Advertisement

Assessment of mitral regurgitation by 3-dimensional proximal flow convergence using magnetic resonance imaging: comparison with echo-Doppler

  • Lior Gorodisky
  • Yoram Agmon
  • Moshe Porat
  • Sobhi Abadi
  • Jonathan Lessick
Original Paper

Abstract

To test the feasibility of assessing mitral regurgitation (MR) severity using cardiac magnetic resonance (CMR) 4D velocity vectors to quantify regurgitant volume (RVol) by analysis of the proximal flow convergence, compared to Doppler based proximal isovelocity surface area (PISA) and CMR volume-based methods. In a prospectively designed study, 27 patients with various grades of MR underwent CMR and echo-Doppler on the same day. By CMR, multiple slices were obtained parallel to the mitral valve by phase-contrast imaging, using 3D velocity vectors, as well as short-axis cine images for left and right ventricular volume measurements. Using dedicated software developed in our laboratory, the perimeter of the proximal flow convergence region was semi-automatically measured for each temporal phase, and for each short-axis slice. The CMR-PISA RVol was calculated as the sum of PISA perimeters throughout systole, multiplied by slice width. For comparison, CMR-volumetric RVol was calculated by 2 methods: Volumetric (difference between left and right ventricular stroke volumes) and Flow-based (stroke volume -aortic flow). Echo-PISA RVol was calculated by echo-Doppler based PISA method. RVol by CMR-PISA correlated highly with echo-PISA (r = 0.87) and with CMR-volumetric (r = 0.86) and CMR-flow (r = 0.72). For comparison Doppler-RVol and CMR-volume-based RVol had r = 0.83. On average CMR-PISA was 16 ± 25 ml less than echo-PISA, but 12 ± 22 ml larger than CMR-volumetric RVol. The observed 3D shape of the PISA envelope by 4D-CMR resembled a hemiellipsoid rather than a hemisphere. This feasibility study suggests that CMR-based 4D-PISA may be able to assess MR severity quantitatively without any geometric assumptions.

Keywords

Valve disease Regurgitant volume Computer-aided analysis Proximal isovelocity surface area 

Notes

Funding

The study was funded by the Atkins Medical Research Fund, a research grant provided by the Technion-Israel Institute of Technology for “Interdisciplinary Cooperation of the Medical Faculty with the Faculty of Electrical Engineering”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Ethics committee approval was given by the Rambam Helsinki Committee (RMB-11-0282).

Informed consent

All patients signed informed consent before entering the study.

