The International Journal of Cardiovascular Imaging

, Volume 32, Issue 12, pp 1735–1744 | Cite as

Improved border sharpness of post-infarct scar by a novel self-navigated free-breathing high-resolution 3D whole-heart inversion recovery magnetic resonance approach

  • Tobias Rutz
  • Davide Piccini
  • Simone Coppo
  • Jerome Chaptinel
  • Giulia Ginami
  • Gabriella Vincenti
  • Matthias Stuber
  • Juerg Schwitter
Original Paper


The border zone of post-infarction myocardial scar as identified by late gadolinium enhancement (LGE) has been identified as a substrate for arrhythmias and consequently, high-resolution 3D scar information is potentially useful for planning of electrophysiological interventions. This study evaluates the performance of a novel high-resolution 3D self-navigated free-breathing inversion recovery magnetic resonance pulse sequence (3D-SN-LGE) vs. conventional 2D breath-hold LGE (2D-LGE) with regard to sharpness of borders (SBorder) of post-infarction scar. Patients with post-infarction scar underwent two magnetic resonance examinations for conventional 2D-LGE and high-resolution 3D-SN-LGE acquisitions (both 15 min after 0.2 mmol/kg Gadobutrol IV) at 1.5T. In the prototype 3D-SN-LGE sequence, each ECG-triggered radial steady-state-free-precession read-out segment is preceded by a non-slice-selective inversion pulse. Scar volume and SBorder were assessed on 2D-LGE and matching reconstructed high-resolution 3D-SN-LGE short-axis slices. In 16 patients (four females, 58 ± 10y) all scars visualized by 2D-LGE could be identified on 3D-SN-LGE (time between 2D-LGE and 3D-SN-LGE 48 ± 53 days). A good agreement of scar volume by 3D-SN-LGE vs. 2D-LGE was found (Bland–Altman: −3.7 ± 3.4 ml, correlation: r = 0.987, p < 0.001) with a small difference in scar volume (20.5 (15.8, 35.2) ml vs. 24.5 (20.0, 41.9)) ml, respectively, p = 0.002] and a good intra- and interobserver variability (1.1 ± 4.1 and −1.1 ± 11.9 ml, respectively). SBorder of border “scar to non-infarcted myocardium” was superior on 3D-SN-LGE vs. 2D-LGE: 0.180 ± 0.044 vs. 0.083 ± 0.038, p < 0.001. Detection and quantification of myocardial scar by 3D-SN-LGE is feasible and accurate in comparison to 2D-LGE. The high spatial resolution of the 3D sequence improves delineation of scar borders.


3D self-navigation Free-breathing Whole heart Scar imaging Inversion recovery MRI 


Grant support

This work is in part supported by the Swiss National Science Foundation (SNF) Grant 320030_143923.

Compliance with ethical standards

Conflict of interest

DP is an employee of Siemens Healthcare Switzerland. JS receives research grant support by Bayer Healthcare, Bracco and Siemens Healthcare, Switzerland. TR, JC, SC, GG, GV and MS declare no competing interests.


  1. 1.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453. doi: 10.1056/NEJM200011163432003 CrossRefPubMedGoogle Scholar
  2. 2.
    Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108(9):1095–1100. doi: 10.1161/01.CIR.0000085993.93936.BA CrossRefPubMedGoogle Scholar
  3. 3.
    Gupta DK, Kwong RY, Pfeffer MA (2013) Cardiovascular imaging in clinical practice: what does late gadolinium enhance? Jama 309(9):929–930. doi: 10.1001/jama.2013.1806 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K et al (2008) Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 118(10):1011–1020. doi: 10.1161/CIRCULATIONAHA.107.727826 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E et al (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54(19):1770–1777. doi: 10.1016/j.jacc.2009.07.027 CrossRefPubMedGoogle Scholar
  6. 6.
    Gao P, Yee R, Gula L, Krahn AD, Skanes A, Leong-Sit P et al (2012) Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circ Cardiovasc Imaging 5(4):448–456. doi: 10.1161/CIRCIMAGING.111.971549.CrossRefPubMedGoogle Scholar
  7. 7.
    Almehmadi F, Joncas SX, Nevis I, Zahrani M, Bokhari M, Stirrat J et al (2014) Prevalence of myocardial fibrosis patterns in patients with systolic dysfunction: prognostic significance for the prediction of sudden cardiac arrest or appropriate implantable cardiac defibrillator therapy. Circ Cardiovasc Imaging 7(4):593–600. doi: 10.1161/CIRCIMAGING.113.001768.CrossRefPubMedGoogle Scholar
  8. 8.
    Andreu D, Ortiz-Perez JT, Boussy T, Fernandez-Armenta J, de Caralt, Perea RJ et al (2014) Usefulness of contrast-enhanced cardiac magnetic resonance in identifying the ventricular arrhythmia substrate and the approach needed for ablation. Eur Heart J 35(20):1316–1326. doi: 10.1093/eurheartj/eht510 CrossRefPubMedGoogle Scholar
  9. 9.
    Gupta S, Desjardins B, Baman T, Ilg K, Good E, Crawford T et al (2012) Delayed-enhanced MR scar imaging and intraprocedural registration into an electroanatomical mapping system in post-infarction patients. J Am Coll Cardiol Cardiovasc imaging 5(2):207–210. doi: 10.1016/j.jcmg.2011.08.021 CrossRefGoogle Scholar
  10. 10.
    Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP et al (2008) Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 51(23):2266–2275. doi: 10.1016/j.jacc.2008.02.062 CrossRefPubMedGoogle Scholar
  11. 11.
    Rajchl M, Stirrat J, Goubran M, Yu J, Scholl D, Peters et al (2015) Comparison of semi-automated scar quantification techniques using high-resolution, 3-dimensional late-gadolinium-enhancement magnetic resonance imaging. Int J Cardiovasc Imaging 31:349–357. doi: 10.1007/s10554-014-0553-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Kino A, Keeling AN, Farrelly CT, Sheehan JJ, Davarpanah AH, Weele PJ et al (2011) Assessment of left ventricular myocardial scar in infiltrative and non-ischemic cardiac diseases by free breathing three dimensional phase sensitive inversion recovery (PSIR) TurboFLASH. Int J Cardiovasc Imaging 27(4):527–537. doi: 10.1007/s10554-010-9640-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Peters DC, Appelbaum EA, Nezafat R, Dokhan B, Han Y, Kissinger KV et al (2009) Left ventricular infarct size, peri-infarct zone, and papillary scar measurements: a comparison of high-resolution 3D and conventional 2D late gadolinium enhancement cardiac MR. J Magn Reson Imaging 30(4):794–800. doi: 10.1002/jmri.21897 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pierce IT, Keegan J, Drivas P, Gatehouse PD, Firmin DN (2015) Free-breathing 3D late gadolinium enhancement imaging of the left ventricle using a stack of spirals at 3T. J Magn Reson Imaging 41(4):1030–1037. doi: 10.1002/jmri.24643 CrossRefPubMedGoogle Scholar
  15. 15.
    Weingartner S, Akcakaya M, Roujol S, Basha T, Tschabrunn C, Berg S et al (2015) Free-breathing combined three-dimensional phase sensitive late gadolinium enhancement and T mapping for myocardial tissue characterization. Magn Reson Med 74:1032–1041. doi: 10.1002/mrm.25495 CrossRefPubMedGoogle Scholar
  16. 16.
    Nehrke K, Bornert P, Manke D, Bock JC (2001) Free-breathing cardiac MR imaging: study of implications of respiratory motion–initial results. Radiology 220(3):810–815. doi: 10.1148/radiol.2203010132 CrossRefPubMedGoogle Scholar
  17. 17.
    Spuentrup E, Manning WJ, Botnar RM, Kissinger KV, Stuber M (2002) Impact of navigator timing on free-breathing submillimeter 3D coronary magnetic resonance angiography. Magn Reson Med 47(1):196–201CrossRefPubMedGoogle Scholar
  18. 18.
    Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO (2012) Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 68(2):571–579. doi: 10.1002/mrm.23247 CrossRefPubMedGoogle Scholar
  19. 19.
    Piccini D, Monney P, Sierro C, Coppo S, Bonanno G, van Heeswijk RB et al (2014) Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients. Radiology 270(2):378–386. doi: 10.1148/radiol.13132045 CrossRefPubMedGoogle Scholar
  20. 20.
    Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54(2):476–480. doi: 10.1002/mrm.20557 CrossRefPubMedGoogle Scholar
  21. 21.
    Monney P, Piccini D, Rutz T, Vincenti G, Coppo S, Koestner SC et al (2015) Single centre experience of the application of self navigated 3D whole heart cardiovascular magnetic resonance for the assessment of cardiac anatomy in congenital heart disease. J Cardiovasc Magn Reson 17:55. doi: 10.1186/s12968-015-0156-7 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ripa RS, Nilsson JC, Wang Y, Sondergaard L, Jorgensen E, Kastrup J (2007) Short- and long-term changes in myocardial function, morphology, edema, and infarct mass after ST-segment elevation myocardial infarction evaluated by serial magnetic resonance imaging. Am Heart J 154(5):929–936. doi: 10.1016/j.ahj.2007.06.038 CrossRefPubMedGoogle Scholar
  23. 23.
    Manka R, Kozerke S, Rutz AK, Stoeck CT, Boesiger P, Schwitter J (2012) A CMR study of the effects of tissue edema and necrosis on left ventricular dyssynchrony in acute myocardial infarction: implications for cardiac resynchronization therapy. J Cardiovasc Magn Reson 14:47. doi: 10.1186/1532-429X-14-47 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO (2011) Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 66(4):1049–1056. doi: 10.1002/mrm.22898 CrossRefPubMedGoogle Scholar
  25. 25.
    Kording F, Schoennagel B, Lund G, Ueberle F, Jung C, Adam G et al (2014) Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: a pilot study. Magn Reson Med. doi: 10.1002/mrm.25502 PubMedGoogle Scholar
  26. 26.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310CrossRefPubMedGoogle Scholar
  27. 27.
    Ziv O, Schofield L, Lau E, Chaves L, Patel D, Jeng P et al (2012) A novel, minimally invasive, segmental myocardial infarction with a clear healed infarct borderzone in rabbits. Am J Physiol Heart Circ Physiol 302(11):H2321–H2330. doi: 10.1152/ajpheart.00031.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pop M, Ramanan V, Yang F, Zhang L, Newbigging S, Ghugre NR et al (2014) High-resolution 3-D T1*-mapping and quantitative image analysis of GRAY ZONE in chronic fibrosis. IEEE Trans Biomed Eng 61(12):2930–2938. doi: 10.1109/TBME.2014.2336593 CrossRefPubMedGoogle Scholar
  29. 29.
    Estner HL, Zviman MM, Herzka D, Miller F, Castro V, Nazarian S et al (2011) The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Heart Rhythm 8(12):1942–1949. doi: 10.1016/j.hrthm.2011.07.027 CrossRefPubMedGoogle Scholar
  30. 30.
    Bhagirath P, van der Graaf M, Karim R, Rhode K, Piorkowski C, Razavi R et al (2015) Interventional cardiac magnetic resonance imaging in electrophysiology: advances toward clinical translation. Circ Arrhythm Electrophysiol 8(1):203–211. doi: 10.1161/CIRCEP.114.002371 CrossRefPubMedGoogle Scholar
  31. 31.
    Babu-Narayan SV, Kilner PJ, Li W, Moon JC, Goktekin O, Davlouros PA et al (2006) Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation 113(3):405–413. doi: 10.1161/CIRCULATIONAHA.105.548727 CrossRefPubMedGoogle Scholar
  32. 32.
    Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172CrossRefPubMedGoogle Scholar
  33. 33.
    Mather AN, Fairbairn TA, Artis NJ, Greenwood JP, Plein S (2011) Timing of cardiovascular MR imaging after acute myocardial infarction: effect on estimates of infarct characteristics and prediction of late ventricular remodeling. Radiology 261(1):116–126. doi: 10.1148/radiol.11110228 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104(23):2838–2842CrossRefPubMedGoogle Scholar
  35. 35.
    Nguyen TD, Spincemaille P, Weinsaft JW, Ho BY, Cham MD, Prince MR et al (2008) A fast navigator-gated 3D sequence for delayed enhancement MRI of the myocardium: comparison with breathhold 2D imaging. J Magn Reson Imaging 27(4):802–808. doi: 10.1002/jmri.21296 CrossRefPubMedGoogle Scholar
  36. 36.
    Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385. doi: 10.1002/jmri.20969 CrossRefPubMedGoogle Scholar
  37. 37.
    Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47(2):372–383CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kido T, Kido T, Nakamura M, Kawaguchi N, Nishiyama Y, Ogimoto A et al (2014) Three-dimensional phase-sensitive inversion recovery sequencing in the evaluation of left ventricular myocardial scars in ischemic and non-ischemic cardiomyopathy: comparison to three-dimensional inversion recovery sequencing. Eur J Radiol. doi: 10.1016/j.ejrad.2014.09.014 PubMedGoogle Scholar
  39. 39.
    Ambale-Venkatesh B, Lima JA (2014) Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. doi: 10.1038/nrcardio.2014.159 PubMedGoogle Scholar
  40. 40.
    Kwong RY, Farzaneh-Far A (2011) Measuring myocardial scar by CMR. J Am Coll Cardiol Cardiovasc Imaging 4(2):157–160. doi: 10.1016/j.jcmg.2010.12.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tobias Rutz
    • 1
  • Davide Piccini
    • 2
    • 3
  • Simone Coppo
    • 3
  • Jerome Chaptinel
    • 3
  • Giulia Ginami
    • 3
  • Gabriella Vincenti
    • 1
  • Matthias Stuber
    • 3
    • 4
  • Juerg Schwitter
    • 1
  1. 1.Division of Cardiology and Cardiac MR CenterUniversity Hospital LausanneLausanneSwitzerland
  2. 2.Advanced Clinical Imaging TechnologySiemens HealthcareLausanneSwitzerland
  3. 3.Department of RadiologyUniversity Hospital and University of LausanneLausanneSwitzerland
  4. 4.Center for Biomedical ImagingLausanneSwitzerland

Personalised recommendations