Advertisement

Endothelial shear stress estimation in the human carotid artery based on Womersley versus Poiseuille flow

  • Janina C. V. Schwarz
  • Raphaël Duivenvoorden
  • Aart J. Nederveen
  • Erik S. G. Stroes
  • Ed VanBavel
Original Paper

Abstract

Endothelial shear stress (ESS) dynamics are a major determinant of atherosclerosis development. The frequently used Poiseuille method to estimate ESS dynamics has important limitations. Therefore, we investigated whether Womersley flow may provide a better alternative for estimation of ESS while requiring equally simple hemodynamic parameters. Common carotid blood flow, centerline velocity, lumen diameter and mean wall thickness (MWT) were measured with 3T-MRI in 45 subjects at three different occasions. Mean ESS and two measures of pulsatility [shear pulsatility index (SPI) and oscillatory shear index (OSI)] were estimated based on Poiseuille and Womersley flow and compared to the more complex velocity gradient modelling method. The association between ESS and MWT was tested with multiple linear regression analysis; interscan reproducibility was assessed using intraclass correlation coefficients (ICC). Mean ESS and pulsatility indices based on Womersley flow (ESSwq β = −0.18, P = 0.04; SPIwq β = 0.24, P = 0.02; OSIwq β = 0.18, P = 0.045), showed equally good correlations with carotid MWT as the velocity gradient method (ESSvg β = −0.23, P = 0.01; SPIvg β = 0.21, P = 0.02; OSIvg β = 0.07, P = 0.47). This in contrast to the Poiseuille flow method that only showed a good correlation for mean ESS (ESSpq β = −0.18, P = 0.04; SPIpq β = 0.14, P = 0.14; OSIpq β = 0.04, P = 0.69). Womersley and Poiseuille methods had high intraclass correlation coefficients indicating good interscan reproducibility (both ICC = 0.84, 95 % confidence interval 0.75–0.90). Estimation of ESS dynamics based on Womersley flow modelling is superior to Poiseuille flow modelling and has good interscan reproducibility.

Keywords

Endothelial shear stress Cardiovascular magnetic resonance Common carotid artery Intima media thickness 

Abbreviations

3T-MRI

3.0 Tesla magnetic resonance imaging

ESR

Endothelial shear rate

ESS

Endothelial shear stress

ICC

Intraclass correlation coefficient

LA

Lumen area

MWT

Mean wall thickness

OSI

Oscillatory shear index

Q

Blood flow rate

SPI

Shear pulsatility index

v

Centerline velocity

Notes

Acknowledgments

We would like to thank A.M. van den Berg for assisting in the data acquisition. JCVS was supported by Grant 01C-204 (EMINENCE project) from the Center for Translational Molecular Medicine.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10554_2014_571_MOESM1_ESM.pdf (397 kb)
Supplementary material 1 (PDF 397 kb)

References

  1. 1.
    Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6:16–26. doi: 10.1038/ncpcardio1397 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431. doi: 10.1038/nature03952 CrossRefPubMedGoogle Scholar
  3. 3.
    Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, García-Cardeña G, Gimbrone MA (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876. doi: 10.1073/pnas.0406073101 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407. doi: 10.1126/science.3941904 CrossRefPubMedGoogle Scholar
  5. 5.
    Duivenvoorden R, Vanbavel E, de Groot E, Stroes ES, Disselhorst JA, Hutten BA, Laméris JS, Kastelein JJ, Nederveen AJ (2010) Endothelial shear stress: a critical determinant of arterial remodeling and arterial stiffness in humans–a carotid 3.0-T MRI study. Circ Cardiovasc Imaging 3:578–585. doi: 10.1161/CIRCIMAGING.109.916304 CrossRefPubMedGoogle Scholar
  6. 6.
    Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A (1996) Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 94:3257–3262. doi: 10.1161/01.CIR.94.12.3257 CrossRefPubMedGoogle Scholar
  7. 7.
    Irace C, Carallo C, De Franceschi MS, Scicchitano F, Milano M, Tripolino C, Scavelli F, Gnasso A (2012) Human common carotid wall shear stress as a function of age and gender: a 12-year follow-up study. Age 34:1553–1562. doi: 10.1007/s11357-011-9318-1 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Irace C, Cortese C, Fiaschi E, Carallo C, Farinaro E, Gnasso A (2004) Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk. Stroke 35:464–468. doi: 10.1161/01.STR.0000111597.34179.47 CrossRefPubMedGoogle Scholar
  9. 9.
    Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos EP, Marmarelis V (2007) Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis 49:307–329. doi: 10.1016/j.pcad.2006.11.001 CrossRefPubMedGoogle Scholar
  10. 10.
    Oyre S, Ringgaard S, Kozerke S, Paaske WP, Erlandsen M, Boesiger P, Pedersen EM (1998) Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data. J Am Coll Cardiol 32:128–134. doi: 10.1016/S0735-1097(98)00207-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Ford MD, Xie YJ, Wasserman BA, Steinman DA (2008) Is flow in the common carotid artery fully developed? Physiol Meas 29:1335–1349. doi: 10.1088/0967-3334/29/11/008 CrossRefPubMedGoogle Scholar
  12. 12.
    Box FM, van der Geest RJ, van der Grond J, van Osch MJ, Zwinderman AH, Palm-Meinders IH, Doornbos J, Blauw GJ, van Buchem MA, Reiber JH (2007) Reproducibility of wall shear stress assessment with the paraboloid method in the internal carotid artery with velocity encoded MRI in healthy young individuals. J Magn Reson Imaging 26:598–605. doi: 10.1002/jmri.21086 CrossRefPubMedGoogle Scholar
  13. 13.
    Box FM, van der Grond J, de Craen AJ, Palm-Meinders IH, van der Geest RJ, Jukema JW, Reiber JH, van Buchem MA, Blauw GJ, Group PS (2007) Pravastatin decreases wall shear stress and blood velocity in the internal carotid artery without affecting flow volume: results from the PROSPER MRI study. Stroke 38(4):1374–1376. doi: 10.1161/01.STR.0000260206.56774.aa CrossRefPubMedGoogle Scholar
  14. 14.
    Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF (1981) Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39:425–436. doi: 10.1016/0021-9150(81)90027-7 CrossRefPubMedGoogle Scholar
  16. 16.
    Li C, Kao C-Y, Gore JC, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In 06(2007):1–7. doi: 10.1109/CVPR.2007.383014 Google Scholar
  17. 17.
    Reneman RS, Arts T, Hoeks AP (2006) Wall shear stress–an important determinant of endothelial cell function and structure–in the arterial system in vivo. Discrepancies with theory. J Vasc Res 43:251–269. doi: 10.1159/000091648 CrossRefPubMedGoogle Scholar
  18. 18.
    Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5:293–302. doi: 10.1161/01.ATV.5.3.293 CrossRefGoogle Scholar
  19. 19.
    Adame IM, van der Geest RJ, Bluemke DA, Lima JA, Reiber JH, Lelieveldt BP (2006) Automatic vessel wall contour detection and quantification of wall thickness in in vivo MR images of the human aorta. J Magn Reson Imaging 24:595–602. doi: 10.1002/jmri.20662 CrossRefPubMedGoogle Scholar
  20. 20.
    Duivenvoorden R, de Groot E, Elsen BM, Laméris JS, van der Geest RJ, Stroes ES, Kastelein JJ, Nederveen AJ (2009) In vivo quantification of carotid artery wall dimensions: 3.0-Tesla MRI versus B-mode ultrasound imaging. Circ Cardiovasc Imaging 2:235–242. doi: 10.1161/CIRCIMAGING.108.788059 CrossRefPubMedGoogle Scholar
  21. 21.
    Ugron Á, Paál G (2014) On the boundary conditions of cerebral aneurysm simulations. Periodica Polytechnica Mech Eng 58(1):37–45. doi: 10.3311/PPme.7392 CrossRefGoogle Scholar
  22. 22.
    Taylor CA, Steinman DA (2010) Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: sixth international bio-fluid mechanics symposium and workshop, March 28–30, 2008 Pasadena, California. Ann Biomed Eng 38:1188–1203. doi: 10.1007/s10439-010-9901-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Remuzzi A, Ene-Iordache B, Mosconi L, Bruno S, Anghileri A, Antiga L, Remuzzi G (2003) Radial artery wall shear stress evaluation in patients with arteriovenous fistula for hemodialysis access. Biorheology 40:423–430PubMedGoogle Scholar
  24. 24.
    Simon AC, Levenson J, Flaud P (1990) Pulsatile flow and oscillating wall shear stress in the brachial artery of normotensive and hypertensive subjects. Cardiovasc Res 24:129–136. doi: 10.1093/cvr/24.2.129 CrossRefPubMedGoogle Scholar
  25. 25.
    Stroev PV, Hoskins PR, Easson WJ (2007) Distribution of wall shear rate throughout the arterial tree: a case study. Atherosclerosis 191:276–280. doi: 10.1016/j.atherosclerosis.2006.05.029 CrossRefPubMedGoogle Scholar
  26. 26.
    Struijk PC, Stewart PA, Fernando KL, Mathews VJ, Loupas T, Steegers EAP, Wladimiroff JW (2005) Wall shear stress and related hemodynamic parameters in the fetal descending aorta derived from color Doppler velocity profiles. Ultrasound Med Biol 31:1441–1450. doi: 10.1016/j.ultrasmedbio.2005.07.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Holdsworth DW, Norley CJ, Frayne R, Steinman DA, Rutt BK (1999) Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol Meas 20:219–240. doi: 10.1088/0967-3334/20/3/301 CrossRefPubMedGoogle Scholar
  28. 28.
    Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol Genomics 9:27–41. doi: 10.1152/physiolgenomics.00075.2001 CrossRefPubMedGoogle Scholar
  29. 29.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042. doi: 10.1001/jama.282.21.2035 CrossRefPubMedGoogle Scholar
  30. 30.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393. doi: 10.1016/j.jacc.2007.02.059 CrossRefPubMedGoogle Scholar
  31. 31.
    Potters WV, van Ooij P, Marquering H, Vanbavel E, Nederveen AJ (2014) Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. J Magn Reson Imaging 1–12. doi: 10.1002/jmri.24560
  32. 32.
    van Ooij P, Potters WV, Guédon A, Schneiders JJ, Marquering HA, Majoie CB, vanBavel E, Nederveen AJ (2013) Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm: WSS in Intracranial Aneurysms. J Magn Reson Imaging 38:876–884. doi: 10.1002/jmri.24051 CrossRefPubMedGoogle Scholar
  33. 33.
    Mynard JP, Wasserman BA, Steinman DA (2013) Errors in the estimation of wall shear stress by maximum Doppler velocity. Atherosclerosis 227:259–266. doi: 10.1016/j.atherosclerosis.2013.01.026 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Janina C. V. Schwarz
    • 1
  • Raphaël Duivenvoorden
    • 2
  • Aart J. Nederveen
    • 3
  • Erik S. G. Stroes
    • 2
  • Ed VanBavel
    • 1
  1. 1.Department of Biomedical Engineering and Physics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Vascular Medicine, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Radiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations