Advertisement

Integrated cardiac magnetic resonance imaging with coronary magnetic resonance angiography, stress-perfusion, and delayed-enhancement imaging for the detection of occult coronary artery disease in asymptomatic individuals

  • Kyoung Doo Song
  • Sung Mok Kim
  • Yeon Hyeon Choe
  • Wooin Jung
  • Sang-Chol Lee
  • Sung-A Chang
  • Yoon Ho Choi
  • Jidong Sung
Original Paper

Abstract

To evaluate the feasibility of using coronary magnetic resonance angiography (CMRA) with stress-perfusion and delayed-enhancement MRI as a screening tool for the detection of coronary artery disease (CAD) in asymptomatic subjects. Three hundred and forty-one self-referred asymptomatic subjects were enrolled in this study. Cardiac MR imaging was performed using a 1.5-T scanner with a 32-channel cardiac coil. Coronary artery stenosis, regional wall motion abnormalities, myocardial perfusion abnormalities, and delayed myocardial enhancement were analyzed. The occurrence of new chest pain and cardiac events was assessed in 332 subjects (97.3 %) over an average 29 ± 6 months (range, 18–39 months) follow-up period. A total of 3296 (82.4 %) of 4000 coronary artery segments examined exhibited diagnostic image quality on combined whole-heart and volume-targeted CMRA. Combined MRI detected significant CADs in 13 (3.8 %) of 341 subjects. Among these, 11 subjects (84.6 %) had both coronary artery stenosis (≥50 % by diameter) on CMRA and stress-perfusion defects in corresponding areas. Five of the 13 subjects showed evidence of old myocardial infarctions on delayed-enhancement MRI. Three subjects (0.9 %) underwent percutaneous coronary intervention after CAD was detected on cardiac MRI. There were no cardiac events during the follow-up period in subjects who complied with follow-up. Normal stress-perfusion and delayed-enhancement MRI lead to excellent outcomes when used to predict future cardiac events in asymptomatic subjects. Coronary MRA correlates well with stress-perfusion MRI for detecting significant CAD and helps exclude CAD in asymptomatic individuals.

Keywords

Coronary artery disease Asymptomatic diseases Myocardial perfusion Magnetic resonance imaging Magnetic resonance angiography 

