Advertisement

The compensation for asynchronous cardiac quiescence in coronary wall MR imaging

  • Kai Lin
  • Donald M. Lloyd-Jones
  • Ying Liu
  • Biao Lu
  • Huadan Xue
  • Yining Wang
  • Debiao Li
  • James C. Carr
Original Paper

Abstract

The aim of the present study was to assess the incremental benefit of compensating asynchronous cardiac quiescence in coronary wall MR imaging. With the approval of IRB, black-blood coronary wall MR imaging was performed on 30 older subjects (90 coronary wall segments). For round 1 coronary wall MR imaging, acquisition windows were traditionally set within rest period4-chamber. Totally 51 of 90 images were ranked as “good” images and resulted in an interpretability rate of 57 %. Then, an additional cine-MR was centered at coronary segments to obtain rest periodcross-sectional. The rest periodoverlap (the intersection between rest period4-chamber and rest periodcross-sectional) was measured for each coronary segment. The “good” images had a longer rest periodoverlap and higher acquisition coincidence rate (the percentage of acquisition window covered by the rest periodoverlap) than “poor” images. Coronary wall rescans (round 2) were completed at 39 coronary segments that were judged as having “poor” images in round 1 scans. The acquisition window was set within the rest periodoverlap. For the round 2 images, 17 of 39 (44 %) coronary segments were ranked as “good” images. The overall interpretability rate (68 of 90, 76 %) was significantly higher than that of the round 1 images alone. Our data demonstrated that asynchronous cardiac quiescence adversely affects the performance of coronary wall MR imaging. Individualizing acquisition windows based on multi-plane cine-MR helps to compensate for this motion discrepancy and to improve image quality.

Keywords

Coronary wall MR imaging Asynchronous quiescence Compensation 

Notes

Acknowledgments

This study was supported by a Grant from the National Institute of Health (R01HL089695) and a Grant from the American Heart Association (10CRP3050051).

Conflict of interest

No conflict of interest to disclose.