References

  1. 1.
    Levine RA, Hagege AA, Judge DP, Padala M, Dal-Bianco JP, Aikawa E, Beaudoin J, Bischoff J, Bouatia-Naji N, Bruneval P, Butcher JT, Carpentier A, Chaput M, Chester AH, Clusel C, Delling FN, Dietz HC, Dina C, Durst R, Fernandez-Friera L, Handschumacher MD, Jensen MO, Jeunemaitre XP, Le Marec H, Le Tourneau T, Markwald RR, Merot J, Messas E, Milan DP, Neri T, Norris RA, Peal D, Perrocheau M, Probst V, Puceat M, Rosenthal N, Solis J, Schott JJ, Schwammenthal E, Slaugenhaupt SA, Song JK, Yacoub MH (2015) Mitral valve disease–morphology and mechanisms. Nat Rev Cardiol 12(12):689–710.  https://doi.org/10.1038/nrcardio.2015.161 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Enriquez-Sarano M, Akins CW, Vahanian A (2009) Mitral regurgitation. Lancet 373(9672):1382–1394.  https://doi.org/10.1016/S0140-6736(09)60692-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16(7):777–802.  https://doi.org/10.1016/S0894-7317(03)00335-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Enriquez-Sarano M, Seward JB, Bailey KR, Tajik AJ (1994) Effective regurgitant orifice area: a noninvasive Doppler development of an old hemodynamic concept. J Am Coll Cardiol 23 (2):443–451CrossRefPubMedGoogle Scholar
  5. 5.
    Sechtem U, Pflugfelder PW, Cassidy MM, White RD, Cheitlin MD, Schiller NB, Higgins CB (1988) Mitral or aortic regurgitation: quantification of regurgitant volumes with cine MR imaging. Radiology 167(2):425–430.  https://doi.org/10.1148/radiology.167.2.3357951 CrossRefPubMedGoogle Scholar
  6. 6.
    Kon MW, Myerson SG, Moat NE, Pennell DJ (2004) Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis 13(4):600–607PubMedGoogle Scholar
  7. 7.
    Buchner S, Debl K, Poschenrieder F, Feuerbach S, Riegger GA, Luchner A, Djavidani B (2008) Cardiovascular magnetic resonance for direct assessment of anatomic regurgitant orifice in mitral regurgitation. Circ Cardiovasc Imaging 1(2):148–155.  https://doi.org/10.1161/CIRCIMAGING.107.753103 CrossRefPubMedGoogle Scholar
  8. 8.
    Moreno FL, Hagan AD, Holmen JR, Pryor TA, Strickland RD, Castle CH (1984) Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol 53(4):579–585CrossRefPubMedGoogle Scholar
  9. 9.
    Hodnett PA, Glielmi CB, Davarpanah AH, Scanlon TG, Ward E, Collins JD, Weale PJ, Carr JC (2012) Inline directionally independent peak velocity evaluation reduces error in peak antegrade velocity estimation in patients referred for cardiac valvular assessment. AJR 198(2):344–350CrossRefPubMedGoogle Scholar
  10. 10.
    Matsumura Y, Saracino G, Sugioka K, Tran H, Greenberg NL, Wada N, Toyono M, Fukuda S, Hozumi T, Thomas JD, Yoshikawa J, Yoshiyama M, Shiota T (2008) Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 21(11):1251–1256.  https://doi.org/10.1016/j.echo.2008.09.004 CrossRefPubMedGoogle Scholar
  11. 11.
    Schmidt FP, Gniewosz T, Jabs A, Munzel T, Hink U, Lancellotti P, von Bardeleben RS (2014) Usefulness of 3D-PISA as compared to guideline endorsed parameters for mitral regurgitation quantification. Int J Cardiovasc Imaging 30(8):1501–1508.  https://doi.org/10.1007/s10554-014-0496-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Thavendiranathan P, Liu S, Datta S, Rajagopalan S, Ryan T, Igo SR, Jackson MS, Little SH, De Michelis N, Vannan MA (2013) Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging 6(1):125–133.  https://doi.org/10.1161/CIRCIMAGING.112.980383 CrossRefPubMedGoogle Scholar
  13. 13.
    Yosefy C, Levine RA, Solis J, Vaturi M, Handschumacher MD, Hung J (2007) Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 20(4):389–396.  https://doi.org/10.1016/j.echo.2006.09.006 CrossRefPubMedGoogle Scholar
  14. 14.
    Krieger EV, Lee J, Branch KR, Hamilton-Craig C (2016) Quantitation of mitral regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart 102(23):1864–1870.  https://doi.org/10.1136/heartjnl-2015-309054 CrossRefPubMedGoogle Scholar
  15. 15.
    Suinesiaputra A, Bluemke DA, Cowan BR, Friedrich MG, Kramer CM, Kwong R, Plein S, Schulz-Menger J, Westenberg JJ, Young AA, Nagel E (2015) Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J Cardiovasc Magn Reson 17:63.  https://doi.org/10.1186/s12968-015-0170-9 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chai P, Mohiaddin R (2005) How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson 7(4):705–716CrossRefPubMedGoogle Scholar
  17. 17.
    Myerson SG, d’Arcy J, Christiansen JP, Dobson LE, Mohiaddin R, Francis JM, Prendergast B, Greenwood JP, Karamitsos TD, Neubauer S (2016) Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification. Circulation 133(23):2287–2296.  https://doi.org/10.1161/CIRCULATIONAHA.115.017888 CrossRefPubMedGoogle Scholar
  18. 18.
    Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, Gurram S, Jain K, Subero M, Jang JJ, Cohen R, Wolff SD (2015) Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol 65(11):1078–1088.  https://doi.org/10.1016/j.jacc.2014.12.047 CrossRefPubMedGoogle Scholar
  19. 19.
    Aplin M, Kyhl K, Bjerre J, Ihlemann N, Greenwood JP, Plein S, Uddin A, Tonder N, Host NB, Ahlstrom MG, Hove J, Hassager C, Iversen K, Vejlstrup NG, Lav Madsen P (2016) Cardiac remodelling and function with primary mitral valve insufficiency studied by magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 17(8):863–870.  https://doi.org/10.1093/ehjci/jev321 CrossRefPubMedGoogle Scholar
  20. 20.
    Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Res 17:72.  https://doi.org/10.1186/s12968-015-0174-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Cardiology DepartmentRambam Health Care CampusHaifaIsrael
  2. 2.Medical Imaging DepartmentRambam Health Care CampusHaifaIsrael
  3. 3.Department of Electrical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  4. 4.Department of MedicineTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations