The International Journal of Cardiovascular Imaging

, Volume 31, Issue 8, pp 1479–1487 | Cite as

Clinical utility of quantitative bright spots analysis in patients with acute coronary syndrome: an optical coherence tomography study

  • Yoshiyasu Minami
  • Jennifer E. Phipps
  • Taylor Hoyt
  • Thomas E. Milner
  • Daniel S. Ong
  • Tsunenari Soeda
  • Rocco Vergallo
  • Marc D. Feldman
  • Ik-Kyung Jang
Original Paper


To investigate the clinical significance of bright spots in coronary plaque detected by optical coherence tomography (OCT) in patients with coronary artery disease. We identified 112 patients [acute coronary syndromes (ACS): n = 50, stable angina pectoris (SAP): n = 62] who underwent OCT imaging of the culprit lesion. A novel OCT algorithm was applied to detect bright spots representing the juxtaposition of a variety of plaque components including macrophages. The density of bright spots within the most superficial 250 μm of the vessel wall was measured at the site of culprit lesion. Bright spot density in the culprit lesion was significantly higher in patients presenting with ACS compared to those presenting with SAP (0.51 ± 0.43 % vs. 0.37 ± 0.26 %, P = 0.04), particularly in the subgroup with ruptured culprit plaque (0.59 ± 0.52 %). Thin-cap fibroatheroma (TCFA) was associated with a trend towards a higher density of bright spots compared to non-TCFA plaques (0.57 ± 0.50 % vs. 0.41 ± 0.31 %, P = 0.08). Similar results were also obtained within 1000 μm depth. Positive linear correlation was demonstrated between bright spot density and hsCRP level (r = 0.45, P = 0.002). Using a novel algorithm, we demonstrated a significantly higher density of bright spots in the culprit lesions of patients presenting with ACS, particularly in case of plaque rupture, compared to those presenting with SAP. The density of bright spots also correlates with inflammatory status. These results suggest that the quantitative assessment of bright spot density may be useful in evaluating plaque vulnerability.


Optical coherence tomography Acute coronary syndrome Stable coronary artery disease Plaque rupture 



The authors thank all the investigators, all supporting staff, and all the institutions of MGH OCT Registry for their contributions. The authors also thank Austin McElroy for his contribution to the development of the bright spot algorithm.

Source of funding

This study is supported by St. Jude Medical, Medtronic Corporation, Boston Scientific Corporation, Mr. and Mrs. Michael Park and Dr John Nam, Clayton Foundation in Houston, Texas, Veterans Administration Merit Grant I01 BX000397, and American Heart Association Grant 13POST17080074.

Compliance with ethical standards

Conflict of interest


Supplementary material

10554_2015_714_MOESM1_ESM.doc (26 kb)
Supplement Methods (DOC 25 kb)
10554_2015_714_MOESM2_ESM.doc (35 kb)
Table 1 Bright spot density within 250 μm according to the baseline characteristics (DOC 35 kb)
10554_2015_714_MOESM3_ESM.doc (36 kb)
Table 2 Bright spot density within 1000 μm according to the baseline characteristics (DOC 35 kb)
10554_2015_714_MOESM4_ESM.tif (248 kb)
Fig. 1 Comparison of bright spot density within 1000 μm according to the plaque characteristics (TIFF 248 kb)
10554_2015_714_MOESM5_ESM.tif (195 kb)
Fig. 2 Correlation between bright spot density within 1000 μm and inflammatory marker and OCT findings (TIFF 195 kb)


  1. 1.
    Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555. doi: 10.1161/01.CIR.0000159354.43778.69 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Phipps JE, Vela D, Hoyt T, Halaney DL, Mancuso JJ, Buja LM, Asmis R, Milner TE, Feldman MD (2015) Macrophages and intravascular OCT bright spots: a quantitative study. JACC Cardiovasc Imaging 8:63–72. doi: 10.1016/j.jcmg.2014.07.027 CrossRefPubMedGoogle Scholar
  3. 3.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645CrossRefPubMedGoogle Scholar
  4. 4.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G, International Working Group for Intravascular Optical Coherence T (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072. doi: 10.1016/j.jacc.2011.09.079 CrossRefPubMedGoogle Scholar
  5. 5.
    Di Vito L, Yoon JH, Kato K, Yonetsu T, Vergallo R, Costa M, Bezerra HG, Arbustini E, Narula J, Crea F, Prati F, Jang IK, Group C (2014) Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis 25:172–185. doi: 10.1097/MCA.0000000000000072 CrossRefPubMedGoogle Scholar
  6. 6.
    Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, Kato K, Yonetsu T, Vergallo R, Hu S, Tian J, Lee H, Park SJ, Jang YS, Raffel OC, Mizuno K, Uemura S, Itoh T, Kakuta T, Choi SY, Dauerman HL, Prasad A, Toma C, McNulty I, Zhang S, Yu B, Fuster V, Narula J, Virmani R, Jang IK (2013) In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748–1758. doi: 10.1016/j.jacc.2013.05.071 CrossRefPubMedGoogle Scholar
  7. 7.
    Johnson TW, Smith D, Strange JW, Bucciarelli-Ducci C, Lowe R, Baumbach A (2012) Spontaneous multivessel coronary intramural hematoma: an insight with OCT. JACC Cardiovasc Imaging 5:1070–1071. doi: 10.1016/j.jcmg.2012.03.020 CrossRefPubMedGoogle Scholar
  8. 8.
    Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, Koura K, Hishikari K, Iesaka Y, Fujiwara H, Isobe M (2011) In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J 32:1251–1259. doi: 10.1093/eurheartj/ehq518 CrossRefPubMedGoogle Scholar
  9. 9.
    Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107:113–119CrossRefPubMedGoogle Scholar
  10. 10.
    MacNeill BD, Jang IK, Bouma BE, Iftimia N, Takano M, Yabushita H, Shishkov M, Kauffman CR, Houser SL, Aretz HT, DeJoseph D, Halpern EF, Tearney GJ (2004) Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol 44:972–979. doi: 10.1016/j.jacc.2004.05.066 CrossRefPubMedGoogle Scholar
  11. 11.
    Raffel OC, Tearney GJ, Gauthier DD, Halpern EF, Bouma BE, Jang IK (2007) Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler Thromb Vasc Biol 27:1820–1827. doi: 10.1161/ATVBAHA.107.145987 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18. doi: 10.1016/j.jacc.2005.10.065 CrossRefPubMedGoogle Scholar
  13. 13.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275CrossRefPubMedGoogle Scholar
  14. 14.
    Pedrigi RM, de Silva R, Bovens SM, Mehta V, Petretto E, Krams R (2014) Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress. Arterioscler Thromb Vasc Biol. doi: 10.1161/ATVBAHA.114.303426 PubMedGoogle Scholar
  15. 15.
    Libby P, Geng YJ, Aikawa M, Schoenbeck U, Mach F, Clinton SK, Sukhova GK, Lee RT (1996) Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 7:330–335CrossRefPubMedGoogle Scholar
  16. 16.
    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT (1994) Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90:775–778CrossRefPubMedGoogle Scholar
  17. 17.
    van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44CrossRefPubMedGoogle Scholar
  18. 18.
    Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 92:402–406PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92:1565–1569PubMedGoogle Scholar
  20. 20.
    Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, Einav S, Gilchrist L, Weinbaum S (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 103:14678–14683. doi: 10.1073/pnas.0606310103 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T, Komukai K, Tanaka A, Imanishi T, Akasaka T (2013) Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol 112:34–40. doi: 10.1016/j.amjcard.2013.02.048 CrossRefPubMedGoogle Scholar
  22. 22.
    Nakamura S, Inami S, Murai K, Takano M, Takano H, Asai K, Yasutake M, Shimizu W, Mizuno K (2014) Relationship between cholesterol crystals and culprit lesion characteristics in patients with stable coronary artery disease: an optical coherence tomography study. Clin Res Cardiol. doi: 10.1007/s00392-014-0748-5 Google Scholar
  23. 23.
    Grebe A, Latz E (2013) Cholesterol crystals and inflammation. Curr Rheumatol Rep 15:313. doi: 10.1007/s11926-012-0313-z PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Tian J, Ren X, Vergallo R, Xing L, Yu H, Jia H, Soeda T, McNulty I, Hu S, Lee H, Yu B, Jang IK (2014) Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol 63:2209–2216. doi: 10.1016/j.jacc.2014.01.061 CrossRefPubMedGoogle Scholar
  25. 25.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143CrossRefPubMedGoogle Scholar
  26. 26.
    Avanzas P, Arroyo-Espliguero R, Cosin-Sales J, Aldama G, Pizzi C, Quiles J, Kaski JC (2004) Markers of inflammation and multiple complex stenoses (pancoronary plaque vulnerability) in patients with non-ST segment elevation acute coronary syndromes. Heart 90:847–852. doi: 10.1136/hrt.2003.015826 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Li JJ, Jiang H, Huang CX, Fang CH, Tang QZ, Xia H, Liu J, Li GS (2002) Elevated level of plasma C-reactive protein in patients with unstable angina: its relations with coronary stenosis and lipid profile. Angiology 53:265–272CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yoshiyasu Minami
    • 1
  • Jennifer E. Phipps
    • 2
  • Taylor Hoyt
    • 2
  • Thomas E. Milner
    • 3
  • Daniel S. Ong
    • 1
  • Tsunenari Soeda
    • 1
  • Rocco Vergallo
    • 1
  • Marc D. Feldman
    • 2
    • 4
  • Ik-Kyung Jang
    • 1
    • 5
  1. 1.Cardiology Division, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.University of Texas Health Science Center San AntonioSan AntonioUSA
  3. 3.Department of Biomedical EngineeringUniversity of Texas, AustinAustinUSA
  4. 4.Veterans Administration Health Care SystemSan AntonioUSA
  5. 5.Division of CardiologyKyung Hee UniversitySeoulSouth Korea

Personalised recommendations