Advertisement

Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics

  • Emilie Bollache
  • Pim van Ooij
  • Alex Powell
  • James Carr
  • Michael Markl
  • Alex J. Barker
Original Paper

Abstract

The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = −3 to 6 %), peak flow (−7 %) and net volume (−14 to −9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = −35 to −7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA).

Keywords

MRI Phase-contrast Aortic hemodynamics 4D flow MRI 

Notes

Funding

This work was supported by the National Institutes of Health Grants R01HL115828 and K25HL119608.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Nishimura RA, Carabello BA (2012) Hemodynamics in the cardiac catheterization laboratory of the 21st century. Circulation 125(17):2138–2150. doi: 10.1161/CIRCULATIONAHA.111.060319 CrossRefPubMedGoogle Scholar
  2. 2.
    Kappanayil M, Kannan R, Kumar RK (2011) Understanding the physiology of complex congenital heart disease using cardiac magnetic resonance imaging. Ann Pediatr Cardiol 4(2):177–182. doi: 10.4103/0974-2069.84666 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chai P, Mohiaddin R (2005) How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson 7(4):705–716CrossRefPubMedGoogle Scholar
  4. 4.
    Mohiaddin RH, Yang GZ, Kilner PJ (1994) Visualization of flow by vector analysis of multidirectional cine MR velocity mapping. J Comput Assist Tomogr 18(3):383–392CrossRefPubMedGoogle Scholar
  5. 5.
    Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M (2014) 4D flow imaging with MRI. Cardiovasc Diagn Ther 4(2):173–192. doi: 10.3978/j.issn.2223-3652.2014.01.02 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hope MD, Meadows AK, Hope TA, Ordovas KG, Reddy GP, Alley MT, Higgins CB (2008) Images in cardiovascular medicine. Evaluation of bicuspid aortic valve and aortic coarctation with 4D flow magnetic resonance imaging. Circulation 117(21):2818–2819. doi: 10.1161/CIRCULATIONAHA.107.760124 CrossRefPubMedGoogle Scholar
  7. 7.
    Toger J, Kanski M, Carlsson M, Kovacs SJ, Soderlind G, Arheden H, Heiberg E (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662. doi: 10.1007/s10439-012-0615-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Fluckiger JU, Goldberger JJ, Lee DC, Ng J, Lee R, Goyal A, Markl M (2013) Left atrial flow velocity distribution and flow coherence using four-dimensional FLOW MRI: a pilot study investigating the impact of age and pre- and postintervention atrial fibrillation on atrial hemodynamics. J Magn Reson Imaging 38(3):580–587. doi: 10.1002/jmri.23994 CrossRefPubMedGoogle Scholar
  9. 9.
    Odagiri K, Inui N, Miyakawa S, Hakamata A, Wei J, Takehara Y, Sakahara H, Sugiyama M, Alley MT, Tran QK, Watanabe H (2014) Abnormal hemodynamics in the pulmonary artery seen on time-resolved 3-dimensional phase-contrast magnetic resonance imaging (4D-flow) in a young patient with idiopathic pulmonary arterial hypertension. Circ J 78(7):1770–1772CrossRefPubMedGoogle Scholar
  10. 10.
    Schrauben E, Wahlin A, Ambarki K, Spaak E, Malm J, Wieben O, Eklund A (2015) Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J Magn Reson Imaging. doi: 10.1002/jmri.24900 Google Scholar
  11. 11.
    Roldan-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM, Wieben O, Reeder SB (2013) In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging 37(5):1100–1108. doi: 10.1002/jmri.23906 CrossRefPubMedGoogle Scholar
  12. 12.
    Stankovic Z, Rossle M, Euringer W, Schultheiss M, Salem R, Barker A, Carr J, Langer M, Markl M, Collins JD (2015) Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. Eur Radiol. doi: 10.1007/s00330-015-3663-x PubMedGoogle Scholar
  13. 13.
    Brix L, Ringgaard S, Rasmusson A, Sorensen TS, Kim WY (2009) Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson 11:3. doi: 10.1186/1532-429X-11-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carlsson M, Toger J, Kanski M, Bloch KM, Stahlberg F, Heiberg E, Arheden H (2011) Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5T and 3T. J Cardiovasc Magn Reson 13:55. doi: 10.1186/1532-429X-13-55 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Eriksson J, Carlhall CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T (2010) Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 12:9. doi: 10.1186/1532-429X-12-9 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Frydrychowicz A, Wieben O, Niespodzany E, Reeder SB, Johnson KM, Francois CJ (2013) Quantification of thoracic blood flow using volumetric magnetic resonance imaging with radial velocity encoding: in vivo validation. Invest Radiol 48(12):819–825. doi: 10.1097/RLI.0b013e31829a4f2f CrossRefPubMedGoogle Scholar
  17. 17.
    Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, Kuehne T (2010) Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging 32(3):677–683. doi: 10.1002/jmri.22280 CrossRefPubMedGoogle Scholar
  18. 18.
    Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, Kuehne T (2013) Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 37(1):208–216. doi: 10.1002/jmri.23793 CrossRefPubMedGoogle Scholar
  19. 19.
    Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60(5):1218–1231. doi: 10.1002/mrm.21778 CrossRefPubMedGoogle Scholar
  20. 20.
    van der Hulst AE, Westenberg JJ, Kroft LJ, Bax JJ, Blom NA, de Roos A, Roest AA (2010) Tetralogy of fallot: 3D velocity-encoded MR imaging for evaluation of right ventricular valve flow and diastolic function in patients after correction. Radiology 256(3):724–734. doi: 10.1148/radiol.10092269 CrossRefPubMedGoogle Scholar
  21. 21.
    Wentland AL, Grist TM, Wieben O (2013) Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol 20(6):699–704. doi: 10.1016/j.acra.2012.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zaman A, Motwani M, Oliver JJ, Crelier G, Dobson LE, Higgins DM, Plein S, Greenwood JP (2015) 3.0T, time-resolved, 3D flow-sensitive MR in the thoracic aorta: impact of k-t BLAST acceleration using 8-versus 32-channel coil arrays. J Magn Reson Imaging 42(2):495–504. doi: 10.1002/jmri.24814 CrossRefPubMedGoogle Scholar
  23. 23.
    Valverde I, Nordmeyer S, Uribe S, Greil G, Berger F, Kuehne T, Beerbaum P (2012) Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson 14:25. doi: 10.1186/1532-429X-14-25 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, Alley MT, Higgins CB (2010) Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 31(3):711–718. doi: 10.1002/jmri.22083 CrossRefPubMedGoogle Scholar
  25. 25.
    Hanneman K, Sivagnanam M, Nguyen ET, Wald R, Greiser A, Crean AM, Ley S, Wintersperger BJ (2014) Magnetic resonance assessment of pulmonary (QP) to systemic (QS) flows using 4D phase-contrast imaging: pilot study comparison with standard through-plane 2D phase-contrast imaging. Acad Radiol 21(8):1002–1008. doi: 10.1016/j.acra.2014.04.012 CrossRefPubMedGoogle Scholar
  26. 26.
    Hsiao A, Alley MT, Massaband P, Herfkens RJ, Chan FP, Vasanawala SS (2011) Improved cardiovascular flow quantification with time-resolved volumetric phase-contrast MRI. Pediatr Radiol 41(6):711–720. doi: 10.1007/s00247-010-1932-z CrossRefPubMedGoogle Scholar
  27. 27.
    Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3(3):521–530CrossRefPubMedGoogle Scholar
  28. 28.
    van Ooij P, Semaan E, Schnell S, Giri S, Stankovic Z, Carr J, Barker AJ, Markl M (2015) Improved respiratory navigator gating for thoracic 4D flow MRI. Magn Reson Imaging 33(8):992–999. doi: 10.1016/j.mri.2015.04.008 CrossRefPubMedGoogle Scholar
  29. 29.
    Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17(1):72. doi: 10.1186/s12968-015-0174-5 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schnell S, Entezari P, Mahadewia RJ, Malaisrie SC, McCarthy PM, Collins JD, Carr J, Markl M (2015) Improved semiautomated 4D flow MRI analysis in the aorta in patients with congenital aortic valve anomalies versus tricuspid aortic valves. J Comput Assist Tomogr. doi: 10.1097/RCT.0000000000000312 Google Scholar
  31. 31.
    Lankhaar JW, Hofman MB, Marcus JT, Zwanenburg JJ, Faes TJ, Vonk-Noordegraaf A (2005) Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging 22(1):73–79. doi: 10.1002/jmri.20361 CrossRefPubMedGoogle Scholar
  32. 32.
    Heiberg E, Sjogren J, Ugander M, Carlsson M, Engblom H, Arheden H (2010) Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging 10:1. doi: 10.1186/1471-2342-10-1 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671. doi: 10.1148/radiographics.22.3.g02ma11651 CrossRefPubMedGoogle Scholar
  34. 34.
    Sakuma H, Kawada N, Kubo H, Nishide Y, Takano K, Kato N, Takeda K (2001) Effect of breath holding on blood flow measurement using fast velocity encoded cine MRI. Magn Reson Med 45(2):346–348CrossRefPubMedGoogle Scholar
  35. 35.
    Klug G, Reinstadler SJ, Feistritzer HJ, Kremser C, Schwaiger JP, Reindl M, Mair J, Muller S, Mayr A, Franz WM, Metzler B (2016) Cardiac index after acute ST-segment elevation myocardial infarction measured with phase-contrast cardiac magnetic resonance imaging. Eur Radiol 26(7):1999–2008. doi: 10.1007/s00330-015-4022-7 CrossRefPubMedGoogle Scholar
  36. 36.
    Korperich H, Barth P, Gieseke J, Muller K, Burchert W, Esdorn H, Kececioglu D, Beerbaum P, Laser KT (2015) Impact of respiration on stroke volumes in paediatric controls and in patients after Fontan procedure assessed by MR real-time phase-velocity mapping. Eur Heart J Cardiovasc Imaging 16(2):198–209. doi: 10.1093/ehjci/jeu179 CrossRefPubMedGoogle Scholar
  37. 37.
    Stalder AF, Frydrychowicz A, Russe MF, Korvink JG, Hennig J, Li K, Markl M (2011) Assessment of flow instabilities in the healthy aorta using flow-sensitive MRI. J Magn Reson Imaging 33(4):839–846. doi: 10.1002/jmri.22512 CrossRefPubMedGoogle Scholar
  38. 38.
    Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, Firmin DN, van Rossum A, Lombardi M, Schwitter J, Schulz-Menger J, Kilner PJ (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5. doi: 10.1186/1532-429X-12-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Emilie Bollache
    • 1
  • Pim van Ooij
    • 1
  • Alex Powell
    • 1
  • James Carr
    • 1
  • Michael Markl
    • 1
    • 2
  • Alex J. Barker
    • 1
  1. 1.Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityChicagoUSA

Personalised recommendations