The International Journal of Cardiovascular Imaging

, Volume 30, Issue 7, pp 1279–1287 | Cite as

Evaluation of global circumferential strain as prognostic marker after administration of β-blockers for dilated cardiomyopathy

  • Hidekazu Tanaka
  • Kensuke Matsumoto
  • Takuma Sawa
  • Tatsuya Miyoshi
  • Yoshiki Motoji
  • Junichi Imanishi
  • Yasuhide Mochizuki
  • Kazuhiro Tatsumi
  • Ken-ichi Hirata
Original Paper


The use of β-blockers has improved the prognosis of dilated cardiomyopathy (DCM) and the appearance of left ventricular (LV) reverse remodeling is generally thought to result in a more favorable prognosis. While there are many prognostic predictors, not all of them are applicable to individual patients. Global circumferential strain (GCS) was identified as a powerful prognostic marker, which appears to be a better parameter than LV global function for patients with depressed left ventricular (LV) ejection fraction. Seventy consecutive patients with newly-diagnosed DCM with LVEF of 28 ± 8 % (all <45 %) were retrospectively recruited. Either carvedilol or bisoprolol was titrated to a dose that was tolerable for each of the patients. GCS was determined as the peak global speckle-tracking circumferential strain from the mid-LV short-axis view. LV reverse remodeling was defined as an absolute increase in LVEF of at least 10 % during 8.1 ± 5.2-month follow-up after initiation of the maintenance dose of β-blockers. GCS ≥ 5.4 % was identified as the best predictor of LV reverse remodeling with 91 % sensitivity and 82 % specificity, and an area under the curve of 0.896 (p < 0.0001). An important finding of multivariate logistic regression analysis was that GCS was the best independent predictor of LV reverse remodeling (OR 7.692; 95 % CI 2.292–25.82; p = 0.001). It should be noted that only 1.3 ± 0.4 min per patient was needed to analyze GCS. In conclusions, GCS could result in further improvements in predicting LV reverse remodeling after β-blocker administration, and have clinical implications for better management in daily clinical practice.


β-Blocker Echocardiography Dilated cardiomyopathy Circumferential strain Reverse remodeling 


Conflict of interest



  1. 1.
    Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35(3):569–582PubMedCrossRefGoogle Scholar
  2. 2.
    Udelson JE (2004) Ventricular remodeling in heart failure and the effect of beta-blockade. Am J Cardiol 93(9A):43B–48BPubMedCrossRefGoogle Scholar
  3. 3.
    Konstam MA (2003) Improving clinical outcomes with drug treatment in heart failure: what have trials taught? Am J Cardiol 91(6A):9D–14DPubMedCrossRefGoogle Scholar
  4. 4.
    Lechat P, Escolano S, Golmard JL, Lardoux H, Witchitz S, Henneman JA, Maisch B, Hetzel M, Jaillon P, Boissel JP, Mallet A (1997) Prognostic value of bisoprolol-induced hemodynamic effects in heart failure during the Cardiac Insufficiency BIsoprolol Study (CIBIS). Circulation 96(7):2197–2205PubMedCrossRefGoogle Scholar
  5. 5.
    Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, Kitaoka H, Furuno T, Takata J, Doi YL (2011) Effect of left ventricular reverse remodeling on long-term prognosis after therapy with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and beta blockers in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 107(7):1065–1070PubMedCrossRefGoogle Scholar
  6. 6.
    Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G (2011) Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 57(13):1468–1476PubMedCrossRefGoogle Scholar
  7. 7.
    Matsumura Y, Takata J, Kitaoka H, Kubo T, Baba Y, Hoshikawa E, Hamada T, Okawa M, Hitomi N, Sato K, Yamasaki N, Yabe T, Furuno T, Nishinaga M, Doi Y (2006) Long-term prognosis of dilated cardiomyopathy revisited: an improvement in survival over the past 20 years. Circul J Off J Jpn Circul Soc 70(4):376–383CrossRefGoogle Scholar
  8. 8.
    Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet 375(9716):752–762PubMedCrossRefGoogle Scholar
  9. 9.
    Rihal CS, Nishimura RA, Hatle LK, Bailey KR, Tajik AJ (1994) Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy. Relation to symptoms and prognosis. Circulation 90(6):2772–2779PubMedCrossRefGoogle Scholar
  10. 10.
    Grzybowski J, Bilinska ZT, Ruzyllo W, Kupsc W, Michalak E, Szczesniewska D, Poplawska W, Rydlewska-Sadowska W (1996) Determinants of prognosis in nonischemic dilated cardiomyopathy. J Cardiac Fail 2(2):77–85CrossRefGoogle Scholar
  11. 11.
    Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, Portnay EL, Marshalko SJ, Radford MJ, Krumholz HM (2003) The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol 42(4):736–742PubMedCrossRefGoogle Scholar
  12. 12.
    Kelly TL, Cremo R, Nielsen C, Shabetai R (1990) Prediction of outcome in late-stage cardiomyopathy. Am Heart J 119(5):1111–1121PubMedCrossRefGoogle Scholar
  13. 13.
    Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54(7):618–624PubMedCrossRefGoogle Scholar
  14. 14.
    Matsumoto K, Tanaka H, Kaneko A, Ryo K, Fukuda Y, Tatsumi K, Kawai H, Hirata K (2012) Contractile reserve assessed by three-dimensional global circumferential strain as a predictor of cardiovascular events in patients with idiopathic dilated cardiomyopathy. J Am Soc Echocardiogr 25(12):1299–1308PubMedCrossRefGoogle Scholar
  15. 15.
    Yoshida A, Takano H, Asai K, Yasutake M, Amano Y, Kumita S, Shimizu W, Mizuno K (2013) Comparison of perfusion-metabolism mismatch in (99m)Tc-MIBI and (123)I-BMIPP scintigraphy with cardiac magnetic resonance in patients with dilated cardiomyopathy. J Cardiac Fail 19(7):445–453CrossRefGoogle Scholar
  16. 16.
    McNamara DM, Starling RC, Cooper LT, Boehmer JP, Mather PJ, Janosko KM, Gorcsan J III, Kip KE, Dec GW, Investigators I (2011) Clinical and demographic predictors of outcomes in recent onset dilated cardiomyopathy: results of the IMAC (Intervention in Myocarditis and Acute Cardiomyopathy)-2 study. J Am Coll Cardiol 58(11):1112–1118PubMedCrossRefGoogle Scholar
  17. 17.
    Tanaka H, Tanabe M, Simon MA, Starling RC, Markham D, Thohan V, Mather P, McNamara DM, Gorcsan J 3rd (2011) Left ventricular mechanical dyssynchrony in acute onset cardiomyopathy: association of its resolution with improvements in ventricular function. JACC Cardiovascul Imaging 4(5):445–456CrossRefGoogle Scholar
  18. 18.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463PubMedCrossRefGoogle Scholar
  19. 19.
    Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22(2):107–133PubMedCrossRefGoogle Scholar
  20. 20.
    Delgado V, Ypenburg C, Zhang Q, Mollema SA, Fung JW, Schalij MJ, Yu CM, Bax JJ (2009) Changes in global left ventricular function by multidirectional strain assessment in heart failure patients undergoing cardiac resynchronization therapy. J Am Soc Echocardiogr 22(6):688–694PubMedCrossRefGoogle Scholar
  21. 21.
    Brown J, Jenkins C, Marwick TH (2009) Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J 157(1):102101–102105. doi: 10.1016/j.ahj.2008.1008.1032 CrossRefGoogle Scholar
  22. 22.
    Kawai K, Takaoka H, Hata K, Yokota Y, Yokoyama M (1999) Prevalence, predictors, and prognosis of reversal of maladaptive remodeling with intensive medical therapy in idiopathic dilated cardiomyopathy. Am J Cardiol 84(6):671–676PubMedCrossRefGoogle Scholar
  23. 23.
    Metra M, Nodari S, Parrinello G, Giubbini R, Manca C, Dei Cas L (2003) Marked improvement in left ventricular ejection fraction during long-term beta-blockade in patients with chronic heart failure: clinical correlates and prognostic significance. Am Heart J 145(2):292–299PubMedCrossRefGoogle Scholar
  24. 24.
    Yamada T, Fukunami M, Ohmori M, Iwakura K, Kumagai K, Kondoh N, Minamino T, Tsujimura E, Nagareda T, Kotoh K et al (1993) Which subgroup of patients with dilated cardiomyopathy would benefit from long-term beta-blocker therapy? A histologic viewpoint. J Am Coll Cardiol 21(3):628–633PubMedCrossRefGoogle Scholar
  25. 25.
    Lowes BD, Gilbert EM, Abraham WT, Minobe WA, Larrabee P, Ferguson D, Wolfel EE, Lindenfeld J, Tsvetkova T, Robertson AD, Quaife RA, Bristow MR (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 346(18):1357–1365PubMedCrossRefGoogle Scholar
  26. 26.
    Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T (2008) The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. J Am Soc Echocardiogr 21(10):1138–1144PubMedCrossRefGoogle Scholar
  27. 27.
    Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2008) Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 29(10):1283–1289PubMedCrossRefGoogle Scholar
  28. 28.
    O’Neill JO, McCarthy PM, Brunken RC, Buda T, Hoercher K, Young JB, Starling RC (2004) PET abnormalities in patients with nonischemic cardiomyopathy. J Cardiac Fail 10(3):244–249CrossRefGoogle Scholar
  29. 29.
    Izawa H, Murohara T, Nagata K, Isobe S, Asano H, Amano T, Ichihara S, Kato T, Ohshima S, Murase Y, Iino S, Obata K, Noda A, Okumura K, Yokota M (2005) Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112(19):2940–2945PubMedGoogle Scholar
  30. 30.
    Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985PubMedCrossRefGoogle Scholar
  31. 31.
    Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, Morarji K, Brown TD, Ismail NA, Dweck MR, Di Pietro E, Roughton M, Wage R, Daryani Y, O’Hanlon R, Sheppard MN, Alpendurada F, Lyon AR, Cook SA, Cowie MR, Assomull RG, Pennell DJ, Prasad SK (2013) Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. J Am Med Assoc 309(9):896–908CrossRefGoogle Scholar
  32. 32.
    Gao P, Yee R, Gula L, Krahn AD, Skanes A, Leong-Sit P, Klein GJ, Stirrat J, Fine N, Pallaveshi L, Wisenberg G, Thompson TR, Prato F, Drangova M, White JA (2012) Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circul Cardiovasc Imaging 5(4):448–456CrossRefGoogle Scholar
  33. 33.
    Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Castaigne A, Roecker EB, Schultz MK, DeMets DL, Carvedilol Prospective Randomized Cumulative Survival Study G (2001) Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 344(22):1651–1658PubMedCrossRefGoogle Scholar
  34. 34.
    Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334(21):1349–1355PubMedCrossRefGoogle Scholar
  35. 35.
    Xie HG, Kim RB, Wood AJ, Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 41:815–850PubMedCrossRefGoogle Scholar
  36. 36.
    Hori M, Sasayama S, Kitabatake A, Toyo-oka T, Handa S, Yokoyama M, Matsuzaki M, Takeshita A, Origasa H, Matsui K, Hosoda S, Investigators M (2004) Low-dose carvedilol improves left ventricular function and reduces cardiovascular hospitalization in Japanese patients with chronic heart failure: the Multicenter Carvedilol Heart Failure Dose Assessment (MUCHA) trial. Am Heart J 147(2):324–330PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hidekazu Tanaka
    • 1
  • Kensuke Matsumoto
    • 1
  • Takuma Sawa
    • 1
  • Tatsuya Miyoshi
    • 1
  • Yoshiki Motoji
    • 1
  • Junichi Imanishi
    • 1
  • Yasuhide Mochizuki
    • 1
  • Kazuhiro Tatsumi
    • 1
  • Ken-ichi Hirata
    • 1
  1. 1.Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan

Personalised recommendations