Nonenhanced peripheral MR-angiography (MRA) at 3 Tesla: evaluation of quiescent-interval single-shot MRA in patients undergoing digital subtraction angiography

  • Moritz Wagner
  • Gesine Knobloch
  • Martin Gielen
  • Marie-Teres Lauff
  • Valentina Romano
  • Bernd Hamm
  • Thomas Kröncke
Original Paper


Quiescent-interval single-shot MRA (QISS-MRA) is a promising nonenhanced imaging technique for assessment of peripheral arterial disease (PAD). Previous studies at 3 Tesla included only very limited numbers of patients for correlation of QISS-MRA with digital subtraction angiography (DSA) as standard of reference (SOR). The aim of this prospective institutional review board-approved study was to compare QISS-MRA at 3 Tesla with DSA in a larger patient group. Our study included 32 consecutive patients who underwent QISS-MRA, contrast-enhanced MRA (CE-MRA), and DSA. Two readers independently performed a per-segment evaluation of QISS-MRA and CE-MRA for image quality and identification of non-significant stenosis (<50 %) versus significant stenosis (50–100 %). The final dataset included 1,027 vessel segments. Reader 1 and 2 rated image quality as diagnostic in 96.8 and 98.0 % of the vessel segments on QISS-MRA and in 99.3 and 98.4 % of the vessel segments on CE-MRA, respectively. DSA was available for 922 segments and detected significant stenosis in 133 segments (14.4 %). Consensus reading yielded the following diagnostic parameters for QISS-MRA versus CE-MRA: sensitivity: 83.5 % (111/133) versus 82.7 % (110/133), p = 0.80; specificity: 93.9 % (741/789) versus 95.7 % (755/789), p = 0.25; and diagnostic accuracy: 92.4 % (852/922) versus 93.8 % (865/922), p = 0.35. In conclusion, using DSA as SOR, QISS-MRA and CE-MRA at 3 Tesla showed similar diagnostic accuracy in the assessment of PAD. A limitation of QISS-MRA was the lower rate of assessable vessel segments compared to CE-MRA.


Quiescent-interval single-shot (QISS) Angiography MR angiography (MRA) Peripheral arterial disease (PAD) Nonenhanced MR angiography 



The authors thank Carsten Schwenke (SCO:SSiS Statistical Consulting, Berlin, Germany) for his contribution to the statistical analysis and Peter Schmitt (Siemens Healthcare, Erlangen Germany) for his technical support. This work is part of the dissertations of Martin Gielen and Marie-Teres Lauff.

Conflict of interest

Bayer Healthcare (Berlin, Germany) provided financial support for conduction of the study. Bayer Healthcare did not have control over the study conduct or data analysis.


  1. 1.
    Menke J, Larsen J (2010) Meta-analysis: accuracy of contrast-enhanced magnetic resonance angiography for assessing steno-occlusions in peripheral arterial disease. Ann Intern Med 153(5):325–334. doi: 10.7326/0003-4819-153-5-201009070-00007 CrossRefPubMedGoogle Scholar
  2. 2.
    Attenberger UI, Haneder S, Morelli JN, Diehl SJ, Schoenberg SO, Michaely HJ (2010) Peripheral arterial occlusive disease: evaluation of a high spatial and temporal resolution 3-T MR protocol with a low total dose of gadolinium versus conventional angiography. Radiology 257(3):879–887. doi: 10.1148/radiol.10100781 CrossRefPubMedGoogle Scholar
  3. 3.
    Daftari Besheli L, Aran S, Shaqdan K, Kay J, Abujudeh H (2014) Current status of nephrogenic systemic fibrosis. Clin Radiol 69(7):661–668. doi: 10.1016/j.crad.2014.01.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Yang L, Krefting I, Gorovets A, Marzella L, Kaiser J, Boucher R, Rieves D (2012) Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the food and drug administration. Radiology 265(1):248–253. doi: 10.1148/radiol.12112783 CrossRefPubMedGoogle Scholar
  5. 5.
    Thomsen HS (2009) How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol Clin N Am 47(5):871–875. doi: 10.1016/j.rcl.2009.05.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Selvin E, Erlinger TP (2004) Prevalence of and risk factors for peripheral arterial disease in the United States: results from the national health and nutrition examination survey, 1999–2000. Circulation 110(6):738–743CrossRefPubMedGoogle Scholar
  7. 7.
    O’Hare AM, Glidden DV, Fox CS, Hsu CY (2004) High prevalence of peripheral arterial disease in persons with renal insufficiency: results from the national health and nutrition examination survey 1999–2000. Circulation 109(3):320–323CrossRefPubMedGoogle Scholar
  8. 8.
    Tranche-Iparraguirre S, Marín-Iranzo R, Fernández-de Sanmamed R, Riesgo-García A, Hevia-Rodríguez E, García-Casas JB (2012) Peripheral arterial disease and kidney failure: a frequent association. Nefrologia 32(3):313–320. doi: 10.3265/Nefrologia.pre2011.Nov.11172 PubMedGoogle Scholar
  9. 9.
    O’Hare A, Johansen K (2001) Lower-extremity peripheral arterial disease among patients with end-stage renal disease. J Am Soc Nephrol 12(12):2838–2847PubMedGoogle Scholar
  10. 10.
    Miyazaki M, Lee VS (2008) Nonenhanced MR angiography. Radiology 248(1):20–43. doi: 10.1148/radiol.2481071497 CrossRefPubMedGoogle Scholar
  11. 11.
    Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I (2010) Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med 63(4):951–958. doi: 10.1002/mrm.22287 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ, Dunkle EE, Gupta N, Carr JC, Edelman RR (2011) Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology 260(1):282–293. doi: 10.1148/radiol.11101336 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Hodnett PA, Ward EV, Davarpanah AH, Scanlon TG, Collins JD, Glielmi CB, Bi X, Koktzoglou I, Gupta N, Carr JC, Edelman RR (2011) Peripheral arterial disease in a symptomatic diabetic population: prospective comparison of rapid unenhanced MR angiography (MRA) with contrast-enhanced MRA. AJR Am J Roentgenol 197(6):1466–1473. doi: 10.2214/AJR.10.6091 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Klasen J, Blondin D, Schmitt P, Bi X, Sansone R, Wittsack HJ, Kröpil P, Quentin M, Kuhlemann J, Miese F, Heiss C, Kelm M, Antoch G, Lanzman RS (2012) Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: comparison with contrast-enhanced MRA. Clin Radiol 67(5):441–446. doi: 10.1016/j.crad.2011.10.014 CrossRefPubMedGoogle Scholar
  15. 15.
    Glielmi C, Carr M, Bi X, Schmitt P, Galizia M, Wood J, Edelman RR, Markl M, Carr J, Collins J (2012) High Acceleration Quiescent-Interval Single Shot Magnetic Resonance Angiography at 1.5 and 3T. Proc Intl Soc Magn Reson Med 20:3876Google Scholar
  16. 16.
    Morelli JN, Gerdes CM, Schmitt P, Ai T, Saettele MR, Runge VM, Attenberger UI (2013) Technical considerations in MR angiography: an image-based guide. J Magn Reson Imaging 37(6):1326–1341. doi: 10.1002/jmri.24174 CrossRefPubMedGoogle Scholar
  17. 17.
    Amin P, Collins JD, Koktzoglou I, Molvar C, Markl M, Edelman RR, Carr JC (2014) Evaluating peripheral arterial disease with unenhanced quiescent-interval single-shot MR Angiography at 3 T. AJR Am J Roentgenol 202(4):886–893. doi: 10.2214/AJR.13.11243 CrossRefPubMedGoogle Scholar