References

  1. 1.
    Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, Giles WH, Capewell S (2007) Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med 356(23):2388–2398. doi: 10.1056/NEJMsa053935 PubMedCrossRefGoogle Scholar
  2. 2.
    Allen N, Berry JD, Ning H, Van Horn L, Dyer A, Lloyd-Jones DM (2012) Impact of blood pressure and blood pressure change during middle age on the remaining lifetime risk for cardiovascular disease: the cardiovascular lifetime risk pooling project. Circulation 125(1):37–44. doi: 10.1161/CIRCULATIONAHA.110.002774 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Lloyd-Jones DM, Wilson PW, Larson MG, Beiser A, Leip EP, D’Agostino RB, Levy D (2004) Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol 94(1):20–24. doi: 10.1016/j.amjcard.2004.03.023 PubMedCrossRefGoogle Scholar
  4. 4.
    Miao C, Chen S, Macedo R, Lai S, Liu K, Li D, Wasserman BA, Vogel-Claussen J, Lima JA, Bluemke DA (2009) Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol 53(18):1708–1715. doi: 10.1016/j.jacc.2008.12.063 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lin K, Lloyd-Jones DM, Liu Y, Bi X, Li D, Carr JC (2012) Potential quantitative magnetic resonance imaging biomarkers of coronary remodeling in older hypertensive patients. Arterioscler Thromb Vasc Biol 32(7):1742–1747. doi: 10.1161/ATVBAHA.112.245266 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Miao C, Chen S, Ding J, Liu K, Li D, Macedo R, Lai S, Vogel-Claussen J, Brown ER, Lima JA, Bluemke DA (2011) The association of pericardial fat with coronary artery plaque index at MR imaging: the multi-ethnic study of atherosclerosis (MESA). Radiology 261(1):109–115. doi: 10.1148/radiol.11110346 PubMedCrossRefGoogle Scholar
  7. 7.
    Malayeri AA, Macedo R, Li D, Chen S, Bahrami H, Lai S, Lima JA, Bluemke DA (2009) Coronary vessel wall evaluation by magnetic resonance imaging in the multi-ethnic study of atherosclerosis: determinants of image quality. J Comput Assist Tomogr 33(1):1–7. doi: 10.1097/RCT.0b013e3181648606 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lin K, Bi X, Liu Y, Taimen K, Lu B, Li D, Carr J (2012) Black-blood steady-state free precession (SSFP) coronary wall MRI for cardiac allograft: a feasibility study. J Magn Reson Imaging 35(5):1210–1215. doi: 10.1002/jmri.23543 PubMedCrossRefGoogle Scholar
  9. 9.
    Lin K, Bi X, Taimen K, Zuehlsdorff S, Lu B, Carr J, Li D (2012) Coronary wall MR imaging in patients with rapid heart rates: a feasibility study of black-blood steady-state free precession (SSFP). Int J Cardiovasc Imaging 28(3):567–575. doi: 10.1007/s10554-011-9852-z PubMedCrossRefGoogle Scholar
  10. 10.
    Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, Botnar RM (2001) Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging 14(4):383–390. doi: 10.1002/jmri.1198 PubMedCrossRefGoogle Scholar
  11. 11.
    Lin K, Lloyd-Jones DM, Liu Y, Bi X, Li D, Carr JC (2011) Noninvasive evaluation of coronary distensibility in older adults: a feasibility study with MR angiography. Radiology 261(3):771–778. doi: 10.1148/radiol.11110573 PubMedCrossRefGoogle Scholar
  12. 12.
    Wang Y, Watts R, Mitchell I, Nguyen TD, Bezanson JW, Bergman GW, Prince MR (2001) Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion pre scanning–initial results. Radiology 218(2):580–585PubMedCrossRefGoogle Scholar
  13. 13.
    Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213(3):751–758PubMedCrossRefGoogle Scholar
  14. 14.
    Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8(3):568–576PubMedCrossRefGoogle Scholar
  15. 15.
    Shechter G, Resar JR, McVeigh ER (2005) Rest period duration of the coronary arteries: implications for magnetic resonance coronary angiography. Med Phys 32(1):255–262PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Uribe S, Hussain T, Valverde I, Tejos C, Irarrazaval P, Fava M, Beerbaum P, Botnar RM, Razavi R, Schaeffter T, Greil GF (2011) Congenital heart disease in children: coronary MR angiography during systole and diastole with dual cardiac phase whole-heart imaging. Radiology 260(1):232–240. doi: 10.1148/radiol.11101659 PubMedCrossRefGoogle Scholar
  17. 17.
    Lin K, Lloyd-Jones DM, Bi X, Liu Y, Li D, Carr JC (2013) Effects of respiratory motion on coronary wall MR imaging: a quantitative study of older adults. Int J Cardiovasc Imaging. doi: 10.1007/s10554-013-0187-9
  18. 18.
    Scott AD, Keegan J, Firmin DN (2009) Motion in cardiovascular MR imaging. Radiology 250(2):331–351. doi: 10.1148/radiol.2502071998 PubMedCrossRefGoogle Scholar
  19. 19.
    Roes SD, Korosoglou G, Schar M, Westenberg JJ, van Osch MJ, de Roos A, Stuber M (2008) Correction for heart rate variability during 3D whole heart MR coronary angiography. J Magn Reson Imaging 27(5):1046–1053. doi: 10.1002/jmri.21361 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kai Lin
    • 1
  • Donald M. Lloyd-Jones
    • 2
  • Ying Liu
    • 1
    • 3
  • Biao Lu
    • 4
  • Huadan Xue
    • 5
  • Yining Wang
    • 5
  • Debiao Li
    • 1
    • 6
  • James C. Carr
    • 1
  1. 1.Department of RadiologyNorthwestern UniversityChicagoUSA
  2. 2.Department of Preventive MedicineNorthwestern UniversityChicagoUSA
  3. 3.Department of Radiology, Xijing HospitalForth Military Medical UniversityXi’anChina
  4. 4.Department of Radiology, Anzhen HospitalCapital Medical UniversityBeijingChina
  5. 5.Department of RadiologyPeking Union Medical College HospitalBeijingChina
  6. 6.Biomedical Imaging Research InstituteCedars Sinai Medical CenterLos AngelesUSA

Personalised recommendations