Abbreviations

CAD

Coronary artery disease

CCTA

Coronary CT angiography

CMRA

Coronary magnetic resonance angiography

MRI

Magnetic resonance imaging

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gillespie CD, Wigington C, Hong Y, Centers for Disease C, Prevention (2013) Coronary heart disease and stroke deaths—United States, 2009. MMWR Surveill Summ 62(Suppl 3):157–160PubMedGoogle Scholar
  2. 2.
    Akosah KO, Schaper A, Cogbill C, Schoenfeld P (2003) Preventing myocardial infarction in the young adult in the first place: how do the national cholesterol education panel III guidelines perform? J Am Coll Cardiol 41(9):1475–1479PubMedCrossRefGoogle Scholar
  3. 3.
    Hecht HS, Superko HR (2001) Electron beam tomography and national cholesterol education program guidelines in asymptomatic women. J Am Coll Cardiol 37(6):1506–1511PubMedCrossRefGoogle Scholar
  4. 4.
    Arad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, Guerci AD (1996) Predictive value of electron beam computed tomography of the coronary arteries. 19-month follow-up of 1173 asymptomatic subjects. Circulation 93(11):1951–1953PubMedCrossRefGoogle Scholar
  5. 5.
    Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD (2000) Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 36(4):1253–1260PubMedCrossRefGoogle Scholar
  6. 6.
    Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, Chomka EV, Liu K (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107(20):2571–2576PubMedCrossRefGoogle Scholar
  7. 7.
    Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228(3):826–833PubMedCrossRefGoogle Scholar
  8. 8.
    Wong ND, Hsu JC, Detrano RC, Diamond G, Eisenberg H, Gardin JM (2000) Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 86(5):495–498PubMedCrossRefGoogle Scholar
  9. 9.
    O’Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, Pohost GM, Shaw LJ, Weintraub WS, Winters WL Jr (2000) American college of cardiology/American heart association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 36(1):326–340PubMedCrossRefGoogle Scholar
  10. 10.
    Thilo C, Gebregziabher M, Mayer FB, Zwerner PL, Costello P, Schoepf UJ (2010) Correlation of regional distribution and morphological pattern of calcification at CT coronary artery calcium scoring with non-calcified plaque formation and stenosis. Eur Radiol 20(4):855–861PubMedCrossRefGoogle Scholar
  11. 11.
    Arbab-Zadeh A, Miller JM, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA (2012) Diagnostic accuracy of computed tomography coronary angiography according to pre-test probability of coronary artery disease and severity of coronary arterial calcification. The CORE-64 (coronary artery evaluation using 64-Row multidetector computed tomography angiography) International Multicenter Study. J Am Coll Cardiol 59(4):379–387PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, Waugh N (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94(11):1386–1393PubMedCrossRefGoogle Scholar
  13. 13.
    Sun Z, Lin C, Davidson R, Dong C, Liao Y (2008) Diagnostic value of 64-slice CT angiography in coronary artery disease: a systematic review. Eur J Radiol 67(1):78–84PubMedCrossRefGoogle Scholar
  14. 14.
    Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W, Hunink MG (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244(2):419–428PubMedCrossRefGoogle Scholar
  15. 15.
    Choi EK, Choi SI, Rivera JJ, Nasir K, Chang SA, Chun EJ, Kim HK, Choi DJ, Blumenthal RS, Chang HJ (2008) Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol 52(5):357–365PubMedCrossRefGoogle Scholar
  16. 16.
    Sakuma H (2011) Coronary CT versus MR angiography: the role of MR angiography. Radiology 258(2):340–349PubMedCrossRefGoogle Scholar
  17. 17.
    Jin H, Zeng MS, Ge MY, Yun H, Yang S (2013) 3D coronary MR angiography at 1.5 T: volume-targeted versus whole-heart acquisition. J Magn Reson Imaging 38(3):594–602PubMedCrossRefGoogle Scholar
  18. 18.
    Nagata M, Kato S, Kitagawa K, Ishida N, Nakajima H, Nakamori S, Ishida M, Miyahara M, Ito M, Sakuma H (2011) Diagnostic accuracy of 1.5-T unenhanced whole-heart coronary MR angiography performed with 32-channel cardiac coils: initial single-center experience. Radiology 259(2):384–392PubMedCrossRefGoogle Scholar
  19. 19.
    Yang Q, Li K, Liu X, Du X, Bi X, Huang F, Jerecic R, Liu Z, An J, Xu D, Zheng H, Fan Z, Li D (2012) 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging 5(5):573–579PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152(3):167–177PubMedCrossRefGoogle Scholar
  21. 21.
    Gebker R, Jahnke C, Paetsch I, Kelle S, Schnackenburg B, Fleck E, Nagel E (2008) Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease. Radiology 247(1):57–63PubMedCrossRefGoogle Scholar
  22. 22.
    Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, Nelemans PJ, Schalla S (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 59(19):1719–1728PubMedCrossRefGoogle Scholar
  24. 24.
    Jogiya R, Kozerke S, Morton G, De Silva K, Redwood S, Perera D, Nagel E, Plein S (2012) Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol 60(8):756–765PubMedCrossRefGoogle Scholar
  25. 25.
    Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57(1):70–75PubMedCrossRefGoogle Scholar
  26. 26.
    Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J, Reith S, Schnackenburg B, Gaemperli O, Wissmann L, Wyss CA, Kaufmann PA, Corti R, Boesiger P, Marx N, Luscher TF, Jahnke C (2012) Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Heart J 33(16):2016–2024PubMedCrossRefGoogle Scholar
  27. 27.
    Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schonberg SO, Luchner A, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T, MR-IMPACT Investigators (2013) MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance versus single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 34(10):775–781Google Scholar
  28. 28.
    Bettencourt N, Ferreira N, Chiribiri A, Schuster A, Sampaio F, Santos L, Melica B, Rodrigues A, Braga P, Teixeira M, Leite-Moreira A, Silva-Cardoso J, Portugal P, Gama V, Nagel E (2013) Additive value of magnetic resonance coronary angiography in a comprehensive cardiac magnetic resonance stress-rest protocol for detection of functionally significant coronary artery disease: a pilot study. Circ Cardiovasc Imaging 6(5):730–738PubMedCrossRefGoogle Scholar
  29. 29.
    Heer T, Reiter S, Hofling B, Pilz G (2013) Diagnostic performance of non-contrast-enhanced whole-heart magnetic resonance coronary angiography in combination with adenosine stress perfusion cardiac magnetic resonance imaging. Am Heart J 166(6):999–1009PubMedCrossRefGoogle Scholar
  30. 30.
    Kato S, Kitagawa K, Ishida N, Ishida M, Nagata M, Ichikawa Y, Katahira K, Matsumoto Y, Seo K, Ochiai R, Kobayashi Y, Sakuma H (2010) Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol 56(12):983–991PubMedCrossRefGoogle Scholar
  31. 31.
    Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB (1975) A reporting system on patients evaluated for coronary artery disease. Report of the ad hoc committee for grading of coronary artery disease, council on cardiovascular surgery, American heart association. Circulation 51(4 Suppl):5–40PubMedCrossRefGoogle Scholar
  32. 32.
    Hausleiter J, Meyer T, Hadamitzky M, Kastrati A, Martinoff S, Schomig A (2006) Prevalence of noncalcified coronary plaques by 64-slice computed tomography in patients with an intermediate risk for significant coronary artery disease. J Am Coll Cardiol 48(2):312–318PubMedCrossRefGoogle Scholar
  33. 33.
    Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schonberg SO, Debl K, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T, Investigators M-I (2012) Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: the secondary endpoints of the multicenter multivendor MR-IMPACT II (magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial). J Cardiovasc Magn Reson 14:61PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Arenja N, Mueller C, Ehl NF, Brinkert M, Roost K, Reichlin T, Sou SM, Hochgruber T, Osswald S, Zellweger MJ (2013) Prevalence, extent, and independent predictors of silent myocardial infarction. Am J Med 126(6):515–522PubMedCrossRefGoogle Scholar
  35. 35.
    Davis TM, Coleman RL, Holman RR, Group UKPDS (2013) Prognostic significance of silent myocardial infarction in newly diagnosed type 2 diabetes mellitus: United Kingdom prospective diabetes study (UKPDS) 79. Circulation 127(9):980–987PubMedCrossRefGoogle Scholar
  36. 36.
    Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, Siu S, Brown KA (2008) Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 118(10):1011–1020PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    de Vos AM, Rutten A, van de Zaag-Loonen HJ, Bots ML, Dikkers R, Buiskool RA, Mali WP, Lubbers DD, Mosterd A, Prokop M, Rensing BJ, Cramer MJ, van Es HW, Moll FL, van de Pavoordt ED, Doevendans PA, Velthuis BK, Mackaay AJ, Zijlstra F, Oudkerk M (2008) Non-invasive cardiac assessment in high risk patients (The GROUND study): rationale, objectives and design of a multi-center randomized controlled clinical trial. Trials 9:49PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, Min JK, Patel MR, Rosenbaum L, Shaw LJ, Stainback RF, Allen JM, American College of Cardiology Foundation Appropriate Use Criteria Task Force (2014) ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 63(4):380–406Google Scholar
  39. 39.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, Rubin GD, American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society of Cardiovascular Computed Tomography, American College of Radiology, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, North American Society for Cardiovascular Imaging, Society for Cardiovascular Angiography and Interventions, Society for Cardiovascular Magnetic Resonance, Kramer CM, Berman D, Brown A, Chaudhry FA, Cury RC, Desai MY, Einstein AJ, Gomes AS, Harrington R, Hoffmann U, Khare R, Lesser J, McGann C, Rosenberg A, Schwartz R, Shelton M, Smetana GW, Smith SC Jr (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56(22):1864–1894Google Scholar
  40. 40.
    Yoon YE, Hong YJ, Kim HK, Kim JA, Na JO, Yang DH, Kim YJ, Choi EY (2014) 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. Korean J Radiol 15(6):659–688Google Scholar
  41. 41.
    Ishida M, Schuster A, Takase S, Morton G, Chiribiri A, Bigalke B, Schaeffter T, Sakuma H, Nagel E (2011) Impact of an abdominal belt on breathing patterns and scan efficiency in whole-heart coronary magnetic resonance angiography: comparison between the UK and Japan. J Cardiovasc Magn Reson 13:71PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kyoung Doo Song
    • 1
  • Sung Mok Kim
    • 1
    • 2
  • Yeon Hyeon Choe
    • 1
    • 2
  • Wooin Jung
    • 1
  • Sang-Chol Lee
    • 2
    • 3
  • Sung-A Chang
    • 2
    • 3
  • Yoon Ho Choi
    • 4
  • Jidong Sung
    • 3
    • 4
  1. 1.Department of Radiology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
  2. 2.HVSI Imaging Center, Heart Vascular Stroke Institute; Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
  3. 3.Division of Cardiology, Department of Medicine, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
  4. 4.Center for Health Promotion; Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea

Personalised recommendations