  18. 18.
    Knobloch G, Gielen M, Lauff MT, Romano VC, Schmitt P, Rick M, Kröncke TJ, Huppertz A, Hamm B, Wagner M (2014) ECG-gated quiescent-interval single-shot MR angiography of the lower extremities: initial experience at 3 T. Clin Radiol 69(5):485–491. doi: 10.1016/j.crad.2013.12.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Thierfelder KM, Meimarakis G, Nikolaou K, Sommer WH, Schmitt P, Kazmierczak PM, Reiser MF, Theisen D (2014) Non-contrast-enhanced MR angiography at 3 Tesla in patients with advanced peripheral arterial occlusive disease. PLoS One 9(3):e91078. doi: 10.1371/journal.pone.0091078 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Hansmann J, Morelli JN, Michaely HJ, Riester T, Budjan J, Schoenberg SO, Attenberger UI (2014) Nonenhanced ECG-gated quiescent-interval single shot MRA: image quality and stenosis assessment at 3 tesla compared with contrast-enhanced MRA and digital subtraction angiography. J Magn Reson Imaging 39(6):1486–1493. doi: 10.1002/jmri.24324 CrossRefPubMedGoogle Scholar
  21. 21.
    Ferreira PF, Gatehouse PD, Mohiaddin RH, Firmin DN (2013) Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 15:41. doi: 10.1186/1532-429X-15-41 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Edelman RR, Giri S, Dunkle E, Galizia M, Amin P, Koktzoglou I (2013) Quiescent-inflow single-shot magnetic resonance angiography using a highly undersampled radial k-space trajectory. Magn Reson Med 70(6):1662–1668. doi: 10.1002/mrm.24596 CrossRefPubMedGoogle Scholar
  23. 23.
    Gutzeit A, Sutter R, Froehlich JM, Roos JE, Sautter T, Schoch E, Giger B, Wyss M, Graf N, von Weymarn C, Jenelten R, Binkert CA, Hergan K (2011) ECG-triggered non-contrast-enhanced MR angiography (TRANCE) versus digital subtraction angiography (DSA) in patients with peripheral arterial occlusive disease of the lower extremities. Eur Radiol 21(9):1979–1987. doi: 10.1007/s00330-011-2132-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Lim RP, Fan Z, Chatterji M, Baadh A, Atanasova IP, Storey P, Kim DC, Kim S, Hodnett PA, Ahmad A, Stoffel DR, Babb JS, Adelman MA, Xu J, Li D, Lee VS (2013) Comparison of nonenhanced MR angiographic subtraction techniques for infragenual arteries at 1.5 T: a preliminary study. Radiology 267(1):293–304. doi: 10.1148/radiol.12120859 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Haneder S, Attenberger UI, Riffel P, Henzler T, Schoenberg SO, Michaely HJ (2011) Magnetic resonance angiography (MRA) of the calf station at 3.0 T: intraindividual comparison of non-enhanced ECG-gated flow-dependent MRA, continuous table movement MRA and time-resolved MRA. Eur Radiol 21(7):1452–1461. doi: 10.1007/s00330-011-2063-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Mohrs OK, Petersen SE, Heidt MC, Schulze T, Schmitt P, Bergemann S, Kauczor HU (2011) High-resolution 3D non-contrast-enhanced, ECG-gated, multi-step MR angiography of the lower extremities: comparison with contrast-enhanced MR angiography. Eur Radiol 21(2):434–442. doi: 10.1007/s00330-010-1932-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Fuchs F, Laub G, Othomo K (2003) TrueFISP—technical considerations and cardiovascular applications. Eur J Radiol 46(1):28–32. doi: 10.1016/S0720-048X(02)00330-3 CrossRefPubMedGoogle Scholar
  28. 28.
    Ward EV, Galizia MS, Usman A, Popescu AR, Dunkle E, Edelman RR (2013) Comparison of quiescent inflow single-shot and native space for nonenhanced peripheral MR angiography. J Magn Reson Imaging 38(6):1531–1538. doi: 10.1002/jmri.24124 CrossRefPubMedGoogle Scholar
  29. 29.
    Offerman EJ, Hodnett PA, Edelman RR, Koktzoglou I (2011) Nonenhanced methods for lower-extremity MRA: a phantom study examining the effects of stenosis and pathologic flow waveforms at 1.5 T. J Magn Reson Imaging 33(2):401–408. doi: 10.1002/jmri.22457 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Moritz Wagner
    • 1
  • Gesine Knobloch
    • 1
  • Martin Gielen
    • 1
  • Marie-Teres Lauff
    • 1
  • Valentina Romano
    • 1
  • Bernd Hamm
    • 1
  • Thomas Kröncke
    • 2
  1. 1.Department of RadiologyBerlinGermany
  2. 2.Department of Diagnostic and Interventional Radiology and NeuroradiolgyKlinikum AugsburgAugsburgGermany

Personalised recommendations