonary hypertension on exercise capacity in asymptomatic degenerative mitral regurgitation. J Cardiol 66(3):246–252. CrossRefPubMedGoogle Scholar
  23. 23.
    Nagueh SF, Smiseth OA, Appleton CP, Byrd BF III, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17(12):1321–1360. CrossRefPubMedGoogle Scholar
  24. 24.
    Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D’Andrea A, Bruder O, Cosyns B, Davin L, Donal E, Freitas A, Habib G, Kitsiou A, Petersen SE, Schroeder S, Lancellotti P, Camici P, Dulgheru R, Hagendorff A, Lombardi M, Muraru D, Sicari R (2015) Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging 16(3):280. CrossRefPubMedGoogle Scholar
  25. 25.
    Nishimura RA, Appleton CP, Redfield MM, Ilstrup DM, Holmes DR, Tajik AJ (1996) Noninvasive doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol 28(5):1226–1233. CrossRefPubMedGoogle Scholar
  26. 26.
    Bayrak F, Kahveci G, Degertekin M, Mutlu B (2008) Echocardiographic predictors of severe heart failure symptoms in hypertrophic cardiomyopathy patients with sinus rhythm. Trials 9:11. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen YZ, Duan FJ, Yuan JS, Hu FH, Cui JG, Yang WX, Zhang Y, Wang H, Qiao SB (2016) Effects of alcohol septal ablation on left ventricular diastolic filling patterns in obstructive hypertrophic cardiomyopathy. Heart Vessels 31(5):744–751. CrossRefPubMedGoogle Scholar
  28. 28.
    Jassal DS, Neilan TG, Fifer MA, Palacios IF, Lowry PA, Vlahakes GJ, Picard MH, Yoerger DM (2006) Sustained improvement in left ventricular diastolic function after alcohol septal ablation for hypertrophic obstructive cardiomyopathy. Eur Heart J 27(15):1805–1810. CrossRefPubMedGoogle Scholar
  29. 29.
    Naeije R, Vanderpool R, Dhakal BP, Saggar R, Vachiery JL, Lewis GD (2013) Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med 187(6):576–583. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bossone E, Naeije R (2012) Exercise-induced pulmonary hypertension. Heart Fail Clin 8(3):485–495. CrossRefPubMedGoogle Scholar
  31. 31.
    Maron BJ, Rowin EJ, Udelson JE, Maron MS (2018) Clinical spectrum and management of heart failure in hypertrophic cardiomyopathy. JACC Heart Fail 6(5):353–363. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yasuhiro Hamatani
    • 1
  • Makoto Amaki
    • 1
  • Rika Yonezawa
    • 2
  • Yoshiki Yanagi
    • 2
  • Yoshito Jo
    • 2
  • Masashi Amano
    • 1
  • Atsushi Okada
    • 1
  • Hiroyuki Takahama
    • 1
  • Takuya Hasegawa
    • 1
  • Hideaki Kanzaki
    • 1
  • Satoshi Yasuda
    • 1
  • Chisato Izumi
    • 1
    Email author
  1. 1.Department of Cardiovascular MedicineNational Cerebral and Cardiovascular CenterOsakaJapan
  2. 2.Laboratory of Clinical PhysiologyNational Cerebral and Cardiovascular CenterOsakaJapan

Personalised recommendations